Venom and Antivenom of the Redback Spider (Latrodectus Hasseltii) in Japan

Total Page:16

File Type:pdf, Size:1020Kb

Venom and Antivenom of the Redback Spider (Latrodectus Hasseltii) in Japan Jpn. J. Infect. Dis., 71, 116–121, 2018 Original Article Venom and Antivenom of the Redback Spider (Latrodectus hasseltii) in Japan. Part I. Venom Extraction, Preparation, and Laboratory Testing Takayuki Matsumura1, Reona Mashiko2, Tomomi Sato2, Kentaro Itokawa2, Yoshihide Maekawa2, Kohei Ogawa2, Haruhiko Isawa2, Akihiko Yamamoto3, Shigemi Mori4, Akira Horita4, Akihiro Ginnaga4, Yoshinobu Miyatsu4, Motohide Takahashi5, Hisashi Taki6, Toru Hifumi7, Kyoko Sawabe2†, and Manabu Ato1*† 1Department of Immunology, National Institute of Infectious Diseases; 2Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo 162-8640; 3Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo 208-0011; 4The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto 860-8568; 5Pharmaceuticals and Medical Devices Agency, Tokyo 100-0013; 6Ministry of Health, Labour and Welfare, Tokyo 100-8916; and 7Kagawa University Hospital Emergency Medical Center, Kagawa 761-0793, Japan SUMMARY: The redback spider (Latrodectus hasseltii Thorell) reportedly invaded Japan in September 1995. To date, 84 redback spider bite cases have been reported; 7 of these cases employed the antivenom. Antivenom has been imported from Australia in the past, but because of restrictions on exportation it was evident that nearly all of the antivenom present in Japan would expire during 2014. In 2014, a plan was proposed to experimentally manufacture and stockpile a horse antiserum for ourselves, using redback spiders indigenous to Japan. A total of 11,403 female spiders were captured alive: 1,217 from the vicinity of Nishinomiya City, Hyogo prefecture, and 10,186 from Osaka prefecture. Of these, 10,007 females were dissected, and the venom was extracted from the venom glands of individuals and subjected to crude purification to yield 4 lots, of which the majority was α-latrotoxin. Among them, a large amount of single lots with an estimated protein content of 236 mg is subsequently scheduled to be used for immunizing horses. We also determined lethal toxicity of the venom (LD50: 9.17 μg per mouse), and established the assay for the determination of an anti-lethal titer of antivenom in mice. in recent years, importation from Australia has been INTRODUCTION limited. As a result, it became clear that nearly all of the In September 1995 the redback spider (Latrodectus antivenom present in Japan would expire during 2014. hasseltii Thorell) was first discovered in Takaishi City, A plan for experimental production and stockpiling Osaka prefecture (1, 2), in Yokkaichi City, Mie prefecture of a horse antiserum in Japan was implemented using the following November, and in Miyakojima City, redback spiders indigenous to Japan. We captured Okinawa prefecture that December (3). The distribution redback spiders, extracted their venom glands, and of redback spiders in Japan has since expanded. It has crudely purified the venom. We then performed been shown to be established in a total of 43 prefectures characterization analysis, determined the lethal toxicity in Japan until 2016 (4). The possibility that the of the venom (LD50), and established the assay for the distribution of this spider will continue expanding and determination of anti-lethal titer of antivenom in mice. that the population will continue increasing are causes for concern. MATERIALS AND METHODS Since 1996, 84 redback spider bite cases have been reported (14 of these cases were reported in 2009), and Capture of redback spiders: A total of 11,403 7 of these cases employed antivenom (5 and T. Hifumi, female redback spiders were captured alive: 1,217 in unpublished data). Native to Australia, the redback the vicinity of Nishinomiya City, Hyogo prefecture, and spider is known as a venomous species; there are 3,000 10,186 in Osaka prefecture (Fig. 1A and 1B). From June to 5,000 bite cases every year (6), and an antivenom is through December 2014, female spiders were captured also used for the treatment. The antivenom produced in alive in several sites close to Nishinomiya City and in Australia has been imported for use in Japan. However, 480 sites in Osaka prefecture. Every effort was made to capture individuals alive by hand using tweezers or with Received June 29,2017. Accepted November 6, 2017. gloves. Pesticides were not used during capture, and J-STAGE Advance Publication February 28, 2018. specimens were killed by freezing at –20°C. The redback DOI: 10.7883/yoken.JJID.2017.291 spiders stored in the freezer were transported frozen in * Corresponding author: Mailing address: Department of various batches to the National Institute of Infectious Immunology, National Institute of Infectious Diseases, Diseases (NIID), Tokyo, Japan. Dry ice was used during 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Tel: transport to prevent specimens from thawing. +81-3-5285-1111, Fax: +81-3-5285-1147, E-mail: ato@ Removal of the redback spider venom glands and nih.go.jp crude purification of the venom: Because the venom †These authors contributed equally to this work. gland is covered with a thick layer of muscle, the fangs 116 Venom of Redback Spider in Japan B A Hyogo Tokyo Osaka 3,403 2,223 Takaishi City 1,217 N 20 km 0 or not inves gated 1 - 100 101 - 1,000 1,001 < N 20 km Fig. 1. Map of Hyogo (A) and Osaka (B) prefectures showing locations of the collection sites of redback spiders and their density for the entire survey period. Over 1,000 of redback spiders were captured from the black area, 101–1,000 spiders from the gray area, 1–100 spiders from the silver area and no spider was captured or not investigated at the white area. were gently seized and extracted from each spider determined using a Pierce Bicinchoninic acid (BCA) using sterilized forceps on a hole slide glass under a protein assay kit (Thermo Fisher Scientific, Rockford, stereomicroscope according to the previously described IL, USA). The neurotoxin α-Latrotoxin from Latrodectus method (7). The venom glands were individually tredecimguttatus was used as a positive control and was removed from the body and transferred to a glass slide obtained from Enzo Life Sciences (Farmingdale, NY, with wells filled with cold physiological saline (Otsuka USA). Equal amounts of protein were suspended in Pharmaceutical Co., Ltd., Tokyo, Japan). One-hundred an SDS sample buffer. The lysates (0.5 μg of positive pairs of venom glands were collected in a tube (2 ml control or 10 µg protein per lane) were boiled for 5 min protein adsorbing controlled cryopreservation tubes, then separated by SDS-PAGE and either visualized with Assist Co., Ltd., Tokyo, Japan) containing 1 ml of an Imperial protein stain kit (Thermo Fisher Scientific,) physiological saline, and stored in a freezer at –80°C or transferred to polyvinylidene fluoride membranes until use. (Millipore, Bedford, MA, USA). The membranes were All venom glands were removed, and after collection blocked with Tris-buffered saline containing 5% bovine into approximately 100 tubes, 3 zirconia beads 4 mm in serum albumin and 0.1% Tween 20 and incubated with diameter were put into each tube, and were homogenized anti-α-latrotoxin polyclonal Ab, which was developed using a high-speed mechanical homogenizer (Tissue- in rabbits using highly purified α-latrotoxin from Lyser II, QIAGEN N.V., Venlo, The Netherlands) for Latrodectus tredecimguttatus (8) (Sigma-Aldrich 30 s at 25.0 cycles per second. The tubes containing the Corp., St. Louis, MO, USA). The membranes were homogenized venom glands were centrifuged at 10,000 then incubated with anti-rabbit IgG Ab linked to HRP rpm (KUBOTA 3740, KUBOTA Co., Tokyo, Japan) (GE Healthcare Life Sciences, Buckinghamshire, UK). for 3 min, and the supernatant was then recovered and Immunoreactive proteins were visualized with an ECL poured into a 50 ml tube (Proteosave® SS centrifuge detection system (Thermo Fisher Scientific,) and were tube, Sumitomo Bakelite Co., Ltd., Tokyo, Japan). One analyzed by a chemiluminescence image analyzer, milliliter of cold physiological saline was added to each Image Quant LAS-4000 (GE Healthcare Life Sciences,). residue, and the mixture was again homogenized for Mice: All animal experiments were performed 30 s at 25.0 cycles per second and centrifuged for 15 according to institutional guidelines and with the min at 14,000 rpm (KUBOTA 3740). The supernatant approval of the NIID Animal Care and Use Committee from each sample was recovered as described above (Permit Numbers: 114097 and 115035). Female outbred and mixed in a 50 ml tube (mentioned above). The tube ddY mice (4-week-old) were purchased from Japan SLC containing the recovered venom was placed on ice to Inc.,(Shizuoka, Japan). Animals were maintained under minimize the activity of protease. The venom solution specific pathogen-free conditions. was stored at –80°C to avoid unnecessary freeze-thaw Assay for the determination of lethal toxicity in cycles. mouse (LD50): The assay was performed on 5 groups Quantification of protein, protein gel staining, (5 mice per group) for diluted solutions. The venom and immunoblotting: Quantification of protein was was diluted with 0.2% gelatin-phosphate buffered saline 117 (GPBS) in final concentrations of 144 (group 1), 120 September 2,595; October 2,280; November 2,144, and (group 2), 100 (group 3), 83 (group 4), and 69 µg/ December 1,283. Redback spiders are distributed widely ml (group 5). Aliquots of 0.1 ml of each dilution were throughout Osaka prefecture; 3,403 and 2,223 spiders injected into each mouse by intravenous route via the were captured in Toyonaka and Daito cities, respectively. tail. Subsequently, the number of deaths per group was A total of 11,403 redback spiders were captured from recorded for 10 d. LD50 was determined using the Probit both areas. method. Removal of redback spider venom glands and Assay for the determination of anti-lethal titer in crude purification of the venom: Of the 11,403 mouse: The assay was performed on 5 groups (3 mice captured redback spiders 10,007 females were dissected per group) for diluted solutions.
Recommended publications
  • False Black Widows and Other Household Spiders
    False Black Widows and Other Household Spiders Spiders can quite unnecessarily evoke all kinds of dread and fear. The Press does not help by publishing inaccurate and often alarmist stories about them. Spiders are in fact one of our very important beneficial creatures. Spiders in the UK devour a weight of insect 'pests' equivalent to that of the nation's human population! During the mid-late summer, many spiders mature and as a result become more obvious as they have then grown to their full size. One of these species is Steatoda nobilis. It came from the Canary and Madeiran Islands into Devon over a 100 years ago, being first recorded in Britain near Torquay in 1879! However it was not described from Britain until 1993, when it was known to have occurred since at least 1986 and 1989 as flourishing populations in Portsmouth (Hampshire) and Swanage (Dorset). There was also a population in Westcliff-on-Sea (Essex) recorded in 1990, and another in Littlehampton and Worthing (West Sussex). Its distribution is spreading more widely along the coast in the south and also inland, with confirmed records from South Devon, East Sussex, Kent, Surrey and Warwick. The large, grape-like individuals are the females and the smaller, more elongate ones, the males. These spiders are have become known as False Widows and, because of their colour, shape and size, are frequently mistaken for the Black Widow Spider that are found in warmer climes, but not in Britain (although some occasionally come into the country in packaged fruit and flowers). Black Widow Spiders belong to the world-wide genus Latrodectus.
    [Show full text]
  • The Behavioural Ecology of Latrodectus Hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a Review
    Records of the Western Australian MIISellnl Supplement No. 52: 13-24 (1995). The behavioural ecology of Latrodectus hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a review Lyn Forster McMasters Road, RD 1, Saddle Hill, Dunedin, New Zealand Abstract - Aspects of the biogeographical history and behavioural ecology of the AustralIan Latrodectus hasseIti provide support for the endemic status of this species. Cannibalism, prey stealing and short instar lengths are growth strategies for. female spiders whereas early maturation, small size, hiding and scavengmg are useful survival tactics for males. Moreover male complicity is an important component of sexual cannibalism which is ~hown to be a highly predictable event. Latrodectus hasseIti males hybridize with female L. katlpo (a New Zealand species) and fertile Fl and F2 generations Imply genetic relatedness. Hence, it is likely that L. hasselti and L. katipo evolv~d from a common ancestor in ancient Pangaea, a feasible explanation only If L. hasseItl IS endemic to Australia. It is concluded that L. hasseIti would have been able to persist in outback Australia for millions of years, with ItS mtraspeClfJc predatory habits aiding subsistence and the evolution of sexual cannibalism providing a way of coping with infrequent meeting and matmg opportunities. INTRODUCTION indigenous status, Main (1993) notes that, (as a Many stories and articles have been written consequence of its supposed introduction), "the about the redback spider (McKeown 1963; Raven absence of Latrodectus in the Australian region, 1992) with considerable attention being devoted to prior to human habitation, poses a curious its venomous nature (Southcott 1978; Sutherland zoogeographic dilemma". This comment raises an and Trinca 1978).
    [Show full text]
  • Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
    Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA).
    [Show full text]
  • The House Spider Genome Reveals an Ancient Whole-Genome Duplication
    bioRxiv preprint doi: https://doi.org/10.1101/106385; this version posted February 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution Evelyn E. Schwager1,2,*, Prashant P. Sharma3*, Thomas Clarke4*, Daniel J. Leite1*, Torsten Wierschin5*, Matthias Pechmann6,7, Yasuko Akiyama-Oda8,9, Lauren Esposito10, Jesper Bechsgaard11, Trine Bilde11, Alexandra D. Buffry1, Hsu Chao12, Huyen Dinh12, HarshaVardhan Doddapaneni12, Shannon Dugan12, Cornelius Eibner13, Cassandra G. Extavour14, Peter Funch11, Jessica Garb2, Luis B. Gonzalez1, Vanessa L. Gonzalez15, Sam Griffiths-Jones16, Yi Han12, Cheryl Hayashi17,18, Maarten Hilbrant1,7, Daniel S.T. Hughes12, Ralf Janssen19, Sandra L. Lee12, Ignacio Maeso20, Shwetha C. Murali12, Donna M. Muzny12, Rodrigo Nunes da Fonseca21, Christian L. B. Paese1, Jiaxin Qu12, Matthew Ronshaugen16, Christoph Schomburg6, Anna Schönauer1, Angelika Stollewerk22, Montserrat Torres-Oliva6, Natascha Turetzek6, Bram Vanthournout11, John H. Werren23, Carsten Wolff24, Kim C. Worley12, Gregor Bucher25,#, Richard A. Gibbs#12, Jonathan Coddington16,#, Hiroki Oda8,26,#, Mario Stanke5,#, Nadia A. Ayoub4,#, Nikola-Michael Prpic6,#, Jean- François Flot27,#, Nico Posnien6, #, Stephen Richards12,# and Alistair P. McGregor1,#. *equal contribution #corresponding authors 1 Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK. 2 Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854 3 Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA, 53706.
    [Show full text]
  • Common Spiders in the Darwin Area D
    Agnote No: I63 July 2014 Common Spiders in the Darwin Area D. Chin*, G. R. Brown*, T. Churchill2, J. Webber3 and H. Brown, Plant Industries, Darwin * Formerly DPIF 2 Formerly with the Tropical Ecosystems Research Centre, CSIRO, Darwin 3 Formerly with the CRC for Tropical Savannas Management, CDU, Darwin items that have been left undisturbed for long INTRODUCTION periods. The webs are loosely structured, strong and Spiders are invertebrate animals belonging to a have sticky basal strands. group called arachnids (which includes mites, ticks and scorpions). All spiders are predators and feed The female spiders rarely bite unless they are on insects, or other invertebrates, and may touched or handled. Although no fatalities due to sometimes capture small frogs or lizards. Spiders bites have been recorded since the introduction of have a variety of habits depending on where they anti-venom in 1956, bites are painful and must be live and how they feed. Some spiders build webs to treated as potentially dangerous. The male spider is capture flying insects while others may actively hunt much smaller and is not considered dangerous. for prey. Amongst ground-dwelling spiders, some Redbacks have a spherical abdomen, black legs live in burrows where they ambush crawling insects, and a black cephalothorax (where the legs are whereas others may hide under rocks and leaf litter attached). The female usually has a red stripe on the and search for prey at night. Spiders living on plants top side (dorsal side) of the abdomen and an have a variety of ways to catch insects and other hourglass shaped red mark on the underside prey and are useful in agriculture where they help in (ventral side) of the abdomen.
    [Show full text]
  • Antivenoms for the Treatment of Spider Envenomation
    † Antivenoms for the Treatment of Spider Envenomation Graham M. Nicholson1,* and Andis Graudins1,2 1Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, New South Wales, Australia 2Departments of Emergency Medicine and Clinical Toxicology, Westmead Hospital, Westmead, New South Wales, Australia *Correspondence: Graham M. Nicholson, Ph.D., Director, Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia; Fax: 61-2-9514-2228; E-mail: Graham. [email protected]. † This review is dedicated to the memory of Dr. Struan Sutherland who’s pioneering work on the development of a funnel-web spider antivenom and pressure immobilisation first aid technique for the treatment of funnel-web spider and Australian snake bites will remain a long standing and life-saving legacy for the Australian community. ABSTRACT There are several groups of medically important araneomorph and mygalomorph spiders responsible for serious systemic envenomation. These include spiders from the genus Latrodectus (family Theridiidae), Phoneutria (family Ctenidae) and the subfamily Atracinae (genera Atrax and Hadronyche). The venom of these spiders contains potent neurotoxins that cause excessive neurotransmitter release via vesicle exocytosis or modulation of voltage-gated sodium channels. In addition, spiders of the genus Loxosceles (family Loxoscelidae) are responsible for significant local reactions resulting in necrotic cutaneous lesions. This results from sphingomyelinase D activity and possibly other compounds. A number of antivenoms are currently available to treat envenomation resulting from the bite of these spiders. Particularly efficacious antivenoms are available for Latrodectus and Atrax/Hadronyche species, with extensive cross-reactivity within each genera.
    [Show full text]
  • Conservation Status of New Zealand Araneae (Spiders), 2020
    2021 NEW ZEALAND THREAT CLASSIFICATION SERIES 34 Conservation status of New Zealand Araneae (spiders), 2020 Phil J. Sirvid, Cor J. Vink, Brian M. Fitzgerald, Mike D. Wakelin, Jeremy Rolfe and Pascale Michel Cover: A large sheetweb sider, Cambridgea foliata – Not Threatened. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 5 years. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications. The NZTCS database can be accessed at nztcs.org.nz. For all enquiries, email [email protected]. © Copyright August 2021, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–99–115291–6 (web PDF) This report was prepared for publication by Te Rōpū Ratonga Auaha, Te Papa Atawhai/Creative Services, Department of Conservation; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand Published by Department of Conservation Te Papa Atawhai, PO Box 10420, Wellington 6143, New Zealand. This work is licensed under the Creative Commons Attribution 4.0 International licence.
    [Show full text]
  • The Phylogenetic Placement of Psechridae Within Entelegynae and the Convergent Origin of Orb-Like Spider Webs
    Accepted on 22 September 2012 © 2012 Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12007 1Department of Biology, University of Vermont, Burlington VT, ; 2National Museum of Natural History, Smithsonian Institution, Washington DC, USA; 3Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana Slovenia; 4Department of Biology and Integrated Bioscience Program, University of Akron, Akron OH, USA; 5College of Life Sciences, Hubei University, Wuhan Hubei, China The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs 1,2 3 4 2,3,5 INGI AGNARSSON *, MATJAŽ GREGORIČ ,TODD A. BLACKLEDGE and MATJAŽ KUNTNER Abstract Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb-like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechri- dae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia’s exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo-orb versus their independent origins, a potentially spectacular case of behavioural convergence.
    [Show full text]
  • The House Spider Genome Reveals an Ancient Whole-Genome Duplication
    bioRxiv preprint doi: https://doi.org/10.1101/106385; this version posted February 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution Evelyn E. Schwager1,2,*, Prashant P. Sharma3*, Thomas Clarke4*, Daniel J. Leite1*, Torsten Wierschin5*, Matthias Pechmann6,7, Yasuko Akiyama-Oda8,9, Lauren Esposito10, Jesper Bechsgaard11, Trine Bilde11, Alexandra D. Buffry1, Hsu Chao12, Huyen Dinh12, HarshaVardhan Doddapaneni12, Shannon Dugan12, Cornelius Eibner13, Cassandra G. Extavour14, Peter Funch11, Jessica Garb2, Luis B. Gonzalez1, Vanessa L. Gonzalez15, Sam Griffiths-Jones16, Yi Han12, Cheryl Hayashi17,18, Maarten Hilbrant1,7, Daniel S.T. Hughes12, Ralf Janssen19, Sandra L. Lee12, Ignacio Maeso20, Shwetha C. Murali12, Donna M. Muzny12, Rodrigo Nunes da Fonseca21, Christian L. B. Paese1, Jiaxin Qu12, Matthew Ronshaugen16, Christoph Schomburg6, Anna Schönauer1, Angelika Stollewerk22, Montserrat Torres-Oliva6, Natascha Turetzek6, Bram Vanthournout11, John H. Werren23, Carsten Wolff24, Kim C. Worley12, Gregor Bucher25,#, Richard A. Gibbs#12, Jonathan Coddington16,#, Hiroki Oda8,26,#, Mario Stanke5,#, Nadia A. Ayoub4,#, Nikola-Michael Prpic6,#, Jean- François Flot27,#, Nico Posnien6, #, Stephen Richards12,# and Alistair P. McGregor1,#. *equal contribution #corresponding authors 1 Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK. 2 Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854 3 Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA, 53706.
    [Show full text]
  • Safe Laboratory Management for Arachnids of Medical Importance
    August 2011 Animal Technology and Welfare Safe laboratory management for arachnids of medical importance SARAH REED, MIKAELLA LOCK and STEVEN TRIM* Venomtech Ltd, PO Box 468, Ramsgate, Kent CT11 1BD *Corresponding author [email protected] (Presented at Institute of Animal Technology Congress 2011) Summary understanding of the species’ “normal” behaviour and Safe animal management is key to any facility; this is frequent, careful observation to identify any deviation especially true of those housing animals of significant from that normal behaviour. In addition, the husbandry medical importance. Procedures detailed here of arachnids of medical importance poses more demonstrate how dangerous arachnids including significant challenges in containment and safe handling scorpions (Family Buthidae ), wandering spiders (Family (for both animal and technician) due to the size, speed, Ctenidae ), recluse spiders (Family Sicariidae ) and the aggression and venomous characteristics of many Theridiidae family containing the widow spiders can be species. safely managed in the laboratory environment. This dramatically reduces the risk of envenomation during This paper describes a method of performing routine husbandry and experimental procedures. Risks are husbandry by which risk of envenomation is reduced with modified enclosures that allow separation significantly reduced along with risk of escape or injury from the animals during most husbandry procedures of the animals and was originally presented as a poster and use of anaesthesia where contact is inevitable. at the Laboratory Animal Science Association (LASA) The equipment and techniques presented here thus Winter Meeting and an oral presentation at the Institute allow for greatly improved safety when working with of Animal Technology (IAT) Congress 2011.
    [Show full text]
  • The Second Redback Antivenom Evaluation (RAVE-II) Study
    TOXICOLOGY/ORIGINAL RESEARCH Randomized Controlled Trial of Intravenous Antivenom Versus Placebo for Latrodectism: The Second Redback Antivenom Evaluation (RAVE-II) Study Geoffrey K. Isbister, FACEM, MD*; Colin B. Page, MBChB, FACEM; Nicholas A. Buckley, FRACP, MD; Daniel M. Fatovich, MBBS, FACEM; Ovidiu Pascu, MBBS, FACEM; Stephen P. J. MacDonald, MBChB, FACEM; Leonie A. Calver; Simon G. A. Brown, FACEM, PhD; on behalf of the RAVE Investigators *Corresponding Author. E-mail: [email protected]. Study objective: Latrodectism is the most important spider envenomation syndrome worldwide. There remains considerable controversy over antivenom treatment. We aimed to investigate whether antivenom resulted in resolution of pain and systemic effects in patients with latrodectism who received standardized analgesia. Methods: In a multicenter randomized placebo-controlled trial of redback spider antivenom for latrodectism, 224 patients (>7 years) with a redback spider bite and severe pain, with or without systemic effects, were randomized to receive normal saline solution (placebo) or antivenom after receiving standardized analgesia. The primary outcome was a clinically significant reduction in pain 2 hours after trial medication compared with baseline. A second primary outcome for the subgroup with systemic features of envenomation was resolution of systemic features at 2 hours. Secondary outcomes were improved pain at 4 and 24 hours, resolution of systemic features at 4 hours, administration of opioid analgesics or unblinded antivenom after 2 hours, and adverse reactions. Results: Two hours after treatment, 26 of 112 patients (23%) from the placebo arm had a clinically significant improvement in pain versus 38 of 112 (34%) from the antivenom arm (difference in favor of antivenom 10.7%; 95% confidence interval 1.1% to 22.6%; P .10).
    [Show full text]
  • Journal of Toxicologic Pathology
    Advance Publication Journal of Toxicologic Pathology Received : September 14, 2017 Accepted : December 19, 2017 J-STAGE Advance Published Date : February 19, 2018 Japanese Society of Toxicologic Pathology Freeze-dried equine-derived redback spider antivenom: A local irritation study by intramuscular injection in rabbits and a repeated-dose toxicity study in rats Akihiko Yamamoto1, Satomi Harano2, Noriko Shinya2, Ayataka Nagano2, Yoshinobu Miyatsu2, Kyouko Sawabe3, Takayuki Matsumura4, Manabu Ato4, Motohide Takahashi5, Hisashi Taki6 and Toru Hifumi7 1Division of Biosafety Control and Research, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan 2The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan 3Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4Department of Immunology, National Institute of Infectious Disease, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 5Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan 1 6Ministry of Health, Labour and Welfare, Tokyo 100-8916, Japan 7Emergency Medical Center, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793, Japan Corresponding author: Akihiko Yamamoto, Division of Biosafety Control and Research, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan Tel: +81-42-561-0771 Ext. 3734 Fax: +81-42-564-4881 E-mail: [email protected] 2 Abstract The redback spider (Latrodectus hasseltii) is nonindigenous to Japan but has now spread throughout the country. Bites to humans are rare but can be fatal.
    [Show full text]