National Oceanic and Atmospheric Administration Florida Keys National Marine Sanctuary

Total Page:16

File Type:pdf, Size:1020Kb

National Oceanic and Atmospheric Administration Florida Keys National Marine Sanctuary National Oceanic and Atmospheric Administration Florida Keys National Marine Sanctuary U.S. Environmental Protection Agency State of Florida 2002-03 Sanctuary Science Report: An Ecosystem Report Card After Five Years of Marine Zoning Miami Gulf of Mexico Southwest Florida Shelf Florida Bay Marquesas Keys Florida Straits http://floridakeys.noaa.gov/research_monitoring/welcome.html Final: 2 October 2006 Preface In this 2002-03 Sanctuary Science Report we include updates on the three long-term, status-and- trends monitoring projects of the Water Quality Protection Program (WQPP) and on the projects that comprise the Marine Zone Monitoring Program. These two monitoring programs are inextricably related; population and community changes that result from the Sanctuary’s network of fully protected marine zones occur in the context of large-scale environmental characteristics measured by the water quality, seagrass, and coral reef evaluation and monitoring projects of the WQPP. This year we have added a set of summary reports on socioeconomic research projects, and continue to present findings of partnership projects with NOAA National Centers for Coastal Ocean Science. After presenting reports on two long-spined urchin (Diadema antillarum) restoration projects, we conclude with lists of permitted research projects for the years 2002 and 2003. We thank the large group of investigators working in the Florida Keys National Marine Sanctuary for designing projects and collecting the ecological and socioeconomic data we need to evaluate the condition of the Sanctuary’s resources and how the ecosystem as well as human uses and perceptions respond to management actions. Brian D. Keller Science Coordinator Scott Donahue Associate Science Coordinator Suggested citation: Keller, B.D. and S. Donahue. ed. 2006. 2002-03 sanctuary science report: an ecosystem report card after five years of marine zoning. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of National Marine Sanctuaries, Florida Keys National Marine Sanctuary, Marathon, FL. Contents Executive Summary....................................................................................................................5 Introduction...............................................................................................................................17 Circulation and Exchange of Florida Bay and South Florida Coastal Waters Interdisciplinary Coastal Ocean Observations in the Florida Keys National Marine Sanctuary with Real-time Data Links ......................................................................21 Water Quality, Seagrass, Coral Reef, and Episodic Event Monitoring Florida Keys National Marine Sanctuary Water Quality Monitoring Project.........................37 Florida Bay Watch ...................................................................................................................41 Florida Keys Watch .................................................................................................................49 Seagrass Monitoring in the Florida Keys National Marine Sanctuary ....................................57 U.S. EPA / FKNMS Coral Reef Evaluation and Monitoring Project .....................................65 Marine Ecosystem Event Response and Assessment (MEERA) Project ................................81 Marine Zone Monitoring Program Ecological Processes and Coral Reef Recovery in the Florida Keys ......................................85 Rapid Assessment and Monitoring of Coral Reef Habitats on the Florida Reef Tract, Summer 2002 .............................................................................95 Preliminary Analysis of FKNMS Reef Fish Monitoring Through 2002...............................119 Volunteer Reef Fish Monitoring in the Florida Keys National Marine Sanctuary: 2002 Update Report..........................................................................................125 Monitoring Caribbean Spiny Lobsters in the Florida Keys National Marine Sanctuary, 1997-2002.............................................................................................131 Queen Conch Monitoring ......................................................................................................139 Socioeconomic Research and Monitoring Program Importance and Satisfaction Ratings, A Five-Year Comparison (1995-96 to 2000-01) .......151 Linking Ecological and Socioeconomic Monitoring Results, 1995-96 to 2000-01...............165 Sanctuary Preservation Areas and Ecological Reserves: Monroe County Reef-using Residents’ Opinions on “No-take” Zones ........................................................169 SPAs and ERs: Baseline Estimates of Use, Importance-Satisfaction Ratings, Economic User Value, and Comparative Socioeconomic Profiles of Users And Non-users, 2000-01.....................................................................................................173 Economic Valuation of Marine Reserves in the Florida Keys as Measured by Diver Attitudes and Preferences: Implications for Valuation of Non-consumptive Uses of Marine Reserves ....................................................................................................185 Socioeconomic Monitoring Program of Commercial Fishing Panels ...................................187 Partnership Projects with NOAA National Centers for Coastal Ocean Science Assessing Coral Health in the Florida Keys National Marine Sanctuary Using a Molecular Biomarker System................................................................................193 Scientific Evaluation of a Sediment Fill Technique for the Restoration of Motor Vessel Injuries in Seagrass Beds of the Florida Keys National Marine Sanctuary ............227 2 The Effect of Excavation Depth and Filling on Seagrass Recovery in Experimental Injuries in the Florida Keys National Marine Sanctuary ....................................................245 Biogeographic Analysis of Tortugas Ecological Reserve: Examining the Refuge Effect Following Reserve Designation ...............................................................................267 Diadema Restoration Projects Diadema Restoration Project .................................................................................................277 Techniques Development for the Reestablishment of the long-spined sea urchin, Diadema antillarum, on Two Small Patch Reefs in the Upper Florida Keys.....................283 One-year Response of Florida Keys Patch Reef Communities to Translocation of Long-spined Sea Urchins (Diadema antillarum)................................................................317 Permitted Research Projects 2002 Research Permits...........................................................................................................345 2003 Research Permits...........................................................................................................363 3 4 Final - 2 October 2006 Executive Summary Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravity- driven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. Water Quality, Seagrass, Coral Reef, and Episodic Event Monitoring Results from the Water Quality Monitoring Project, an element of the Water Quality Protection Program (WQPP; http://ocean.floridamarine.org/fknms_wqpp/), indicate
Recommended publications
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Curriculum Vitae
    DR. EVELYN E. GAISER George M. Barley, Jr. Endowed Chair, Institute of Environment Professor, Department of Biological Sciences Florida International University Miami, FL 33199 305-348-6145 (phone), 305-348-4096 (fax), [email protected] EDUCATION 1997 Ph.D. University of Georgia, Athens, Georgia, Institute of Ecology 1991 M.S. Iowa State University, Ames, Iowa, Department of Animal Ecology 1989 B.S. Kent State University, Kent, Ohio, Department of Biology ACADEMIC AND PROFESSIONAL APPOINTMENTS 2018-present George M. Barley, Jr. Endowed Chair of Everglades Research, Institute of Environment, Florida International University, Miami, FL 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education, Florida International University, Miami, FL 2012-present Professor, Department of Biological Sciences, Florida International University, Miami, FL 2006-2012 Associate Professor, Department of Biological Sciences, Florida International University, Miami, FL 2008-present Research Associate, Archbold Biological Station, Lake Placid, FL 2001- 2006 Assistant Professor, Department of Biological Sciences, Florida International University, Miami, FL 1997-2001 Assistant Research Scientist, Southeast Environmental Research Center, Florida International University, Miami, FL 1991-1997 Research/Teaching Assistant, Institute of Ecology, University of Georgia, Athens, GA and Savannah River Ecology Lab, Aiken, SC 1989-1991 Research/Teaching Assistant, Department of Animal Ecology, Iowa State University, Ames, IA and Iowa Lakeside Laboratory, Milford, IA 1987-1988 Research Technician, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH ADMINISTRATIVE SERVICE AT FLORIDA INTERNATIONAL UNIVERSITY 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education. I served as the academic leader of one of three schools in the College of Arts, Sciences and Education.
    [Show full text]
  • Morphology and Histology of the Testicles
    MORPHOLOGY AND HISTOLOGY OF THE TESTICLES OF QUEEN ANGELFISH Holacanthus ciliaris Arquivos de Ciências do Mar (LINNAEUS, 1758) (TELEOSTEI: PERCIFORMES: POMACANTHIDAE) Morfologia e histologia dos testículos do peixe-anjo Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Perciformes: Pomacanthidae) Mara C. Nottingham1 , José Roberto Feitosa Silva2 , Maria Elisabeth de Araújo1, 3 ABSTRACT Aspects of the morphology and histology of the testicles of Holacanthus ciliaris were studied in this research. Monthly collections of living fish, totaling 39 males, were carried out between December, 2000 and November, 2001 on the coast of Ceará State, Brazil. The total length of the fish varied between 63.4 mm and 334 mm, the standard length between 50.9 mm and 270 mm, and the total weight between 6,70 g and 590 g. The testicles were bilobed and ribbon-like in shape, with firm texture and coloration varying between transparent and amber. In the histological study, male gametes were found in all espermatogenesis stages along the months of the year. Key words: Holacanthus ciliaris, Pomacanthidae, reef fish, reproduction. RESUMO Aspectos da morfologia e histologia de testículos de Holacanthus ciliaris foram estudados nesta pesquisa. Coletas mensais de peixes vivos, totalizando 39 machos, foram realizadas entre os meses de dezembro de 2000 e novembro de 2001 na costa do Estado do Ceará. O comprimento total dos peixes variou entre 63,4 e 334mm, o comprimento padrão entre 50,9 e 270mm e o peso total entre 6,70 e 590g. Os testículos apresentavam-se bilobulados, em forma de fita, com textura firme e coloração variando entre transparente e âmbar. No estudo histológico foram encontrados gametas masculinos em todos os estágios da espermatogênese durante os meses do ano.
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Patterns of Propeller Scarring of Seagrass in Florida Bay
    National Park Service U.S. Department of the Interior South Florida Natural Resources Center Everglades National Park RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 PATTERNS OF PROPELLER SCARRING OF SEAGRASS IN FLORIDA BAY Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management PATTERNS OF PROPELLER SCARRING OF SEAGRASS IN FLORIDA BAY Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 South Florida Natural Resources Center Everglades National Park Homestead, Florida National Park Service U.S. Department of the Interior Cover photograph of north end of Lower Arsnicker Key by Lori Oberhofer, ENP ii South Florida Natural Resources Center Technical Series (2008:1) Patterns of Propeller Scarring of Seagrass in Florida Bay iii Patterns of Propeller Scarring of Seagrass in Florida Bay: Associations with Physical and Visitor Use Factors and Implications for Natural Resource Management RESOURCE EVALUATION REPORT SFNRC Technical Series 2008:1 EXECUTive SummarY of approximately 10, i.e., there may be as many as 3250 miles of scars in Florida Bay. Everglades National Park (ENP) encompasses over 200,000 Substantially more scarring was identified in this study hectares of marine environments, including most of Florida than in a previous study conducted in 1995. Bay. The ENP portion of Florida Bay was federally designated as submerged wilderness in 1978. Much of Florida Bay sup- ports submerged aquatic vegetation comprised of seagrass Patterns and Associations that provides vast areas of habitat for recreationally and com- mercially important fish and invertebrates. Florida Bay is a The majority of scarring was identified in depths below 3.0 premier shallow-water recreational fishing destination and it ft and scarring density tends to increase with decreasing is heavily used by recreational boaters for access to produc- depth.
    [Show full text]
  • Corals of Rottnest Island Mscience Pty Ltd June 2012 Volume 1, Issue 1
    Corals of Rottnest Island MScience Pty Ltd June 2012 Volume 1, Issue 1 MARINE RESEARCH Produced with the Assistance of the Rottnest Island Authority Cover picture courtesy of H. Shortland Jones * Several of the images in this publication are not from Rottnest and were sourced from corals.aims.gov.au courtesy of Dr JEN Veron Contents What are hard corals? ...........................................................................................4 Corals at Rottnest Island .....................................................................................5 Coral Identification .............................................................................................5 Hard corals found at Rottnest Island ...............................................................6 Faviidae ............................................................................................................7 Acroporidae and Pocilloporidae ....................................................................11 Dendrophyllidae ............................................................................................13 Mussidae ......................................................................................................15 Poritidae .......................................................................................................17 Siderastreidae ..............................................................................................19 Coral Identification using a customised key ................................................21 Terms used
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Mollusks Background the Florida Keys Marine Ecosystem Supports a Diverse Fauna of Mollusks Belonging to Several Orders
    2010 Quick Look Report: Miller et al. VII. Abundance and Size of Selected Mollusks Background The Florida Keys marine ecosystem supports a diverse fauna of mollusks belonging to several orders. Opisthobranch mollusks, for example, are represented by at least 30 species of sea slugs (Sacoglossa) and 23 species of nudibranchs (Nudibranchia) (Clark and DeFreese 1987; Levy et al. 1996), including at least three endemic species (Clark 1994). Data on the status and trends of mollusk populations and habitat utilization patterns in the Florida Keys, with the exception of queen conch (Strombus gigas), are generally limited (Marcus 1960; Jensen and Clark 1983; Clark and DeFreese 1987), as most previous studies have been qualitative in nature (Clark 1994; Trowbridge 2002). Clark (1994) noted a declining population trend for the lettuce sea slug, Elysia (Tridachia) crispata Mörch (see cladistic analyses in Gosliner 1995; Jensen 1996) in southern Florida, based upon qualitative comparisons of occurrence and population densities between 1969-80 and 1987-93. About 50% of the nearshore populations assessed by Clark (1994) nearly 17 years ago were declining due to habitat destruction, siltation, eutrophication, and over- collection, particularly evident in nearshore habitats. Since 2001, we have conducted intermittent surveys of various gastropod mollusk species in conjunction with assessments of other benthic variables. For example, we encountered unusually high densities of lettuce sea slugs among 63 shallow fore reef sites during June-September 2001. While sacoglossans are not particularly rare in many shallow-water marine habitats where densities correlate with algal biomass (Clarke and DeFreese 1987), our observations offshore were considered unusual because fleshy algal cover tends to be relatively low (Chiappone et al.
    [Show full text]
  • Variable Holocene Deformation Above a Shallow Subduction Zone Extremely Close to the Trench
    ARTICLE Received 24 Nov 2014 | Accepted 22 May 2015 | Published 30 Jun 2015 DOI: 10.1038/ncomms8607 OPEN Variable Holocene deformation above a shallow subduction zone extremely close to the trench Kaustubh Thirumalai1,2, Frederick W. Taylor1, Chuan-Chou Shen3, Luc L. Lavier1,2, Cliff Frohlich1, Laura M. Wallace1, Chung-Che Wu3, Hailong Sun3,4 & Alison K. Papabatu5 Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and 230Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4–40 km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next. 1 Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, J. J. Pickle Research Campus, Building 196, 10100 Burnet Road (R2200), Austin, Texas 78758, USA. 2 Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 1 University Station C9000, Austin, Texas 78712, USA.
    [Show full text]
  • FWC Sentinel Site Report June 2018
    Investigating the Ongoing Coral Disease Outbreak in the Florida Keys: Collecting Corals to Diagnose the Etiological Agent(s) and Establishing Sentinel Sites to Monitor Transmission Rates and the Spatial Progression of the Disease. Florida Department of Environmental Protection Award Final Report FWC: FWRI File Code: F4364-18-18-F William Sharp & Kerry Maxwell Florida Fish & Wildlife Conservation Commission Fish & Wildlife Research Institute June 25, 2018 Project Title: Investigating the ongoing coral disease outbreak in the Florida Keys: collecting corals to diagnose the etiological agent(s) and establishing sentinel sites to monitor transmission rates and the spatial progression of the disease. Principal Investigators: William C. Sharp and Kerry E. Maxwell Florida Fish & Wildlife Conservation Commission Fish & Wildlife Research Institute 2796 Overseas Hwy., Suite 119 Marathon FL 33050 Project Period: 15 January 2018 – 30 June 2018 Reporting Period: 21 April 2018 – 15 June 2018 Background: Disease is recognized as a major cause of the progressive decline in reef-building corals that has contributed to the general decline in coral reef ecosystems worldwide (Jackson et al. 2014; Hughes et al. 2017). The first reports of coral disease in the Florida Keys emerged in the 1970’s and numerous diseases have been documented with increasing frequency (e.g., Porter et al., 2001). Presently, the Florida Reef Tract (FRT) is experiencing one of the most widespread and virulent disease outbreaks on record. This outbreak has resulted in the mortality of thousands of colonies of at least 20 species of scleractinian coral, including primary reef builders and species listed as Threatened under the Endangered Species Act.
    [Show full text]
  • FKNMS Artificial Habitat Permits As of July 7, 2015
    FKNMS artificial habitat permits as of July 7, 2015 Date issued or Waypoint deployed Project Permit holder(s)/affiliation Activity or items deployed Artificial reef (scuttled vessel) permits Flynn/Dade County DERM; 1 7/28/1998 Ocean Freeze (Scott Mason Chaite) Smith/Moby Marine Vessel Garrett/Monroe County; Schurger/Schurger Bros 27 12/5/1998 Adolphus Busch Diving & Salvage Vessel 2 5/17/2002 Spiegel Grove Garrett/Monroe County Vessel 28 5/27/2009 Hoyt S. Vandenberg Weekly/City of Key West Vessel Education permits 5 1/21/1999 Educational Marine Science Project Coleman 15 concrete blocks 3 6/3/1999 Wolfe Reef Memorial Makepeace/Coral Shores HS 3 reef balls 7 5/23/2000 Davis Reef reef balls Makepeace/Coral Shores HS 6 reef balls 7 5/31/2001 Davis Reef reef balls Makepeace/Coral Shores HS 4 reef balls Wampler/Boy Scouts of 6 5/23/2001 BSA reef balls, after the fact America 106 reef balls Research permits The Effects of Artificial Reef Habitats on Fish 4 5/1/2001 Production St. Mary/UF 25 small quarried rock piles Impact of Illegal Artificial Reefs on Spiny Lobster One small concrete reef structure and a 100- 6/10/2004 Populations Herron/NMFS lb weight 12,13,14, Determining the Ecological Significance of the Spotted 18,19,20, Spiny Lobster, Panulirus guttatus, on the Coral Reef 21,25 5/23/2005 Communities of the Florida Keys Butler/ODU Settlement blocks (20x40cm) 10,11,15, The Influence of Conspecific Cues and Community 16,17,22, Composition on the Recruitment of Juvenile Spiny 23,24 7/7/2005 Lobsters Childress/Clemson Univ.
    [Show full text]