Studies on the Iron-Sulfur Clusters of Hydrogenase, Sulfite Reductase, Nitrogenase and the Prismane Protein

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Iron-Sulfur Clusters of Hydrogenase, Sulfite Reductase, Nitrogenase and the Prismane Protein Studies on the Iron-Sulfur clusters of hydrogenase, sulfite reductase, nitrogenase and the prismane protein t,p^ Promoter: Dr. C. Veeger hoogleraar in de Biochemie Co-promotor: Dr. W.R. Hagen Universitair hoofddocent, vakgroep Biochemie AJ. Pierik Studies on the Iron-Sulfur clusters of hydrogenase, sulfite reductase, nitrogenase and the prismane protein Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, Dr. CM. Karssen, in het openbaar teverdedige n op maandag 18oktobe r 1993 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen !Sn 58QCQ2 BlBUUlKhi.rv ESKBB0UWUNIVERSEEfci4 EAGENINGEM Aan mijn ouders en grootouders A)/U0?2o', l^°l STELLINGEN 1. Superclusters en Superspins bestaan. Hoofdstuk 5, 7 en 8 van dit proefschrift. Chan, M.K., Kim, J. & Rees, D.C. (1993) Science260, 792-794. Bolin,J.T. ,Ronco ,A.E. ,Morgan ,T.V. ,Mortenson ,L.E .& Xuong ,N.-H .(1993 ) Proc. Natl. Acad.Sci. (USA) 90, 1078-1082. Interpietatie van spectroscopische resultaten van eiwitten met meerdere redox toestanden is alleen zinvol na bepaling van de redox halfwaarde potentialen. Hoofdstuk 2, 5, 8 en 9 van dit proefschrift. Hetrhombisch eEP Rsignaa lme tg=2.07,1.9 6e n 1.89 isee nartefak t veroorzaakt door de aktivering van het zuurstof-stabiele ijzer-hydrogenase uit Desulfovibrio vulgaris (Hildenborough). Hoofdstuk 2 van dit proefschrift Patil, D.S., Moura, J.J.G., He, S.H., Teixeira, M., Prickril, B.C., DerVartanian, D.V., Peck, H.D., LeGall, J. & Huynh, B.-H. (1988) J. Biol. Chem.263, 18732-18738. Het koper-bevattend nitriet reductase is net als aconitase een kannibalistisch enzym. Masuko, M., Iwasaki, H., Sakurai, T., Suzuki, S. & Nakahara, A. (1984)/ . Biochem. 96, 447-454. Kennedy, M.C., Emptage, M.H., Dreyer, J.-L. & Beinert, H. (1983) J. Biol. Chem. 258, 11098-11105. Libby, E. & Averill, B.A. (1992) Biochem.Biophys. Res. Commun. 187, 5129-1535. Het door Fu et al. beschreven stereo- en regioselectieve karakter van de halohydrin- vorming uit 2,3-dehydrosiaalzuur wordt niet veroorzaakt door chloorperoxidase. Fu, H., Kondo, H., Ichikawa, Y., Look, G.C. & Wong, C.-H. (1992) /. Org. Chem. 57, 7265-7270. 6. Het humane glutathion reductase is geen goed model voor de voorspelling van de structuurva n de actieve plaats van het humane lipoamide dehydrogenase. Jentoft, J.E., Shoham, M., Hurst, D. & Patel, M.S. (1992) Proteins: Struct.Funct. Genet. 14, 88-101. De zuivering en karakterisering van het produkt van de nifN en nifE genen had moetenworde nuitgevoer dme tee nwild-typ esta me nnie tme tAzotobacter vinelandii UW45. Paustian, T.D., Shah, V.K. & Roberts, G.P. (1989) Proc. Nat. Acad. Set. USA 86, 6082-6086. Serine en threonine kunnen in tegenstelling tot wat Frausto da Silva en Williams vermelden als liganden optreden in Mg^-eiwit-nucleotide complexen. The Biological Chemistry of the Elements. Fnuistod a Silva, J.J.R. & Williams, RJ.P. (1991) Clarendon Press, Oxford. Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W. & Wittinghofer, A. (1990) EMBO J. 9, 2351-2359. Met de llnwording vand e landen vand e EEGmoe td e sluiting vand e Engelsepub s verlaat worden tot66a uur. 10. Onbeschermdi n 't veld is men snel hethaasje . Stellingen behorende bij het proefschrift 'Studies on the Iron-Sulfur clusters of hydrogenase, sulfite reductase, nitrogenase and the prismaneprotein ' Wageningen, 18 oktober 1993 A.J. Pierik Voorwoord Voor het tot stand komen van dit proefschrift is in tegenstelling tot wat de titelpagina en omslag suggereert meer dan een persoon betrokken geweest. Ik zali n dit voorwoord proberen de directe en indirecte bijdrage van al deze personen te specificeren, hoewel ik hiermee het risico loop (ongewenst) iemand te vergeten. Allereerst wil ik mijn promotor professor C. Veeger en mijn co-promotor Fred Hagen bedanken. Door de zeer open houding ten aanzien van het onderzoek en het stimuleren van het bezoek aan (internationale) congressen en cursussen kon ik me verdiepen in allerlei facetten van de bio-anorganische chemie. Ik ben daarom in hoge mate dankbaar voor de supervisie. Fred wil ik bovendien bedanken voor de aangename alledaagse begeleiding en de praktische, theoretische en tekstuele bijdragen die een onmisbare rol hebben gespeeld. Chronologisch vervolgend, wil ik mijn dank richten tot Marelle Boersma en Anita van Berkel. De eerste prille maanden in 1987/1988 op lab 5 heb ik veel steun gehad op praktisch gebied. Een voor jullie misschien onverwacht dank-je-wel voor de secure administratie van de experimenten in het verleden. Dagenlang heb ik doorgebracht met het lezen en vergelijken van resultaten. De vruchten van de secure boekhouding zijn op indirecte wijze terug te vinden in hoofdstuk 3 tot en met 5: de door Marelle als '? hydrogenase' gelabelde ingevroren monsters hebben geleid tot de ontdekking van het marellase (momenteel prismaan eiwit geheten). Met de verhuizing naar lab 1/2 en de start van Ronnie Wolbert begon de oogst fase van het promotie onderzoek. Jouw punctuele aanvang van experimenten in de ochtend combineerde uitstekend met mijn meer naar de tweede helft van de dag verschoven ritme. Ondanks het onaangename parfum van Desulfovibrio, ontsnappingen van 300 liter water en het grote aantal gels en blots was jij altijd in een goede stemming. Samen met Fred Hagen, Marc Verhagen, Dirk Heering en de afstudeervakstudenten vormde lab 1/2 een hecht team. Deze verbondenheid uitte zich door de gemeenschappelijke hoge affiniteit voor ons koffiezet apparaatje, de assay-koelkast, Granucci en Sa Lolla.Mar c Verhagen wil ik bedanken voor zijn hulp bij de afhandeling van allerlei zaken gedurende de laatste maanden. Door hulp met het opwekken van antilichamen en N-terminale aminozuur volgorde bepaling hebben Anita Kaan en Walter van Dongen het onderzoek naar het prismaan eiwit versneld. Willy van den Berg en Jack Stokkermans hebben door de zeer prettige samenwerking en de opheldering van de primaire structuur van de prismaan eiwitten uit Desulfovibrio vulgaris (Hildenborough) en D. desulfuricans (ATCC 2777'4) ervoor gezorgd dat het prismaan eiwit onderzoek in een stroomversnelling is geraakt. De samenwerking met Hans Wassink en Huub Haaker resulteerde in een hoofdstuk over het molybdeen-ijzer eiwit. Bedankt Hans voor de isolatie van het enzym en het leren van een aantal technieken. Huub, de vele discussies over nitrogenase en gerelateerde onderwerpen heb ik zeer op prijs gesteld. Rafael Israels, Martina Duyvis, Joop van Helvoort, Carine Stevens, Wim Hilbrandts, Leonard Mallee, Sander Arendsen en Gerrit Portier hebben door hun afstudeervak te doen in ons lab in belangrijke mate bijgedragen tot de sfeer, gezelligheid en wetenschappelijke productie. Bedankt voor de energie die jullie hebben gestoken in het onderzoek. Door de inspirerende samenwerking met Mike Jetten en Christof Holliger van de vakgroep Microbiologic kon ik kennismaken met koolmonoxide dehydrogenase en F-430. Peter Mutsaers, Leo de Folter, Auke van Heuzen, Dhr. Walinga, Tom Bongers, Jo Haas, Marja Snoek, Willem van Berkel, Adri Westphal en Simon Albracht hebben mij vertrouwd gemaakt met diverse technieken. Martin Bouwmans, Bery Sachteleben en Laura Ausma zorgden voor allerlei administratieve zaken. Thomas Link has contributed by involving me in the study of the soluble domain of the Rieske protein. The efforts of Dick Dunham and Dick Sands have strenghtened the importance of Chapter 5. Many thanks for your valuable contributions. I am grateful to Barry Smith and Bob Eady who allowed me to spend a part of my postdoctoral time on the dutch graduation. De praktische en/of morele steun van alle reeds met naam genoemde personen, Axel Berg, Rene Wientjens, Chris Oldfield, Jacques Benen, Phil Bastiaens, Ewart Pap en alle overige (ex)leden van de vakgroep Biochemie heb ik als zeer prettig ervaren. Naast de aangename uren op het Lab zorgden huisgenoten, de leden van de twee 'eetclubs', de werkgroep fossielen Wageningen en andere vrienden ervoor dat de terugkeer naar de geboortestad Wageningen aangenamer was dan ik ooit had kunnen vermoeden. Tenslotte wil ik mijn ouders en broer Leo bedanken, die door het fijne familieleven in de weekenden/ vakanties en door hun gezonde nieuwsgierigheid naar mijn werk een zeer motiverende invloed hebben gehad. Er resteert een persoon die ik vanuit deze positie niet kan bedanken: door zijn vroegtijdige overlijden is Jan Redeker niet meer in ons midden. Jan, ik benj e erkentelijk voor jouw bijdrage tot hoofdstuk 2, jouw herinnering leeft voort in mijn gedachte. The research was carried out at the Department of Biochemistry, Agricultural University, Wageningen, The Netherlands. The investigations were supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO). CONTENTS Page Chapter 1: Introduction 1 Chapter 2: Redox properties of the iron-sulfur clusters 33 in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough) Chapter 3: Novel Electron Paramagnetic Resonance Signals 45 from an Fe/S Protein containing Six Iron Atoms Chapter 4: Purification and biochemical characterization of 55 a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough) Chapter 5: Multi-frequency EPR and high-resolution Mossbauer 65 spectroscopy of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough): characterization of a supercluster and superspin model protein Chapter 6: The third subunit
Recommended publications
  • Use of Mathematical Modeling and Other Biophysical Methods For
    USE OF MATHEMATICAL MODELING AND OTHER BIOPHYSICAL METHODS FOR INSIGHTS INTO IRON-RELATED PHENOMENA OF BIOLOGICAL SYSTEMS A Dissertation by JOSHUA D. WOFFORD Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Paul A. Lindahl Committee Members, David P. Barondeau Simon W. North Vishal M. Gohil Head of Department, Simon W. North December 2018 Major Subject: Chemistry Copyright 2018 Joshua D. Wofford ABSTRACT Iron is a crucial nutrient in most living systems. It forms the active centers of many proteins that are critical for many cellular functions, either by themselves or as Fe-S clusters and hemes. However, Fe is potentially toxic to the cell in high concentrations and must be tightly regulated. There has been much work into understanding various pieces of Fe trafficking and regulation, but integrating all of this information into a coherent model has proven difficult. Past research has focused on different Fe species, including cytosolic labile Fe or mitochondrial Fe-S clusters, as being the main regulator of Fe trafficking in yeast. Our initial modeling efforts demonstrate that both cytosolic Fe and mitochondrial ISC assembly are required for proper regulation. More recent modeling efforts involved a more rigorous multi- tiered approach. Model simulations were optimized against experimental results involving respiring wild-type and Mrs3/4-deleted yeast. Simulations from both modeling studies suggest that mitochondria possess a “respiratory shield” that prevents a vicious cycle of nanoparticle formation, ISC loss, and subsequent loading of mitochondria with iron.
    [Show full text]
  • Nitroxide-Mediated Polymerization
    Chapter 7 Nitroxide-Mediated Polymerization 7.1 Introduction Controlled radical polymerization (CRP) under radical initiation conditions belongs to priority areas in the development of the synthetic chemistry of polymers of the last years [1–16]. Nitroxide-mediated polymerization (NMP) was invented by Solomon [1, 13]. Since this discovery, nitroxide-mediated radical polymerization is a power- ful method to synthesize well-defined macromolecular architectures with precisely controlled topologies, compositions, microstructures, and functionalities [3–5]. The most common mechanisms for reversible activation in polymerization reactions are schematically illustrated in Scheme 7.1. Persistent radical effect (PRE) occurs when two radicals are generated at the same time, at the same rate, and one is more persistent than the other, the self-termination reactions are lowered, leading to an unusually high selectivity for the cross-coupling reaction [10]. The effect has been investigated for the preparation of macromolecules with a narrow molar mass distribution through radical polymerization. Nitroxide-mediated polymerization is widely applied in industrial polymer syn- theses as a method for production of large-tonnage polymers and is employed to manufacture new pigments, sealants, emulsion stabilizers, and block copolymers, etc., with a various set of properties. NMP has also paved an avenue for complex macromolecular architectures (statistical, block, graft) in the fields of nanoscience and nanotechnology [5, 9, 12] and references cited therein. A brief summary of NMP developments in both the patent and open literature during the period of the early Scheme 7.1 Mechanisms for reversible activation in polymerization reactions [6] © Springer Nature Switzerland AG 2020 161 G. I. Likhtenshtein, Nitroxides, Springer Series in Materials Science 292, https://doi.org/10.1007/978-3-030-34822-9_7 162 7 Nitroxide-Mediated Polymerization 1980–2000 was presented in [11].
    [Show full text]
  • The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
    THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells.
    [Show full text]
  • Electrochemical and Structural Characterization of Azotobacter Vinelandii Flavodoxin II
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II Helen M. Segal,1 Thomas Spatzal,1 Michael G. Hill,2 Andrew K. Udit,2 and Douglas C. Rees 1* 1Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125 2Division of Chemistry, Occidental College, Los Angeles, California 90041 Received 1 June 2017; Accepted 10 July 2017 DOI: 10.1002/pro.3236 Published online 14 July 2017 proteinscience.org Abstract: Azotobacter vinelandii flavodoxin II serves as a physiological reductant of nitrogenase, the enzyme system mediating biological nitrogen fixation. Wildtype A. vinelandii flavodoxin II was electrochemically and crystallographically characterized to better understand the molecular basis for this functional role. The redox properties were monitored on surfactant-modified basal plane graphite electrodes, with two distinct redox couples measured by cyclic voltammetry correspond- ing to reduction potentials of 2483 6 1 mV and 2187 6 9 mV (vs. NHE) in 50 mM potassium phos- phate, 150 mM NaCl, pH 7.5. These redox potentials were assigned as the semiquinone/ hydroquinone couple and the quinone/semiquinone couple, respectively. This study constitutes one of the first applications of surfactant-modified basal plane graphite electrodes to characterize the redox properties of a flavodoxin, thus providing a novel electrochemical method to study this class of protein. The X-ray crystal structure of the flavodoxin purified from A. vinelandii was solved at 1.17 A˚ resolution. With this structure, the native nitrogenase electron transfer proteins have all been structurally characterized.
    [Show full text]
  • Difluorodeoxyguanosine in Chinese Hamster Ovary Cells'
    [CANCER RESEARCH55, 1517-1524, April 1, 19951 Cytotoxicity, Metabolism, and Mechanisms of Action of 2',2'- Difluorodeoxyguanosine in Chinese Hamster Ovary Cells' Varsha Gandhi,2 Shin Mineishi, Peng Huang, Amy J. Chapman, Yandan Yang, Feng Chen, Biffie Nowak, Shern Chubb, Larry W. Hertel, and William Plunkett Department of Clinical Investigation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (V. G., S. M., P. H.. A. J. C.. Y. 1'., F. C., B. N., S. C., w. p.]. andLillyResearchLaboratories,Indianapolis,indiana46285(L W.H.) ABSTRACT treatment of hematological malignancies (4—6).Arabinosyladenine, although not successful in cancer therapy, has proven antiviral activity The emerging clinical success of gemcItabine (2',2'-difluorodeoxycytl dine) Stimulated interest in the synthesis and evaluation of purine conge (7). The importance of the 2'-pentose moiety for the design of chemo ners. The cytotoxicity, metabolism, and mechanisms of action of the lead therapeutic agents and the fact that fluorine has a van der Waals radius candidate, 2',2'-difluorodeoxyguanoslne (dFdGuo), were StUdied In ChI nese hamster ovary cells Unlike the natural nucleoside deoxyguanosine similar to that of hydrogen led to the synthesis and evaluation of (dGuo), dFdGuo was not a substrate for purine nucleoside phosphorylase 2'-fluorinated analogues. 2'-Deoxy-2'-fluorocytidine and 2'-deoxy Wild-type Chinese hamster ovary cells and a mutant line deficient in 2'-fluoroguanosine possess inhibitory activities against several deoxycytidine (dCyd) kinase were similarly affected by dFdGuo (50% lymphoid cell lines and influenza viruses, respectively (8, 9). Inter inhibitory concentration, 7.5 and 6.5 pM, respectively), suggesting that estingly, substitution of the 2'-hydrogen of dCyd3 with a fluorine unlike gemcitabine, dCyd kinase was not responsible for activation of atom in the arabinose configuration produced 10-fold greater cyto dFdGuo This was further confirmed by separation of nucleoside kinases toxicity than when placed in the ribose position (10).
    [Show full text]
  • DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents
    molecules Review DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents Maria Valeria Raimondi 1,*,† , Ornella Randazzo 1,†, Mery La Franca 1 , Giampaolo Barone 1 , Elisa Vignoni 2, Daniela Rossi 2 and Simona Collina 2,* 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; [email protected] (O.R.); [email protected] (M.L.F.); [email protected] (G.B.) 2 Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (E.V.); [email protected] (D.R.) * Correspondence: [email protected] (M.V.R.); [email protected] (S.C.); Tel.: +390-912-389-1915 (M.V.R.); +390-382-987-379 (S.C.) † These Authors contributed equally to this work. Academic Editors: Simona Collina and Mariarosaria Miloso Received: 25 February 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
    [Show full text]
  • 1611 REGULATION of PYRIMIDINE METABOLISM in PLANTS Chris
    [Frontiers in Bioscience 9, 1611-1625, May 1, 2004] REGULATION OF PYRIMIDINE METABOLISM IN PLANTS 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 Chris Kafer , Lan Zhou , Djoko Santoso , Adel Guirgis , Brock Weers , Sanggyu Park and Robert Thornburg 1 1 Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, 2 BASF Plant Science LLC, 2901 South Loop Drive, Ste 3800, Ames, Iowa 50014, 3 Lan Zhou, Pioneer Hi-Bred International, Inc. 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004, 4 Indonesian Biotechnology Research Institute for Estate Crops, Jl, Taman Kencana No 1, Bogor 16151 Indonesia, 5 Institute of Genetic Engineering and Biotechnology, Menofiya University, PO Box 79/22857, Sadat City, Egypt, 6 Department of Biochemistry, University of Iowa, 4/511 Bowen Science Building, Iowa City, Iowa 52242-1109, 7 Division of Life and Environment, College of Natural Resources, Daegu University, Gyongsan City, Gyongbuk, Korea 712-714 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Pyrimidine metabolic pathways 3.1. De novo pyrimidine biosynthesis 3.1.1. CPSase 3.1.2. ATCase 3.1.3. DHOase 3.1.4. DHODH 3.1.5. UMPS 3.1.6. Intracellular Organization of the de novo Pathway 3.2. Pyrimidine Salvage and Recycling 3.2.1. Cytosine deaminase 3.2.2. Cytidine deaminase 3.2.3. UPRTase 3.3. Pyrimidine Modification 3.3.1. UMP/CMP kinase 3.3.2. NDP kinase 3.3.3. CTP synthase, NDP reductase, dUTPase 3.3.4. Thymidylate synthase/Dihydrofolate reductase 3.4. Pyrimidine Catabolism 4. Regulation of pyrimidine metabolism 4.1.
    [Show full text]
  • TITLE Adenylate Kinase 2 Deficiency Causes NAD+ Depletion and Impaired Purine Metabolism During Myelopoiesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450633; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TITLE Adenylate Kinase 2 deficiency causes NAD+ depletion and impaired purine metabolism during myelopoiesis AUTHORS Wenqing Wang1, Andew DeVilbiss2, Martin Arreola1, Thomas Mathews2, Misty Martin-Sandoval2, Zhiyu Zhao2, Avni Awani1, Daniel Dever1, Waleed Al-Herz3, Luigi Noratangelo4, Matthew H. Porteus1, Sean J. Morrison2, Katja G. Weinacht1, * 1. Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305 USA 2. Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA 3. Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, 13110 Kuwait 4. Laboratory of Clinical Immunology and Microbiology, National Institute of Health, BETHESDA MD 20814 USA * Corresponding author ABSTRACT Reticular Dysgenesis is a particularly grave from of severe combined immunodeficiency (SCID) that presents with severe congenital neutropenia and a maturation arrest of most cells of the lymphoid lineage. The disease is caused by biallelic loss of function mutations in the mitochondrial enzyme Adenylate Kinase 2 (AK2). AK2 mediates the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP) as substrate for adenosine triphosphate (ATP) synthesis in the mitochondria. Accordingly, it has long been hypothesized that a decline in OXPHOS metabolism is the driver of the disease. The mechanistic basis for Reticular Dysgenesis, however, remained incompletely understood, largely due to lack of appropriate model systems to phenocopy the human disease.
    [Show full text]
  • NADPH Homeostasis in Cancer: Functions, Mechanisms and Therapeutic Implications
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications Huai-Qiang Ju 1,2, Jin-Fei Lin1, Tian Tian1, Dan Xie 1 and Rui-Hua Xu 1,2 Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy. Signal Transduction and Targeted Therapy (2020) 5:231; https://doi.org/10.1038/s41392-020-00326-0 1234567890();,: BACKGROUND for biosynthetic reactions to sustain their rapid growth.5,11 This In cancer cells, the appropriate levels of intracellular reactive realization has prompted molecular studies of NADPH metabolism oxygen species (ROS) are essential for signal transduction and and its exploitation for the development of anticancer agents. cellular processes.1,2 However, the overproduction of ROS can Recent advances have revealed that therapeutic modulation induce cytotoxicity and lead to DNA damage and cell apoptosis.3 based on NADPH metabolism has been widely viewed as a novel To prevent excessive oxidative stress and maintain favorable and effective anticancer strategy.
    [Show full text]
  • Tremblay Robinlee.Pdf
    Expression and Characterisation ofa Gene Enc oding RbpD, an RNA- Bind ing Protein in Anabaena sp. strain PeC 7120 by Rob in lee Tremblay A lhesis submitted to the Scltool of Graduale Studies in partial fulfilment of the requirements fOl" the degree of Master of Science Department of BiochemistrylFacultyof Science Memorial University of Newfoundland January 2000 SI.JOM'S Newfoun dland Abs t ra ct The RNA-binding protein RbpD, from the cyano bacterium Anaba ena sp, strain Pe C 7120 was expressed in £Sch~ ric h ia coli and successfully purified using me IMPACT I system (New England Biolabs). The rbp D gene was cloned into the pCYBt expre ssion vector by using polymerase chain reaction to introduce Ndel and SapI restriction sites at the 5' end 3' ends of the gene respect ively. The 3'.-end mutagenesis also chan ged the stop codon into a cysteine codon. The resulting gene encoded a fusion protein consisting of RbpD, the Saccharomyces cerev isiae VMA intein and a chitin binding domain.. Expressi on of the fusion protein was observed in £ coli strain MCI061 but Western blot analysis using an intein-directed ant ibody indicated that significant in vivo fmeln-direcred splicing of the fusion protein occurred. We were unable to eliminate this problem; no fusion protein expression was observed in 8 other E coli strains tested. Wild -type RbpD was purified following binding of the fusion protein 10 a chitin column and overnight cleavage in the presence of a reducing agent, dlthicthrehc l. A number of modifications to the manufacturer' s purification protocol were found to be necessary for success ful purification.
    [Show full text]
  • Purification and Characterisation of a Protease (Tamarillin) from Tamarillo Fruit
    Purification and characterisation of a protease (tamarillin) from tamarillo fruit Item Type Article Authors Li, Zhao; Scott, Ken; Hemar, Yacine; Zhang, Huoming; Otter, Don Citation Li Z, Scott K, Hemar Y, Zhang H, Otter D (2018) Purification and characterisation of a protease (tamarillin) from tamarillo fruit. Food Chemistry. Available: http://dx.doi.org/10.1016/ j.foodchem.2018.02.091. Eprint version Post-print DOI 10.1016/j.foodchem.2018.02.091 Publisher Elsevier BV Journal Food Chemistry Rights NOTICE: this is the author’s version of a work that was accepted for publication in Food Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Chemistry, [, , (2018-02-16)] DOI: 10.1016/j.foodchem.2018.02.091 . © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Download date 29/09/2021 23:19:14 Link to Item http://hdl.handle.net/10754/627180 Accepted Manuscript Purification and characterisation of a protease (tamarillin) from tamarillo fruit Zhao Li, Ken Scott, Yacine Hemar, Huoming Zhang, Don Otter PII: S0308-8146(18)30327-3 DOI: https://doi.org/10.1016/j.foodchem.2018.02.091 Reference: FOCH 22475 To appear in: Food Chemistry Received Date: 25 October 2017 Revised Date: 13 February 2018 Accepted Date: 16 February 2018 Please cite this article as: Li, Z., Scott, K., Hemar, Y., Zhang, H., Otter, D., Purification and characterisation of a protease (tamarillin) from tamarillo fruit, Food Chemistry (2018), doi: https://doi.org/10.1016/j.foodchem.
    [Show full text]
  • TRACE: Tennessee Research and Creative Exchange
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2009 Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae James Wesley Fairman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Fairman, James Wesley, "Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/49 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by James Wesley Fairman entitled "Structure- Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Chris G. Dealwis,
    [Show full text]