FES Transients Workshop Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2015 Annual Report
2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher. -
ITER Review Panel Members
APPENDIX A REVIEW TEAM MEMBERS, AND MEETINGS A.1 ITER Review Panel Members Prof. Robert W. Conn (Chairman)* Dean and Walter J. Zable Professor, School of Engineering University of California, San Diego Dr. David Baldwin Senior Vice President General Atomics Dr. Richard J. Briggs* Senior Program Manager SAIC Prof. James D. Callen* Kerst Professor of Nuclear Engineering & Engineering Physics and Physics University of Wisconsin Prof. Robert Goldston Associate Director for Research of PPPL and Professor of Astro-Physical Sciences, Princeton University Princeton Plasma Physics Laboratory Prof. Richard D. Hazeltine * Director of the Institute for Fusion Studies, and Professor of Physics University of Texas, Austin Dr. Richard E. Siemon Fusion Energy Program Manager Los Alamos National Laboratory Dr. Tony S. Taylor * Senior Technical Advisor and Group Leader, Stability General Atomics *Also FESAC member APPENDIX A 1 A.2 ITER Review Sub-Panel Members Sub-Panel I. Physics Performance, Projections, Experimental & Theoretical Basis, Global Scaling Dr. Tony S. Taylor (Co chairman)* Senior Technical Advisor and Group leader, stability General Atomics Dr. William Tang (Co chairman) Principal Research Physicist, head, Theory Division Princeton Plasma Physics Laboratory Prof. Glen Bateman Professor of Physics Lehigh University Dr. Keith Burrell Senior Technical Advisor General Atomics Dr. Vincent Chan Director, Core Physics General Atomics Prof. Lui Chen Professor of Physics and Astronomy University of California, Irvine Dr. Steven Cowley Professor of Physics and Astronomy University of California, Los Angeles Dr. Patrick Diamond Professor of Physics University of California, San Diego Dr. William Dorland Research Associate, Institute for Fusion Studies University of Texas, Austin Dr. James Drake Professor of Physics, Laboratory for Plasma Research University of Maryland APPENDIX A 2 Dr. -
Advancing Physics
AMERICAN PHYSICAL SOCIETY TM Advancing Physics 2014 ANNUAL REPORT THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members TM © 2015 American Physical Society Cover image: Light angular momentum of a plane wave diffracted by a two-dimensional object [O. Emile et al., Phys. Rev. A 89, 013846 (2014)]. AMERICAN PHYSICAL SOCIETY 2014 ANNUAL REPORT 1 t is not an exaggeration to say that 2014 was an historic year for APS. For the first time in 100 years, the Society carried out a major reform of its governance Iand executive structure. The reforms are intended to strengthen APS to meet the challenges facing the Society in the increasingly complex and rapidly evolving world in which we live. The changes also bring us into conformity with the statutes governing nonprofit corporations in Washington DC, where we continue to be incorporated. After a process that gave voice to all elements of our Society from the Executive Board to the Council to the Units and of course to the members, the reforms were approved by an overwhelming positive vote of the membership. This year the Society received the largest single gift in its history from Jay and Mary Jayne Jones of Seattle, Washington. -
2012 Annual Report American Physical Society N G E E T I S M I C I F T N E I
AMERICAN PHYSICAL SOCIETY TM A L R E N U P O N R A T 2 1 0 2 TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members. Cover images: top: Real CMS proton-proton collision events in which 4 high energy electrons (green lines and red towers) are observed. The event shows characteristics expected from the decay of a Higgs boson but is also consistent with background Standard Model physics processes [T. McCauley et al., CERN, (2012)] Bottom, left to right, a: Vortices on demand in multicomponent Bose-Einstein condensates [R. Zamora-Zamora, et al., Phys. Rev. A 86, 053624 (2012)] b: Differences between emission patterns and internal modes of optical resonators [S. Creagh et al., Phys. Rev. E 85, 015201 (2012)] c: Magnetic field lines of a pair of Nambu monopoles [R. C. Silvaet al., Phys. Rev. B 87, 014414 (2013)] d: Scaling behavior and beyond equilibrium in the hexagonal manganites [S. M. Griffinet al., Phys. Rev. X 2, 041022 (2012)] Page 2: Effect of solutal Marangoni convection on motion, coarsening, and coalescence of droplets in a monotectic system [F. Wang et al., Phys. Rev. E 86, 066318 (2012)] Page 3: Collective excitations of quasi-two-dimensional trapped dipolar fermions: Transition from collisionless to hydrodynamic regime [M. -
DIII-D Researchers Earn Multiple Honors from American Physical
FOR IMMEDIATE RELEASE DIII-D Researchers Earn Multiple Honors from American Physical Society Awards recognize pioneering work in plasma physics at fusion facility operated by General Atomics San Diego, CA – July 10, 2018: The American Physical Society (APS) has awarded the two most prestigious prizes in plasma physics to researchers working at the DIII-D National Fusion Facility. The awards were based on research carried out at DIII-D, a U.S. Department of Energy user facility operated by General Atomics (GA). The research represented by these awards have transformed our understanding of fusion plasmas and enabled great advances in tokamak performance and control. GA scientist Keith Burrell won the James Clerk Maxwell Prize for Plasma Physics, which recognizes outstanding contributions to the field. In addition, DIII-D scientists Todd Evans (General Atomics), Max Fenstermacher, (Lawrence Livermore National Laboratory), and Rick Moyer (University of California, San Diego), won the John Dawson Award for Excellence in Plasma Physics Research, which recognizes a particular recent outstanding achievement. Burrell’s research at DIII-D over the past 40 years helped develop and validate the theory that explains how hot plasmas in a magnetic field can self-organize to reach improved states of confinement at higher pressures, which are necessary to create fusion. Through an effect called sheared flow, the plasma can be induced to confine itself within the magnetic field. In future self-sustaining fusion devices, these effects will lead to greater fusion power than would otherwise be possible. Evans, Fenstermacher, and Moyer were honored for experiments proving that instabilities in fusion plasmas known as edge localized modes (ELMs) can be stabilized by finely tuning the three-dimensional magnetic field. -
Characteristics and Contributions of the Three Major United States Toroidal Magnetic Fusion Facilities
Report of the 2005 FESAC Facilities Panel, Vol. 1: Characteristics and Contributions of the Three Major United States Toroidal Magnetic Fusion Facilities Submitted to the Fusion Energy Sciences Advisory Committee July 11, 2005 July 11, 2005 Facilities Panel Members JILL DAHLBURG, Naval Research Laboratory (Chair) STEVEN L. ALLEN, Lawrence Livermore National Laboratory (Vice-Chair) RICCARDO BETTI, University of Rochester STEPHEN KNOWLTON, Auburn University RAJESH MAINGI, Oak Ridge National Laboratory GERALD A. NAVRATIL, Columbia University STEVEN A. SABBAGH, Columbia University JOHN SHEFFIELD, University of Tennessee JAMES W. VAN DAM, University of Texas at Austin DENNIS WHYTE, University of Wisconsin at Madison 2 July 11, 2005 Executive Summary The three major toroidal fusion research facilities in the U.S. have diverse and complementary characteristics, which were developed on the basis of evolving U.S. innovation in fusion energy sciences. Taken together these three facilities provide the U.S. with a very effective presence in the world program of fusion research. Their success has enabled the U.S. to have substantial impact on the direction and progress of the field, including world leadership in understanding fundamental transport processes in magnetically confined plasmas, and optimization of the magnetic configuration for confinement of high pressure plasmas. Unique and complimentary characteristics The characteristics that make each of these toroidal facilities unique in research capability stem from their initial research motivations: C-Mod to understand plasma behavior at very high magnetic field with the plasma pressure and field appropriate for sustaining a burning plasma for energy production. DIII-D to understand and improve plasma confinement and stability as a function of plasma shape and magnetic field distribution in a collisionless plasma. -
AMERICAN PHYSICAL SOCIETY 2017 ANNUAL REPORT the American Physical Society Strives To
AMERICAN PHYSICAL SOCIETY 2017 ANNUAL REPORT The American Physical Society strives to Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity; Provide effective programs in support of the physics community and the conduct of physics; Collaborate with national scientific societies for the advancement of science, science education, and the science community; Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration; Promote an active, engaged and diverse membership, and support the activities of its units and members. Cover image from Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions [N. Ferri, et al., Phys. Rev. Materials 1, 026003 (2017)] © 2018 AMERICAN PHYSICAL SOCIETY It has been an extraordinary year for APS and physics. Our APS heart and soul for 125 years, our international family of journals, continues to grow in excellence and breadth under the leadership of our Editor in Chief, Michael Thoennessen, our Publisher, Matthew Salter, our many Ph.D. full-time professional editors, and our remote part-time editors who are each active researchers. The newest in our family, Physical Review Materials rolled out in 2017, flourishes. The results for the last four Nobel Prizes were published in our flagship journal,Physical Review Letters: The LIGO detection of two black holes awarded three of our members the 2017 Nobel Prize in Physics, and this year LIGO-VIRGO detected neutron stars colliding, allowing us to study these massive, rich objects with both photons and gravity waves.