Thiol-Acrylate Polymerization Kinetics and Applications in Microfluidics Michael Perrin Tullier Louisiana State University and Agricultural and Mechanical College
Total Page:16
File Type:pdf, Size:1020Kb
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Thiol-Acrylate Polymerization Kinetics and Applications in Microfluidics Michael Perrin Tullier Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Tullier, Michael Perrin, "Thiol-Acrylate Polymerization Kinetics and Applications in Microfluidics" (2016). LSU Doctoral Dissertations. 4209. https://digitalcommons.lsu.edu/gradschool_dissertations/4209 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THIOL-ACRYLATE POLYMERIZATION KINETICS AND APPLICATIONS IN MICROFLUIDICS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Michael Perrin Tullier B.S., Louisiana State University, 2012 May 2017 ACKNOWLEDGEMENTS Firstly, I would like to express my sincere thanks to my advisor, Dr. John A Pojman, without whom this would not be possible. Ever since taking me into his lab as an undergraduate looking for work, he has given me the freedom to pursue my own ideas and has been a beacon of positivity during times of stress and frustration. Thank you for your acceptance of my skeptical nature and for all of your advice and guidance. I would also like to thank the other members of my committee, Dr. David Spivak and Dr. Donghui Zhang who have challenged me both in research and in the classroom. Your interest in my work and different schools of thought pushed me to think about things from new perspectives and helped me develop as a researcher. I am also truly grateful to the members of the Pojman research team, past and present, for their advice and friendship. Thank you for all of your help, stimulating conversations, and welcome distractions over the past six years. I would like to thank the members of my family for their support throughout this process. I would especially like to thank my parents, Patrick and Renée Tullier, and my grandparents for their love and positive example. The education you have provided me has allowed me to succeed both academically and personally. Finally, I owe a great deal of thanks to my wife Julie for her patience and understanding, especially over the last few months, and to my son Matthew for usually sleeping through most of the night. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... ii LIST OF ABBREVIATIONS ............................................................................................. v ABSTRACT ................................................................................................................... viii CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Thiol-Ene Chemistry ....................................................................................... 1 1.2 Thiol-Michael Additions................................................................................... 7 CHAPTER 2. THE KINETICS OF THIOL-ACRYLATE POLYMERIZATION REACTIONS USING MULTIFUNCTIONAL MONOMERS ..................... 11 2.1 Chapter Summary ........................................................................................ 11 2.2 Introduction ................................................................................................... 12 2.3 Materials and Methods ................................................................................. 13 2.3.1 Materials ......................................................................................... 13 2.3.2 Experimental Methods .................................................................... 15 2.4 Kinetic Fitting ................................................................................................ 18 2.4.1 Base-Catalyzed Reactions .............................................................. 18 2.4.2 Nucleophile-Initiated Reactions ...................................................... 22 2.4.3 Monomer Purity............................................................................... 23 2.5 PETA v TMPTA: The Effect of Monomer Side Groups ................................. 24 2.6 The Effect of Acrylate Structure on the Polymerization Kinetics ................... 26 2.7 The Effect of Monomer Functionality on the Polymerization Kinetics ........... 28 2.8 The Nucleophile-Initiated Mechanism ........................................................... 30 2.9 The Effect of Background Radical Reactions ............................................... 35 2.10 Conclusions ................................................................................................ 42 CHAPTER 3. THE APPLICATIONS OF THIOL-ACRYLATE MICROFLUIDIC RESIN ..................................................................................................... 45 3.1 Chapter Summary ........................................................................................ 45 3.2 Introduction ................................................................................................... 46 3.3 Thiol-Acrylate Microfluidic Resin (TAMR) Overview ..................................... 58 3.4 TAMR Preparation and General Curing Procedure ...................................... 59 3.5 TAMR Characterization ................................................................................ 61 3.5.1 Introduction ..................................................................................... 61 3.5.2 Materials and Methods .................................................................... 65 3.5.3 TAMR Variables .............................................................................. 71 3.5.4 TAMR Cure Kinetics ....................................................................... 71 3.5.5 Hydrophilicity of TAMR ................................................................... 77 3.5.6 TAMR Water Absorption ................................................................. 83 3.5.7 TAMR Solvent Absorption ............................................................... 88 3.5.8 TAMR Mechanical Strength ............................................................ 90 iii 3.5.9 TAMR Bonding Strength and Mechanism ....................................... 96 3.5.10 TAMR Surface Modification ........................................................ 101 3.5.11 General TAMR Usage Observation ............................................ 104 3.5.12 Conclusions ................................................................................ 110 3.6 Fluorescence-Based Detection of Pathogens ............................................. 111 3.6.1 Introduction ................................................................................... 111 3.6.2 TAMR POC Diagnostic Device Prototype Overview ..................... 115 3.6.3 Materials and Methods .................................................................. 116 3.6.4 Background Fluorescence in TAMR and PDMS ........................... 120 3.6.5 Specific Detection of E. coli O157:H7 Using Antibodies ............... 121 3.6.6 Detection of E. coli O55:B5 Lipopolysaccharides Using Polymyxin B ................................................................................. 123 3.6.7 Conclusions .................................................................................. 126 3.7 A Gradient Generating Microfluidic Device ................................................. 127 3.7.1 Introduction ................................................................................... 127 3.7.2 Materials and Methods .................................................................. 130 3.7.3 Thiol-Acrylate Device Development .............................................. 134 3.7.4 Hydrogel Swelling Studies ............................................................ 137 3.7.5 Microfluidic Gradient Characterization .......................................... 138 3.7.6 Algae Viability ............................................................................... 141 3.7.7 Conclusions .................................................................................. 142 CHAPTER 4. SUMMARY AND CONCLUSIONS ........................................................ 144 REFERENCES ............................................................................................................ 149 APPENDIX. PERMISSION FOR SECTION 3.6 .......................................................... 176 VITA ............................................................................................................................ 178 iv LIST OF ABBREVIATIONS AA Activated Acrylate ATR Attenuated Total Reflectance BDDA Butanediol Diacrylate BSA Bovine Serum Albumin BuOH Butanol CFU Colony Forming Unit DAPI 4′,6-Diamidino-2-Phenylindole DEA Diethylamine DEOA Diethanolamine E. coli Escherichia coli EA Excess Acrylate EEOA Ethyl Ethanolamine ELISA Enzyme Linked Immunosorbent Assay ET Excess Thiol ETMPTMP Ethoxylated Trimethylolpropane Tris(3- Mercaptopropionate) FAM Carboxyfluorescein FITC Fluorescein Isothiocyanate FTIR Fourier Transform