Kenneth Stewart Cole 25 by Sir Andrew Huxley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamics September 6-4 1708.07400.Pdf
Dynamics of Current, Charge and Mass Bob Eisenberg Department of Applied Mathematics Illinois Institute of Technology USA Department of Physiology and Biophysics Rush University USA [email protected] Xavier Oriols Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, SPAIN [email protected] David Ferry School of Electrical, Computer, and Energy Engineering Arizona State University USA [email protected] Available on arXivhttps://arxiv.org/abs/1708.07400 at September 6, 2017 ABSTRACT Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did. We show that the Bohm formulation of quantum mechanics allows the easy definition of current without the mysteries of the theory of quantum measurements. We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800's thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. -
Philosophy in Biology and Medicine: Biological Individuality and Fetal Parthood, Part I
Oslo, Norway July 7–12, 2019 ISHP SS B BOOK OF ABSTRACTS 2 Index 11 Keynote lectures 17 Diverse format sessions 47 Traditional sessions 367 Individual papers 637 Mixed media and poster presentations A Aaby, Bendik Hellem, 369 Barbosa, Thiago Pinto, 82 Abbott, Jessica, 298 Barker, Matthew, 149 Abir-Am, Pnina Geraldine, 370 Barragán, Carlos Andrés, 391 D’Abramo, Flavio, 371 Battran, Martin, 158 Abrams, Marshall, 372 Bausman, William, 129, 135 Acerbi, Alberto, 156 Baxter, Janella, 56, 57 Ackert, Lloyd, 185 Bayir, Saliha, 536 Agiriano, Arantza Etxeberria, 374 Beasley, Charles, 392 Ahn, Soohyun, 148 Bechtel, William, 259 El Aichouchi, Adil, 375 Bedau, Mark, 393 Airoldi, Giorgio, 376 Ben-Shachar, Erela Teharlev, 395 Allchin, Douglas, 377 Beneduce, Chiara, 396 Allen, Gar, 328 Berry, Dominic, 56, 58 Almeida, Maria Strecht, 377 Bertoldi, Nicola, 397 Amann, Bernd, 40 Betzler, Riana, 398 Andersen, Holly, 19, 20 Bich, Leonardo, 41 Anderson, Gemma, 28 LeBihan, Soazig, 358 Angleraux, Caroline, 378 Birch, Jonathan, 22 Ankeny, Rachel A., 225 Bix, Amy Sue, 399 Anker, Peder, 230 Blais, Cédric, 401 Ardura, Adrian Cerda, 380 Blancke, Stefaan, 609 Armstrong-Ingram, Tiernan, 381 Blell, Mwenza, 488 Arnet, Evan, 383 Blute, Marion, 59, 62 Artiga, Marc, 383 Bognon-Küss, Cécilia, 23 Atanasova, Nina, 20, 21 Bokulich, Alisa, 616 Au, Yin Chung, 384 Bollhagen, Andrew, 402 DesAutels, Lane, 386 Bondarenko, Olesya, 403 Aylward, Alex, 109 Bonilla, Jorge Armando Romo, 404 B Baccelliere, Gabriel Vallejos, 387 Bonnin, Thomas, 405 Baedke, Jan, 49, 50 Boon, Mieke, 235 Baetu, -
Presidential Files; Folder: 11/22/77; Container 52
11/22/77 Folder Citation: Collection: Office of Staff Secretary; Series: Presidential Files; Folder: 11/22/77; Container 52 To See Complete Finding Aid: http://www.jimmycarterlibrary.gov/library/findingaids/Staff_Secretary.pdf TIIE PRESIDENT'S SCHEDULE Tuesday - November 22,1977 8:15 Dr. Zbigniew Brz.ezinski The Oval Office . 8:45 .Hr . Frank Moore The Oval Office. 10:00 Medal of Science Awards. (Dr. Frank Press). ·Room 450, EOB. I \ 10:30 Mr. Jody Powell The Oval Office. 11:00 Presentation of Diplomatic Credentials. (Dr. Zbigniew Brzezinski} - The Oval Office. 11:45 Vice President Walter F. Mondale, Admiral Stansfield Turner, and Dr. Zbigniew Brzezinski. The Oval Office. 12:30 Lunch \..,-::_ th Hrs. Rosalynn Carter ·- The Ovctl Office. 2:00 Budget Review Meeting. (Mr. James Mcintyre). ( 2 hrs.) The Cabinet Room. THE WHITE HOUSE WASHINGTON \"~ Date: November 22, 1977 l\ vo\ \'~ MEMORANDUM t)lDifll FOR ACTION: '" FOR INFORMATION: Stu Eizenstat ~t""'"' Frank Moore (Les Francis)~ The Vice President Jack Watson Bob Lipshutz Jim Mcintyre FROM: Rick Hutcheson, Staff Secretary SUBJECT: Adams memo dated 11/22/77 re Response to the Boston Plan and Location of Rail Maintenance Facilit.y in the Northeast Corridor YOUR RESPONSE MUST BE DELIVERED TO THE STAFF SECRETARY BY: TIME: 11:00 AM DAY: Monday DATE: November 28, 1977 ACTION REQUESTED: _x_ Your comments Other: STAFF RESPONSE: __ I concur. __ No comment: Please note other comments below: PLEASE ATTACH THIS COPY TO MATERIAL SUBMITTED. If you have any questions or if you anticipate a delay in submitting the required material, please telephone the Staff Secretary immediately. -
September 24, 2008 (Download PDF)
Volume 53, Number 3 TechTalk Wednesday, September 24, 2008 S ERVING THE MIT CO mm UNI T Y 1 2 3 4 5 6 7 of the Mass. Ave. Bridge RULERLength : 2,164.8 feet (or 364.4 Smoots ± an ear) SMOOT ANNIVERSARY EVENTS: Oct. 4 Smoot reflects on his measurement Charles River clean up 11:30 a.m.-4 p.m. feat as 50th anniversary nears Volunteers from the MIT community and beyond gather at the Kresge Oval for a barbecue lunch before cleaning the shoreline of the Patrick Gillooly Charles River. MIT President Susan Hockfield, Oliver Smoot and other News Office guests will speak at 12:30 p.m. Visit web.mit.edu/smoot/schedule.htm to s his fraternity brothers laid his 5-foot, 7-inch frame end- register. to-end to measure the Massachusetts Avenue bridge one Herb Reed and the Platters Concert 5-6:30 p.m. Anight in October 1958, there was one distinct thought running through Oliver Smoot’s mind. Famed ’50s music group Herb Reed and the Platters play the MIT “It was pretty cold,” he said. Kresge Auditorium at 5 p.m. Pre-show tickets available for $25 online at Smoot ’62 evoked memories recently about the night his web.mit.edu/smoot/platters.htm; tickets at the door (if available) $35. name became a unit of measurement as MIT prepares to cele- brate the 50th anniversary of the quirky MIT Big ’50s Party 6:30-11 p.m. hack. A series of events has been planned The MIT Club of Boston, the Class of 1962 and Lambda Chi See web.mit.edu/ for the weekend of Oct. -
Bioenergetics Unbelievable
HISTORICAL PERSPECTIVES Bioenergetics Unbelievable ... ... but true! MARS - The easiest Data Analysis for Microplate Readers. Key features that the MARS software can do: Standard curve calculation wizard Linear, 4-parameter, cubic-spline, segmental curve fits Enzyme kinetics - Michaelis-Menten, Lineweaver-Burk, Scatchard Automatic DNA / RNA concentration determination 3D well scanning for cell-based assays Delta F% calculation for HTRF® Z’ calculation User-defined formula generator FDA 21 CFR Part 11 compliant Overlay plot of esterase catalysed pNPA Multi-user software license included reactions at different concentrations. Find our microplate readers on www.bmglabtech.com FLUOstar PHERAstar FS NOVOstar NEPHELOstar Stacker HTRF is a registered trademark of Cisbio International. The Journal of Biological Chemistry TABLE OF CONTENTS 2010 HISTORICAL PERSPECTIVES ON BIOENERGETICS PROLOGUE REFLECTIONS H1 JBC Historical Perspectives: Bioenergetics. Nicole Kresge, Robert H13 A Research Journey with ATP Synthase. Paul D. Boyer D. Simoni, and Robert L. Hill H30 Happily at Work. Henry Lardy CLASSICS H41 Keilin, Cytochrome, and the Respiratory Chain. E. C. Slater H2 Polyribonucleotide Synthesis and Bacterial Amino Acid Uptake: the Work of Leon A. Heppel H48 Reminiscences of Leon A. Heppel. Leon A. Heppel H5 Unraveling the Enzymology of Oxidative Phosphorylation: the Work of Efraim Racker H8 Ion Transport in the Sarcoplasmic Reticulum: the Work of David H. MacLennan H10 ATP Synthesis and the Binding Change Mechanism: the Work of Paul D. Boyer JOURNAL OF BIOLOGICAL CHEMISTRY i PROLOGUE This paper is available online at www.jbc.org © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. JBC Historical Perspectives: Bioenergetics* Nicole Kresge, Robert D. -
HISTORICAL SURVEY SOME PIONEERS of the APPLICATIONS of FRACTIONAL CALCULUS Duarte Valério 1, José Tenreiro Machado 2, Virginia
HISTORICAL SURVEY SOME PIONEERS OF THE APPLICATIONS OF FRACTIONAL CALCULUS Duarte Val´erio 1,Jos´e Tenreiro Machado 2, Virginia Kiryakova 3 Abstract In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pio- neers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabet- ical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul L´evy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair. MSC 2010 : Primary 26A33; Secondary 01A55, 01A60, 34A08 Key Words and Phrases: fractional calculus, applications, pioneers, Abel, Cole, Gemant, Gerasimov, Heaviside, L´evy, Nigmatullin, Rabotnov, Scott Blair 1. Introduction In 1695 Gottfried Leibniz asked Guillaume l’Hˆopital if the (integer) order of derivatives and integrals could be extended. Was it possible if the order was some irrational, fractional or complex number? “Dream commands life” and this idea motivated many mathematicians, physicists and engineers to develop the concept of fractional calculus (FC). Dur- ing four centuries many famous mathematicians contributed to the theo- retical development of FC. We can list (in alphabetical order) some im- portant researchers since 1695 (see details at [1, 2, 3], and posters at http://www.math.bas.bg/∼fcaa): c 2014 Diogenes Co., Sofia pp. 552–578 , DOI: 10.2478/s13540-014-0185-1 SOME PIONEERS OF THE APPLICATIONS . 553 • Abel, Niels Henrik (5 August 1802 - 6 April 1829), Norwegian math- ematician • Al-Bassam, M. A. (20th century), mathematician of Iraqi origin • Cole, Kenneth (1900 - 1984) and Robert (1914 - 1990), American physicists • Cossar, James (d. -
15/5/40 Liberal Arts and Sciences Chemistry Irwin C. Gunsalus Papers, 1877-1993 BIOGRAPHICAL NOTE Irwin C
15/5/40 Liberal Arts and Sciences Chemistry Irwin C. Gunsalus Papers, 1877-1993 BIOGRAPHICAL NOTE Irwin C. Gunsalus 1912 Born in South Dakota, son of Irwin Clyde and Anna Shea Gunsalus 1935 B.S. in Bacteriology, Cornell University 1937 M.S. in Bacteriology, Cornell University 1940 Ph.D. in Bacteriology, Cornell University 1940-44 Assistant Professor of Bacteriology, Cornell University 1944-46 Associate Professor of Bacteriology, Cornell University 1946-47 Professor of Bacteriology, Cornell University 1947-50 Professor of Bacteriology, Indiana University 1949 John Simon Guggenheim Fellow 1950-55 Professor of Microbiology, University of Illinois 1955-82 Professor of Biochemistry, University of Illinois 1955-66 Head of Division of Biochemistry, University of Illinois 1959 John Simon Guggenheim Fellow 1959-60 Research sabbatical, Institut Edmund de Rothchild, Paris 1962 Patent granted for lipoic acid 1965- Member of National Academy of Sciences 1968 John Simon Guggenheim Fellow 1972-76 Member Levis Faculty Center Board of Directors 1977-78 Research sabbatical, Institut Edmund de Rothchild, Paris 1973-75 President of Levis Faculty Center Board of Directors 1978-81 Chairman of National Academy of Sciences, Section of Biochemistry 1982- Professor of Biochemistry, Emeritus, University of Illinois 1984 Honorary Doctorate, Indiana University 15/5/40 2 Box Contents List Box Contents Box Number Biographical and Personal Biographical Materials, 1967-1995 1 Personal Finances, 1961-65 1-2 Publications, Studies and Reports Journals and Reports, 1955-68 -
MIT Parents Association 600 Memorial Drive W98-2Nd FL Cambridge, MA 02139 (617) 253-8183 [email protected]
2014–2015 A GUIDE FOR PARENTS produced by in partnership with For more information, please contact MIT Parents Association 600 Memorial Drive W98-2nd FL Cambridge, MA 02139 (617) 253-8183 [email protected] Photograph by Dani DeSteven About this Guide UniversityParent has published this guide in partnership with the Massachusetts Institute of Technology with the mission of helping you easily contents Photograph by Christopher Brown navigate your student’s university with the most timely and relevant information available. Discover more articles, tips and local business information by visiting the online guide at: www.universityparent.com/mit MIT Guide The presence of university/college logos and marks in this guide does not mean the school | Comprehensive advice and information for student success endorses the products or services offered by advertisers in this guide. 6 | Welcome to MIT 2995 Wilderness Place, Suite 205 8 | MIT Parents Association Boulder, CO 80301 www.universityparent.com 10 | MIT Parent Giving Top Five Reasons to Join Advertising Inquiries: 11 | (855) 947-4296 12 | 100 Things to Do before Your Student Graduates MIT [email protected] 20 | Academics Top cover photo by Christopher Harting. 21 | Resources for Academic Success 22 | Supporting Your Student 24 | Campus Map 27 | Department of Athletics, Physical Education, and Recreation 28 | MIT Police and Campus Safety SARAH SCHUPP PUBLISHER 30 | Housing MARK HAGER DESIGN MIT Dining 32 | MICHAEL FAHLER AD DESIGN 33 | Health Care What to Do On Campus Connect: 36 | 39 | Navigating MIT facebook.com/UniversityParent 41 | Academic Calendar MIT Songs twitter.com/4collegeparents 43 | 45 | Contact Information © 2014 UniversityParent Photo by Tom Gearty 48 | MIT Area Resources 4 Massachusetts Institute of Technology 5 www.universityparent.com/mit 5 MIT is coeducational and privately endowed. -
Here Are Some Additional Notes I Was Jotting Down
Growing Connections in Computational Neuroscience Report on a German-U.S. Collaborative Symposium Munich, June 8-11, 2008 Leo van Hemmen, Andreas Herz, Rob de Ruyter van Steveninck _____________________________________________________________ Julius Bernstein Kenneth Stewart Cole Cover pictures Portraits of Julius Bernstein and Kenneth Cole, and a key figure from a 1939 paper by Cole and Curtis. The figure demonstrates a dramatic increase in nerve membrane conductance during passage of an action potential. This result is a direct experimental confirmation of an essential feature of Bernstein’s theory of the action potential. Though their work was separated by a few decades, Cole’s studies in the United States were inspired by Bernstein’s work in Germany at the beginning of the 20th century. Cole, K.S. and Curtis, H.J., J Gen Physiol 22, 649-670 (1939) Acknowledgements The German-U.S. Collaborative Symposium, “Growing Connections in Computational Neuroscience,” was funded by the German Federal Ministry of Education and Research (BMBF) and the U.S. National Science Foundation (NSF). 2 Contents Executive Summary............................................................................................................ 4 Introduction......................................................................................................................... 5 Scientific Background......................................................................................................... 5 Programmatic Background ................................................................................................ -
Efraim Racker
Efraim Racker June 28, 1913 — September 9, 1991 Efraim Racker came to Cornell in 1966 as Albert Einstein Professor (one of six awarded by the State of New York) and Chairman of the Section of Biochemistry in the newly created Division of Biological Sciences. He was a key figure in the expansion of the Section at that time, bringing with him eight younger colleagues as faculty members. His brilliant research, and concern for developing a strong graduate research program for the Section were instrumental in setting the pattern for the breadth and strength Biochemistry (now Biochemistry, Molecular and Cell Biology) enjoys today. An example of Ef’s efforts to strengthen the biochemistry graduate program at Cornell led him to hold an evening seminar program in which each student spoke on his own research. For the first ten years, or so, Ef only occasionally allowed other faculty members to attend and he constantly interrupted the students with questions about the presentation or research. The seminars are still held, now with all faculty invited but the primary advisor not allowed to speak, and are known as the Racker Seminars. Ef Racker was born in Neu Sandez, Poland, and grew up in Vienna. He had natural artistic talent, and almost went to Art School. Instead, he decided on Medical School for his advanced training, graduating in 1938. Biochemistry, brain function and art had become major interests, and remained so for the rest of his life. He escaped to England as the Nazis moved in, and began work on energy metabolism of the brain at the Cardiff Mental Hospital. -
ARTHUR CLAY COPE June 27, 1909-June 4, 1966 by JOHN D
NATIONAL ACADEMY OF SCIENCES A RTHUR CLAY C OPE 1909—1966 A Biographical Memoir by J O H N D . RO BERTS AND JOHN C . S HEEHAN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1991 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. ARTHUR CLAY COPE June 27, 1909-June 4, 1966 BY JOHN D. ROBERTS AND JOHN C. SHEEHAN RTHUR CLAY COPE, an extraordinarily influential and Aimaginative organic chemist, was born on June 27, 1909, and died on June 4, 1966. He was the son of Everett Claire Cope and Jennie (Compton) Cope, who lived in Dunreith, Indiana, but later moved to Indianapolis to enhance their son's educational possibilities. Everett Cope was in the grain storage business and his wife worked for some time at the local YWCA office. In 1929 Arthur received the bachelor's degree in chem- istry from Butler University in Indianapolis, then, with the support of a teaching assistantship, moved to the University of Wisconsin for graduate work. His thesis advisor at Wisconsin was S. M. McElvain, whose research program included the synthesis of organic com- pounds with possible pharmaceutical uses—especially local anesthetics and barbiturates. Cope's thesis work, completed in 1932, was along these lines. It led to the discovery of a useful local anesthetic and provided the major theme of his research for many years. Cope clearly made a strong impression at Wisconsin dur- ing his graduate career. He completed his thesis work and three independent publications in three years and was rec- ommended by the Wisconsin organic chemistry faculty (then 17 18 BIOGRAPHICAL MEMOIRS headed by the redoubtable Homer Adkins) for one of the highly sought-after National Research Council Fellowships at Harvard. -
A B C D E F G H I J K L M 0 P
SELF-GUIDED WALKING TOUR OF M.....IT’S CAMPUS ... M j .... Q N ....... * L ........ ........... B .....A P.. 0 ... .... Lobby 7 & Visitor Info Center ....... A ..... (77 Mass Ave) C F B Stratton Student Center C Kresge Auditorium .... MIT Chapel D E Building 1 (nearby entrance J to Hart Nautical Gallery) D........ ......... G ..... H K F Building 3/Design & ..... .... Manufacturing display ......... .............................. G Killian Court H Ellen Swallow Richards Lobby I I Hayden Memorial Library E J McDermott Court K Media Lab L North Court ......... M Koch Institute N Stata Center O Edgerton’s Strobe Alley P Memorial Lobby / Barker Library Q 1 smoot = 5 ft 7 in (1.70 m) Q MIT Museum (265 Mass Ave) Bridge length = 364.4 smoots, plus or minus one ear MIT Coop/Kendall Square Q* Smoot markings Welcome to MIT! forma- We hope you enjoy your visit! The tour route outlined on this map will WALKING TOUR ROUTEn help you explore MIT’s campus. The Office of Admissions conducts information sessions followed by student-led campus tours for u Leave Lobby 7 (Bldg. 7 [A]) and cross Massachusetts Avenue (Mass Ave). Central and Harvard prospective students and families, Mon–Fri, excluding federal, Squares are up the street to your right, and the Harvard Bridge (leading into Boston) is to your Massachusetts, and Institute holidays and the winter break left. Mass Ave is a main street connecting Cambridge and Boston, and bus stops servicing major period. Info sessions begin at 10 am and 2 pm; campus tours routes can be found on either side of the street.