Erythrocyte Metabolism in Purine Nucleoside Phosphorylase Deficiency After Enzyme Replacement Therapy by Infusion of Erythrocytes

Total Page:16

File Type:pdf, Size:1020Kb

Erythrocyte Metabolism in Purine Nucleoside Phosphorylase Deficiency After Enzyme Replacement Therapy by Infusion of Erythrocytes Erythrocyte metabolism in purine nucleoside phosphorylase deficiency after enzyme replacement therapy by infusion of erythrocytes. G E Staal, … , S K Wadman, D W Martin J Clin Invest. 1980;65(1):103-108. https://doi.org/10.1172/JCI109639. Research Article Purine nucleoside phosphorylase deficiency is associated with a severely defective T-cell immunity. A patient with purine nucleoside phosphorylase deficiency was treated with transfusions of irradiated erythrocytes and plasma. This resulted in a remarkable correction of the metabolic disturbances in the patient. The urinary excretion of inosine, deoxyinosine, guanosine, and deoxyguanosine decreased, whereas uric acid excretion as well as serum uric acid concentration increased. It could be shown that the enzyme activity of the circulating erythrocytes correlated inversely with the urinary excretion of nucleosides and directly with the excretion of uric acid. As a consequence of the therapy, several glycolytic intermediates of the erythrocytes were increased, especially 2,3-diphosphoglycerate. The high 2,3-diphosphoglycerate level caused a shift to the right of the oxygen dissociation curve (P50 = 32.9 mm Hg). The immunological status of the patient showed definite improvement after the enzyme replacement therapy. Find the latest version: https://jci.me/109639/pdf Erythrocyte Metabolism in Purine Nucleoside Phosphorylase Deficiency after Enzyme Replacement Therapy by Infusion of Erythrocytes GERARD E. J. STAAL, JAN W. STOOP, BEN J. M. ZEGERS, Louis H. SIEGENBEEK VAN HEUKELOM, MARGREET J. M. VAN DER VLIST, SIEM K. WADMAN, and DAVID W. MARTIN, Unit of Medical Enzymology, Department of Hematology, State University Hospital, and University Children's Hospital "Het Wilhelmina Kinderziekenhuis," Utrecht, The Netherlands; University of California, School of Medicine, Department of Medicine, San Francisco, California 94101 A B S T R A C T Purine nucleoside phosphorylase de- Deoxyguanosine, one of the substrates of PNP, ac- ficiency is associated with a severely defective T-cell cumulates in the urine of PNP-deficient children (6). immunity. A patient with purine nucleoside phos- dGTP is present in erythrocytes from PNP-deficient phorylase deficiency was treated with transfusions of patients, but not in normal erythrocytes (7). It was sug- irradiated erythrocytes and plasma. This resulted in a gested that dGTP may be toxic for the T cells (7). remarkable correction of the metabolic disturbances in Ullman et al. (8) could demonstrate in T-lymphoma the patient. The urinary excretion of inosine, deoxy- cells, deficient in PNP, that deoxyguanosine is first inosine, guanosine, and deoxyguanosine decreased, phosphorylated by deoxycytidine kinase and accumu- whereas uric acid excretion as well as serum uric acid lated as dGTP. By inhibiting ribonucleotide reductase, concentration increased. It could be shown that the dGTP depletes the cell of dCTP, thus preventing the enzyme activity of the circulating erythrocytes cor- synthesis of DNA. Adenosine deaminase deficiency is related inversely with the urinary excretion of nucleo- associated with severe combined immunodeficiency. sides and directly with the excretion of uric acid. As a In these patients dATP accumulates in the erythrocytes consequence of the therapy, several glycolytic inter- (9). Polmar et al. (10) reported that transfusions of eryth- mediates of the erythrocytes were increased, especially rocytes containing adenosine deaminase may provide a 2,3-diphosphoglycerate. The high 2,3-diphosphogly- way to treat patients with adenosine deaminase de- cerate level caused a shift to the right of the oxygen ficiency. After a few transfusions of erythrocytes, res- dissociation curve (P50 = 32.9 mm Hg). toration of immunological function (10) and diminished The immunological status of the patient showed erythrocyte dATP levels were observed (9). Normal definite improvement after the enzyme replacement human erythrocytes are rich in PNP and we decided therapy. to treat our patient with PNP deficiency with eryth- rocyte transfusions. It is the aim of this paper to report INTRODUCTION the effects of the transfusion of normal erythrocytes on the metabolic state of a patient with a PNP deficiency. Purine nucleoside phosphorylase (EC 2.4.2.1 purine This treatment has led to a gradual and partial res- orthophosphate ribosyltransferase) catalyzes the phos- toration of T-cell immunity that has been described in phorolysis of deoxyinosine and deoxyguanosine. Pa- detail separately (11, 12). tients deficient in purine nucleoside phosphorylase (PNP)l show disturbances in thymus-dependent im- munity and have normal or nearly normal humoral METHODS immunity (1-5). Venous blood was collected with heparin (30 U/ml). Immedi- ately after collection of the blood a part of it was deproteinized for the determination of glycolytic intermediates. Depro- Received for publication 11 December 1978 and in revised teinization and determination of glycolytic intermediates form 18 July 1979. except 2,3-diphosphoglycerate, were performed according to 1 Abbreviation used in this paper: PNP, purine nucleoside the methods of Minakami et al. (13). The 2,3-diphosphogly- phosphorylase. cerate content of the acid extract was determined with a Sigma J. Clin. Invest. (D The American Society for Clinical Investigation, Inc. 0021-9738/80/01/0103/06 $1.00 103 Volume 65 January 1980 103-108 test-kit (Sigma Technical Bulletin 35-UV [12-74]), Sigma and uridine has some demonstrable effect on the percentage Chenmical Col., St. Louis, Mo. of E-rosetting T cells, but not on the lymphocyte count or the Glycolytic enzymes were determined by the methods of in vitro phytohemagglutinin response; also the granulocyte Beutler (14). Substrates, coenzymes, and auxiliary enzymes number and the megaloblastic bone marrow characteristics for determination of glycolytic enzymes, purine enzymes, and remained unchanged (12, 17). intermediates, except for the determination of 2,3-diphos- After 25 November 1976, the patient was treated with ir- phoglycerate, were obtained from C. F. Boehringer and Sons, radiated erythrocyte and plasma transfusions according to Mannheim, West Germany. All other chemicals were of ana- Polmar et al. (10). Before each transfusion -70 ml ofblood was lytical grade of purity. withdrawn to avoid hemosiderosis. Packed erythrocytes (15 PNP activity was determined according to Kalckar (15). A ml/kg body wt) and plasma (20 ml/kg body wt) were given at unit of activity is defined as the amount of enzyme required a general frequency of once a month. Initially, erythrocytes to catalyze the conversion of 1 ,umol inosine to hypoxanthine and plasma were given together, subsequently (from the fifth per minute. The specific activity is expressed as units per transfusion) they were given alternately with an interval of gram Hb. 14 d. The immunological status of the patient showed definite Determination of urinary ribonucleosides and deoxy- improvement after the enzyme replacement therapy. The ribonucleosides was done on aliquots of 24-h urine collections results have been published in detail separately (11, 12), and each time before transfusion. During the entire period of they are summarized below. After the second blood trans- enzyme replacement therapy the patient was on an ad lib. diet; fusion, the number ofperipheral blood lymphocytes increased earlier (16) it was shown that a purine-restricted diet had up to 1,200/mm3. The increase was transient and was observed little or no influence on the total daily excretion of ribonucleo- subsequently after each erythrocyte and plasma transfusion. sides and deoxyribonucleosides. Ribonucleosides and deoxy- After the third transfusion, the percentage of E-rosetting T ribonucleosides were determined with high pressure liquid lymphocytes gradually increased to normal levels; this was chromatography as described in detail earlier (17). Uric acid followed by an increase in the phytohemagglutinin re- was determined enzymatically with uricase. sponsiveness of the lymphocytes and soon thereafter by the Case summary and the effect of treatment with enzyme appearance of immunoglobulin (Ig)M-binding T lymphocytes. replacement on the immunological parameters. R.V., a fe- It could be concluded that partial restoration of cellular im- male child, now 3.5 yr old, is the fourth child of healthy, not munity was gradually attained. During the follow-up period knowingly related parents. Of these parents, the first two of2.5 yr, the various immunological parameters varied widely; children, both females, died early in life as a consequence of however, the extremely depressed starting levels were a selective impairment of T-cell function and an apparently never seen again. Finally, it should be mentioned that during normal B-cell function (18). The third child, a boy, is healthy the enzyme replacement therapy the granulocytopenia disap- and is now 5 yr old. The fourth child developed a selective peared and the megaloblastic bone marrow became normal. impairment of T-cell function during the 1st yr of life, whereas B-cell function apparently developed quite normally (5). The immunodeficiency in the fourth child was associated with a RESULTS AND DISCUSSION PNP deficiency as could be concluded from the absence of enzyme activity in erythrocytes, lymphocytes, and fibroblasts Before enzyme replacement, no PNP activity could be of the patient (4, 5) as well as from the excretion pattern of detected in the erythrocytes of the patient (3). Fig. 1 purine metabolites: high urine
Recommended publications
  • The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
    THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells.
    [Show full text]
  • Difluorodeoxyguanosine in Chinese Hamster Ovary Cells'
    [CANCER RESEARCH55, 1517-1524, April 1, 19951 Cytotoxicity, Metabolism, and Mechanisms of Action of 2',2'- Difluorodeoxyguanosine in Chinese Hamster Ovary Cells' Varsha Gandhi,2 Shin Mineishi, Peng Huang, Amy J. Chapman, Yandan Yang, Feng Chen, Biffie Nowak, Shern Chubb, Larry W. Hertel, and William Plunkett Department of Clinical Investigation, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (V. G., S. M., P. H.. A. J. C.. Y. 1'., F. C., B. N., S. C., w. p.]. andLillyResearchLaboratories,Indianapolis,indiana46285(L W.H.) ABSTRACT treatment of hematological malignancies (4—6).Arabinosyladenine, although not successful in cancer therapy, has proven antiviral activity The emerging clinical success of gemcItabine (2',2'-difluorodeoxycytl dine) Stimulated interest in the synthesis and evaluation of purine conge (7). The importance of the 2'-pentose moiety for the design of chemo ners. The cytotoxicity, metabolism, and mechanisms of action of the lead therapeutic agents and the fact that fluorine has a van der Waals radius candidate, 2',2'-difluorodeoxyguanoslne (dFdGuo), were StUdied In ChI nese hamster ovary cells Unlike the natural nucleoside deoxyguanosine similar to that of hydrogen led to the synthesis and evaluation of (dGuo), dFdGuo was not a substrate for purine nucleoside phosphorylase 2'-fluorinated analogues. 2'-Deoxy-2'-fluorocytidine and 2'-deoxy Wild-type Chinese hamster ovary cells and a mutant line deficient in 2'-fluoroguanosine possess inhibitory activities against several deoxycytidine (dCyd) kinase were similarly affected by dFdGuo (50% lymphoid cell lines and influenza viruses, respectively (8, 9). Inter inhibitory concentration, 7.5 and 6.5 pM, respectively), suggesting that estingly, substitution of the 2'-hydrogen of dCyd3 with a fluorine unlike gemcitabine, dCyd kinase was not responsible for activation of atom in the arabinose configuration produced 10-fold greater cyto dFdGuo This was further confirmed by separation of nucleoside kinases toxicity than when placed in the ribose position (10).
    [Show full text]
  • DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents
    molecules Review DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents Maria Valeria Raimondi 1,*,† , Ornella Randazzo 1,†, Mery La Franca 1 , Giampaolo Barone 1 , Elisa Vignoni 2, Daniela Rossi 2 and Simona Collina 2,* 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; [email protected] (O.R.); [email protected] (M.L.F.); [email protected] (G.B.) 2 Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy; [email protected] (E.V.); [email protected] (D.R.) * Correspondence: [email protected] (M.V.R.); [email protected] (S.C.); Tel.: +390-912-389-1915 (M.V.R.); +390-382-987-379 (S.C.) † These Authors contributed equally to this work. Academic Editors: Simona Collina and Mariarosaria Miloso Received: 25 February 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
    [Show full text]
  • 1611 REGULATION of PYRIMIDINE METABOLISM in PLANTS Chris
    [Frontiers in Bioscience 9, 1611-1625, May 1, 2004] REGULATION OF PYRIMIDINE METABOLISM IN PLANTS 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 Chris Kafer , Lan Zhou , Djoko Santoso , Adel Guirgis , Brock Weers , Sanggyu Park and Robert Thornburg 1 1 Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, 2 BASF Plant Science LLC, 2901 South Loop Drive, Ste 3800, Ames, Iowa 50014, 3 Lan Zhou, Pioneer Hi-Bred International, Inc. 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004, 4 Indonesian Biotechnology Research Institute for Estate Crops, Jl, Taman Kencana No 1, Bogor 16151 Indonesia, 5 Institute of Genetic Engineering and Biotechnology, Menofiya University, PO Box 79/22857, Sadat City, Egypt, 6 Department of Biochemistry, University of Iowa, 4/511 Bowen Science Building, Iowa City, Iowa 52242-1109, 7 Division of Life and Environment, College of Natural Resources, Daegu University, Gyongsan City, Gyongbuk, Korea 712-714 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Pyrimidine metabolic pathways 3.1. De novo pyrimidine biosynthesis 3.1.1. CPSase 3.1.2. ATCase 3.1.3. DHOase 3.1.4. DHODH 3.1.5. UMPS 3.1.6. Intracellular Organization of the de novo Pathway 3.2. Pyrimidine Salvage and Recycling 3.2.1. Cytosine deaminase 3.2.2. Cytidine deaminase 3.2.3. UPRTase 3.3. Pyrimidine Modification 3.3.1. UMP/CMP kinase 3.3.2. NDP kinase 3.3.3. CTP synthase, NDP reductase, dUTPase 3.3.4. Thymidylate synthase/Dihydrofolate reductase 3.4. Pyrimidine Catabolism 4. Regulation of pyrimidine metabolism 4.1.
    [Show full text]
  • TITLE Adenylate Kinase 2 Deficiency Causes NAD+ Depletion and Impaired Purine Metabolism During Myelopoiesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450633; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TITLE Adenylate Kinase 2 deficiency causes NAD+ depletion and impaired purine metabolism during myelopoiesis AUTHORS Wenqing Wang1, Andew DeVilbiss2, Martin Arreola1, Thomas Mathews2, Misty Martin-Sandoval2, Zhiyu Zhao2, Avni Awani1, Daniel Dever1, Waleed Al-Herz3, Luigi Noratangelo4, Matthew H. Porteus1, Sean J. Morrison2, Katja G. Weinacht1, * 1. Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305 USA 2. Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA 3. Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, 13110 Kuwait 4. Laboratory of Clinical Immunology and Microbiology, National Institute of Health, BETHESDA MD 20814 USA * Corresponding author ABSTRACT Reticular Dysgenesis is a particularly grave from of severe combined immunodeficiency (SCID) that presents with severe congenital neutropenia and a maturation arrest of most cells of the lymphoid lineage. The disease is caused by biallelic loss of function mutations in the mitochondrial enzyme Adenylate Kinase 2 (AK2). AK2 mediates the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP) as substrate for adenosine triphosphate (ATP) synthesis in the mitochondria. Accordingly, it has long been hypothesized that a decline in OXPHOS metabolism is the driver of the disease. The mechanistic basis for Reticular Dysgenesis, however, remained incompletely understood, largely due to lack of appropriate model systems to phenocopy the human disease.
    [Show full text]
  • NADPH Homeostasis in Cancer: Functions, Mechanisms and Therapeutic Implications
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications Huai-Qiang Ju 1,2, Jin-Fei Lin1, Tian Tian1, Dan Xie 1 and Rui-Hua Xu 1,2 Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy. Signal Transduction and Targeted Therapy (2020) 5:231; https://doi.org/10.1038/s41392-020-00326-0 1234567890();,: BACKGROUND for biosynthetic reactions to sustain their rapid growth.5,11 This In cancer cells, the appropriate levels of intracellular reactive realization has prompted molecular studies of NADPH metabolism oxygen species (ROS) are essential for signal transduction and and its exploitation for the development of anticancer agents. cellular processes.1,2 However, the overproduction of ROS can Recent advances have revealed that therapeutic modulation induce cytotoxicity and lead to DNA damage and cell apoptosis.3 based on NADPH metabolism has been widely viewed as a novel To prevent excessive oxidative stress and maintain favorable and effective anticancer strategy.
    [Show full text]
  • TRACE: Tennessee Research and Creative Exchange
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2009 Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae James Wesley Fairman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Fairman, James Wesley, "Structure-Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/49 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by James Wesley Fairman entitled "Structure- Function Studies of the Large Subunit of Ribonucleotide Reductase from Homo sapiens and Saccharomyces cerevisiae." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Chris G. Dealwis,
    [Show full text]
  • Transient State Analysis of Porcine Dihydropyrimidine Dehydrogenase Reveals Reductive Activation by NADPH
    #$%&'()&*!+*%*)!,&%-.'('!/0!1/$2(&)!3(4.5$/6.$(7(5(&)!3)4.5$/8)&%')! 9):)%-'!9)5;2*(:)!,2*(:%*(/&!<.!=,31>?! ! @$)**!,?!@)%;6$)A!3%$(;'4!B?!C/$/;D)'4!%&5!E$%4%7!9?!F/$%&G! ! ! ! 3)6%$*7)&*! /0! B4)7('*$.! %&5! @(/24)7('*$.A! "HIJ! K! +4)$(5%&! 95A! L/./-%! M&(:)$'(*.! B4(2%8/A!!B4(2%8/A!NL!IHIIH! ! ! G2/$$)'6/&5(&8!%;*4/$O!64/&)P!QRRSTUHJVSRUIO!)7%(-P!87/$%&SW-;2?)5;! ! ! ! ! ! "! !"#$%&'$( ( 3(4.5$/6.$(7(5(&)!5)4.5$/8)&%')!Q313T!2%*%-.D)'!*4)!(&(*(%-!'*)6!(&!*4)!2%*%</-('7!/0!*4)! 6.$(7(5(&)'! ;$%2(-! %&5! *4.7(&)?! B$.'*%-! '*$;2*;$)'! 4%:)! $):)%-)5! %&! )-%</$%*)! ';<;&(*! %$24(*)2*;$)!2/&'('*(&8!/0!*Y/!0-%:(&!2/0%2*/$'A!%66%$)&*-.!-(&Z)5!<.!0/;$!C)[+[!2)&*)$'?!,&%-.'('! /0!*4)!313!$)%2*(/&Q'T!)\;(-(<$(;7!6/'(*(/&!;&5)$!%&%)$/<(2!2/&5(*(/&'!$):)%-)5!%!$)%2*(/&!*4%*! 0%:/$'!5(4.5$/6.$(7(5(&)!0/$7%*(/&?!+(&8-)V*;$&/:)$!%&%-.'('!'4/Y'!<(64%'(2!Z(&)*(2'?!#4)!')$(&)! :%$(%&*!/0!*4)!2%&5(5%*)!8)&)$%-!%2(5A!2.'*)(&)!IR"A!6$/:(5)5!)&4%&2)5!Z(&)*(2!$)'/-;*(/&!0/$! *4)')!64%')'?!N&!*4)!0($'*!):)&*A!/&)!';<;&(*!/0!*4)!313!5(7)$!*%Z)'!;6!*Y/!)-)2*$/&'!0$/7!=,31>! (&!%!$)5;2*(:)!%2*(:%*(/&!'*)6?!+6)2*$/64/*/7)*$(2!5)2/&:/-;*(/&!';88)'*'!*4%*!*4)'!)-)2*$/&'! $)'(5)!/&!/&)!/0!*4)!*Y/!0-%:(&'?!#4%*!/](5%*(/&!/0!*4)!)&D.7)!<.!5(/].8)&!2%&!<)!';66$)'')5!<.! *4)!%55(*(/&!/0!6.$(7(5(&)A!('!2/&'('*)&*!Y(*4!*4)')!)-)2*$/&'!$)'(5(&8!/&!*4)!CF=?!#4)!')2/&5! 64%')! (&:/-:)'! 0;$*4)$! /](5%*(/&! /0! =,31>! %&5! 2/&2/7(*%&*! $)5;2*(/&! /0! *4)! 6.$(7(5(&)! ';<'*$%*)?!3;$(&8!*4('!64%')!&/!&)*!$)5;2*(/&!/0!313!2/0%2*/$'!('!/<')$:)5!(&5(2%*(&8!*4%*!*4)! )&*($)!2/0%2*/$!')*!%2*'!%'!%!Y($)A!*$%&'7(**(&8!)-)2*$/&'!0$/7!=,31>!*/!*4)!6.$(7(5(&)!$%6(5-.?!
    [Show full text]
  • ANABOLISM III: Biosynthesis Amino Acids & Nucleotides
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Biosynthesis of Amino Acids and Nucleotides Nitrogen fixation nitrogenase Nitrogen assimilation Glutamine synthetase Glutamate synthase Amino-acid Biosynthesis non-essential essential Nucleotide Biosynthesis RNA precursors purines pyrimidines DNA precursors deoxy-nucleotides Biosynthesis of secondary products of amino acids ANABOLISM III: Biosynthesis Amino Acids & Nucleotides Dr. Kornberg: Lecture 04.26.17 (0:00-5:06) 5 min 1 Biosynthesis Amino Acids & Nucleotides How are Ribonucleic Acid Precursors So far: converted to Deoxyribonucleic Acid GMPàGDPàGTP Precursors? ….....and how is dTTP made? AMPàADPàATP 2’C-OH bond is directly reduced to 2’-H UMPàUDPàUTPà bond …without activating the carbon for CDPßCTP dehydration, etc.! catalyzed by ribonucleotide reductase Specific kinases, Non-specific kinase, e.g., UMP kinase, nucleoside GMP kinase, diphosphate kinase Very unique enzyme in all of biochemistry – use of free Adenylate kinase (works on both oxy- and radicals etc. deoxy-ribose GDPàdGDP nucleosides) Mechanism: Two H atoms are donated ADPàdADP by NADPH and carried by thioredoxin or glutaredoxin to the active site. UDPàdUDP –Substrates are the NDPs and the products CDPàdCDP are dNDP. Biosynthesis Amino Acids & Nucleotides Source of Reducing Structure of Ribonucleotide Reductase a2 are regulatory Electrons for and half the Ribonucleotide catalytic site; need to be reduced. Reductase b 2 are the other half (a b ) of the active site, 2 2 and the free- radical generators • NADPH serves as the electron donor. • Funneled through glutathione or JoAnne Stubbe thioredoxin pathways (1946– ) 2 •Most forms of enzyme have two catalytic/ regulatory subunits and two radical- generating subunits.
    [Show full text]
  • Genetic Factors Influencing Pyrimidine- Antagonist Chemotherapy
    The Pharmacogenomics Journal (2005) 5, 226–243 & 2005 Nature Publishing Group All rights reserved 1470-269X/05 $30.00 www.nature.com/tpj REVIEW Genetic factors influencing Pyrimidine- antagonist chemotherapy JG Maring1 ABSTRACT 2 Pyrimidine antagonists, for example, 5-fluorouracil (5-FU), cytarabine (ara-C) HJM Groen and gemcitabine (dFdC), are widely used in chemotherapy regimes for 2 FM Wachters colorectal, breast, head and neck, non-small-cell lung cancer, pancreatic DRA Uges3 cancer and leukaemias. Extensive metabolism is a prerequisite for conversion EGE de Vries4 of these pyrimidine prodrugs into active compounds. Interindividual variation in the activity of metabolising enzymes can affect the extent of 1Department of Pharmacy, Diaconessen Hospital prodrug activation and, as a result, act on the efficacy of chemotherapy Meppel & Bethesda Hospital Hoogeveen, Meppel, treatment. Genetic factors at least partly explain interindividual variation in 2 The Netherlands; Department of Pulmonary antitumour efficacy and toxicity of pyrimidine antagonists. In this review, Diseases, University of Groningen & University Medical Center Groningen, Groningen, The proteins relevant for the efficacy and toxicity of pyrimidine antagonists will Netherlands; 3Department of Pharmacy, be summarised. In addition, the role of germline polymorphisms, tumour- University of Groningen & University Medical specific somatic mutations and protein expression levels in the metabolic Center Groningen, Groningen, The Netherlands; pathways and clinical pharmacology
    [Show full text]
  • Genome-Wide Transcriptional Analysis of Carboplatin Response in Chemosensitive and Chemoresistant Ovarian Cancer Cells
    1605 Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells David Peters,1,2 John Freund,2 and Robert L. Ochs2 variety of disease processes, including cancer. Patterns of global gene expression can reveal the molecular pathways 1 Department of Pharmacology and Therapeutics, University of relevant to the disease process and identify potential new Liverpool, United Kingdom and 2Precision Therapeutics, Inc., Pittsburgh, Pennsylvania therapeutic targets. The use of this technology for the molecular classification of cancer was recently shown with the identification of an expression profile that was Abstract predictive of patient outcome for B-cell lymphoma (1). We have recently described an ex vivo chemoresponse In addition, this study showed that histologically similar assay for determining chemosensitivity in primary cultures tumors can be differentiated based on their gene expression of human tumors. In this study, we have extended these profiles. Ultimately, these unique patterns of gene expres- experiments in an effort to correlate chemoresponse data sion may be used as guidelines to direct different modes of with gene expression patterns at the level of transcription. therapy. Primary cultures of cells derived from ovarian carcinomas Although it is widely recognized that patients with the of individual patients (n = 6) were characterized using same histologic stage and grade of cancer respond to the ChemoFx assay and classified as either carboplatin therapies differently, few clinical tests can predict indi- sensitive (n = 3) or resistant (n = 3). Three representa- vidual patient responses. The next great challenge will be tive cultures of cells from each individual tumor were then to use the power of post-genomic technology, including subjected to Affymetrix gene chip analysis (n = 18) using microarray analyses, to correlate gene expression patterns U95A human gene chip arrays.
    [Show full text]
  • S Phase-Specific Synthesis of Dihydrofolate Reductase in Chinese Hamster Ovary Cells (Cell Cycle/Methotrexate-Resistance/Fluorescence-Activated Cell Sorter) BRIAN D
    Proc. NatL Acad. Sci. USA Vol. 78, No. 8, pp. 4985-4989, August 1981 Cell Biology S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells (cell cycle/methotrexate-resistance/fluorescence-activated cell sorter) BRIAN D. MARIANI, DoRis L. SLATE*, AND ROBERT T. SCHIMKEt Department of Biological Sciences, Stanford University, Stanford, California 94305 Contributed by Robert T. Schimke, April 20, 1981 ABSTRACT We investigated the cell cycle modulation ofdihy- DHFR content in MTX-resistant mouse 3T6 fibroblasts when drofolate reductase (DHFR; tetrahydrofolate dehydrogenase, serum-deprived cells were induced to reenter the cell cycle as 7,8-dihydroxyfolate:NADP+ oxidoreductase, EC 1.5.1.3) levels in a result of serum replenishment. Although this phenomenon methotrexate-resistant Chinese hamster ovary cells synchronized of a phase transition from a metabolically quiescent state to a by mitotic selection. DNA content and DHFR concentration were state of active proliferation has clear physiological significance analyzed throughout the cell cycle by standard biochemical tech- (1), our investigation focused on the modulation ofDHFR levels niques and by double fluorescence staining utilizing the fluores- within the framework ofa single, physiologically continuous cell cence-activated cell sorter. We found an S phase-specific period cycle. of DHFR biosynthetic activity. Commencing within hour 2 of S We achieved precise cell cycle synchrony by the selection phase and continuing throughout the duration of S phase, there is a 90% increase in DHFR specific activity. This results from an of mitotic cells from exponentially growing monolayers. We "=2.5-fold increase in the level of DHFR, while total soluble pro- determined the specific activity of DHFR throughout the cell tein increases 50% during the same period.
    [Show full text]