Water Requirements and Distribution of Ammophila Arenaria and Scaevola Plumieri on South African Coastal Dunes

Total Page:16

File Type:pdf, Size:1020Kb

Water Requirements and Distribution of Ammophila Arenaria and Scaevola Plumieri on South African Coastal Dunes Water requirements and distribution of Ammophila arenaria and Scaevola plumieri on South African coastal dunes Thesis Submitted in fulfilment of the requirements for the degree of Master of Science of Rhodes University by CRAIG INGRAM PETER Department of Botany Rhodes University February 2000 Map 1 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 -25 Maputo -26 Cabo de Santa Maria -27 The South African Coastline Kosi Bay The South African coastline is approximately 3000 kilometers long and includes the dry west coast, the warm temperate south-west -28 and south coast, and the sub-tropical east coast. Important coastal Cape Vidal towns and cities are identified, as are important landmarks. The Oranjemund Richards Bay Cape St Lucia -29 distribution limits of Ammophila arenaria are marked in blue, while Mtunzini the western distribution limit of Scaevola plumieri is marked in red. Tugela River Durban -30 Port Shepstone -31 Southbroom Port St Johns -32 Lambert’s Bay St Helena Bay Cape Columbine East London Kei River -33 Saldanha Langebaan Lagoon Grahamstown Port Alfred Fish River / Old Womans River Cape Town Knysna Port Elizabeth Cape Padrone -34 Mossel Bay Algoa Bay Cape Recief False Cape Seal Cape of Good Hope Bay Cape Vacca Cape St Francis Cape Infanta Danger Point Arniston Cape Agulhas -35 0 100km -36 Map 2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 -26 -27 -28 The South African Coastal Vegetation KwaZulu Natal coast: Dune thicket and Cape Vidal Classification of the South African coastline as suggested by Lubke coastal forest et al (1997, red) and as proposed in the current work (blue). Boxes Cape St Lucia -29 give general vegetation types in the different regions as defined by Lubke et al (1997) and correspond to these authors classification. Tugela River Durban -30 West coast: Transkei coast: East coast Desert or strandveld Natal coast Coastal grassland, West coast (subdesert) -31 West coast dune thicket and coastal forest. KwaZulu -32 South east coast: South coast: Dune Fynbos (west), dune thicket with coastal Cape Columbine South west coast: Dune fynbos with mosaics of -33 Fynbos with patches grassland and forest (east). thicket (east) and afromontane East London of dune thicket forest patches (central) Transkei & southern KZN Port Elizabeth -34 Cape Town Algoa Bay Cape Padrone False Transkei coast South west coast Cape Seal Cape Recief Bay Cape Vacca South west coast Cape Infanta East coast -35 Cape Agulhas South coast -36 South east coast 0 100km South coast -37 “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact” Mark Twain Abstract Phenomenological models are presented which predicts transpiration rates (E) of individual leaves of Scaevola plumieri, an indigenous dune pioneer, and Ammophila arenaria, an exotic grass species introduced to stabilise mobile sand. In both cases E is predictably related to atmospheric vapour pressure deficit (VPD). VPD is calculated from measurements of ambient temperature and humidity, hence, where these two environmental variables are known, E can be calculated. Possible physiological reasons for the relationships of E to VPD in both species are discussed. Scaling from measurements of E at the leaf level to the canopy level is achieved by summing the leaf area of the canopy in question. E is predicted for the entire canopy leaf area by extrapolation to this larger leaf area. Predicted transpiration rates of individual shoot within the canopy were tested gravimetrically and shown to be accurate in the case of S. plumieri, but less so in the case of A. arenaria. Using this model, the amount of water used by a known area of sand dune is shown to be less than the rainfall input in the case of S. plumieri in wet and dry years. The water use of A. arenaria exceeds rainfall in the low-rainfall year of 1995, while in 1998 rainfall input is slightly higher than water extraction by the plants. Using a geographic information system (GIS), regional maps (surfaces) of transpiration were calculated from surfaces of mean monthly temperature and mean monthly relative humidity. Monthly surfaces of transpiration were subtracted from the monthly median rainfall to produce a surface of mean monthly water deficit. Areas of water surpluses along the coast correspond with the recorded distribution of both species in the seasons that the plants are most actively growing and reproducing. This suggests that unfavourable water availability during these two species growth periods limit their distributions along the coast. In addition to unfavourable water deficits, additional climatic variables that may be important in limiting the distribution of these two species were investigated using a discriminant function analysis. III Table of Contents ABSTRACT...............................................................................................................................................................III TABLE OF CONTENTS..........................................................................................................................................IV LIST OF FIGURES ...................................................................................................................................................VI LIST OF TABLES .....................................................................................................................................................X ACKNOWLEDGEMENTS ......................................................................................................................................XI CHAPTER 1: INTRODUCTION........................................................................................................................... 12 RATIONALE ..........................................................................................................................................................12 THE INVASS PROGRAMME................................................................................................................................15 AIMS AND QUESTIONS........................................................................................................................................17 AN INTRODUCTION TO THE SPECIES: SCAEVOLA PLUMIERI AND AMMOPHILA ARENARIA .....................18 Scaevola plumieri......................................................................................................................................... 19 Nomenclature .............................................................................................................................................19 Ecology and distribution..........................................................................................................................20 Physiology .................................................................................................................................................20 Ammophila arenaria .................................................................................................................................... 22 Nomenclature .............................................................................................................................................22 Ecology and distribution..........................................................................................................................22 Physiology .................................................................................................................................................24 SAND DUNES AND CLIMATE OF THE SOUTH AFRICAN COAST ...................................................................25 An overview of South African coastal climate......................................................................................... 26 The distribution of sandy beaches along the South African coastline............................................... 28 Dune vegetation in South Africa................................................................................................................ 28 The coastal sand dunes environment........................................................................................................ 31 CHAPTER 2: ESTIMATING TRANSPIRATION RATES OF SCAEVOLA PLUMIERI AND AMMOPHILA ARENARIA LEAVES................................................................................................................. 33 INTRODUCTION....................................................................................................................................................35 Transpiration................................................................................................................................................. 35 The control of transpiration by stomata................................................................................................... 39 Modelling transpiration.............................................................................................................................. 41 STUDY SITES........................................................................................................................................................44 MATERIALS AND METHODS..............................................................................................................................45 Calibration and configuration of the IRGA............................................................................................. 45 Field measurements.....................................................................................................................................
Recommended publications
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • A Refugium for Scaevola Plumieri, a Highly Threatened Rare Plant in Sri Lanka
    Cey. J. Sci. (Bio. Sci.) Vol 34, 2005, 21-25 21 A REFUGIUM FOR SCAEVOLA PLUMIERI, A HIGHLY THREATENED RARE PLANT IN SRI LANKA A.H.Magdon Jayasuriya Environment & Management Lanka, 68 Davidson Road, Colombo 4, Sri Lanka ABSTRACT Scaevola plumieri ( “Hin-takkada”), a surface-creeping shrub among strand vegetation, is extremely rare and “highly threatened” having been previously recorded from no more than six locations in Sri Lanka, mostly during the 19th century. The species is presumed to be extinct in its 19th century localities on the west and east coasts due to loss of habitat, and in its 20th century localities on the east coast due to the recent Tsunami disaster. The Puttalam lagoon shore within the Wilpattu National Park, where this plant was recently located, will therefore be a refugium for this species. Incidentally, this is also the first time that this plant was observed on a lagoon-shore habitat in Sri Lanka, instead of its usual sea shore habitat. This indicates the high conservation value of the Wilpattu beach front of the Kala Oya Lower Basin which also harbours one of the last remaining pristine stretches of mangroves in Sri Lanka, which should be noted by the Department of Wildlife Conservation in park planning and management. INTRODUCTION Scaevola plumieri (L.) Vahl belongs to the activities in coastal zones, “ Hin-takkada” populations have presumably disappeared from the family Goodeniaceae and its local name is th (“Hin-takkada”). It is a surface-creeping above localities. The specimens recorded in the 20 (prostate) shrub with rounded and leathery century were gathered between 1969 – 1974 only (coriaceaous) leaves not exceeding 8 cm in from two localities on the lower east coast, namely length, while the fruit (drupe) is red when ripe.
    [Show full text]
  • Heathland 700 the Park & Poor's Allotment Species List
    The Park & Poor's Allotment Bioblitz 25th - 26th July 2015 Common Name Scientific Name [if known] Site recorded Fungus Xylaria polymorpha Dead Man's Fingers Both Amanita excelsa var. excelsa Grey Spotted Amanita Poor's Allotment Panaeolus sp. Poor's Allotment Phallus impudicus var. impudicus Stinkhorn The Park Mosses Sphagnum denticulatum Cow-horn Bog-moss Both Sphagnum fimbriatum Fringed Bog-moss The Park Sphagnum papillosum Papillose Bog-moss The Park Sphagnum squarrosum Spiky Bog-moss The Park Sphagnum palustre Blunt-leaved Bog-moss Poor's Allotment Atrichum undulatum Common Smoothcap Both Polytrichum commune Common Haircap The Park Polytrichum formosum Bank Haircap Both Polytrichum juniperinum Juniper Haircap The Park Tetraphis pellucida Pellucid Four-tooth Moss The Park Schistidium crassipilum Thickpoint Grimmia Poor's Allotment Fissidens taxifolius Common Pocket-moss The Park Ceratodon purpureus Redshank The Park Dicranoweisia cirrata Common Pincushion Both Dicranella heteromalla Silky Forklet-moss Both Dicranella varia Variable Forklet-moss The Park Dicranum scoparium Broom Fork-moss Both Campylopus flexuosus Rusty Swan-neck Moss Poor's Allotment Campylopus introflexus Heath Star Moss Both Campylopus pyriformis Dwarf Swan-neck Moss The Park Bryoerythrophyllum Red Beard-moss Poor's Allotment Barbula convoluta Lesser Bird's-claw Beard-moss The Park Didymodon fallax Fallacious Beard-moss The Park Didymodon insulanus Cylindric Beard-moss Poor's Allotment Zygodon conoideus Lesser Yoke-moss The Park Zygodon viridissimus Green Yoke-moss
    [Show full text]
  • Coastal Landscaping in Massachusetts Plant List
    Coastal Landscaping in Massachusetts Plant List This PDF document provides additional information to supplement the Massachusetts Office of Coastal Zone Management (CZM) Coastal Landscaping website. The plants listed below are good choices for the rugged coastal conditions of Massachusetts. The Coastal Beach Plant List, Coastal Dune Plant List, and Coastal Bank Plant List give recommended species for each specified location (some species overlap because they thrive in various conditions). Photos and descriptions of selected species can be found on the following pages: • Grasses and Perennials • Shrubs and Groundcovers • Trees CZM recommends using native plants wherever possible. The vast majority of the plants listed below are native (which, for purposes of this fact sheet, means they occur naturally in eastern Massachusetts). Certain non-native species with specific coastal landscaping advantages that are not known to be invasive have also been listed. These plants are labeled “not native,” and their state or country of origin is provided. (See definitions for native plant species and non-native plant species at the end of this fact sheet.) Coastal Beach Plant List Plant List for Sheltered Intertidal Areas Sheltered intertidal areas (between the low-tide and high-tide line) of beach, marsh, and even rocky environments are home to particular plant species that can tolerate extreme fluctuations in water, salinity, and temperature. The following plants are appropriate for these conditions along the Massachusetts coast. Black Grass (Juncus gerardii) native Marsh Elder (Iva frutescens) native Saltmarsh Cordgrass (Spartina alterniflora) native Saltmeadow Cordgrass (Spartina patens) native Sea Lavender (Limonium carolinianum or nashii) native Spike Grass (Distichlis spicata) native Switchgrass (Panicum virgatum) native Plant List for a Dry Beach Dry beach areas are home to plants that can tolerate wind, wind-blown sand, salt spray, and regular interaction with waves and flood waters.
    [Show full text]
  • Resilient Plants for the Beach Communities
    Resilient Plants for the Beach Communities 1 | Page Table of Contents Native Plants for Costal Dunes............................................................................................ 4 Grasses and Grass like Plants .......................................................................................... 5 Ammophila breviligulata ............................................................................................. 6 Panicum amarum ‘var. arnaruium’ ............................................................................. 7 Panicum virgatum ....................................................................................................... 8 Spartina patens ........................................................................................................... 9 Herbaceous Plants ........................................................................................................ 10 Baptisia tinctoria ....................................................................................................... 11 Liatris pilosa v. pilosa (graminifolia) ......................................................................... 12 Nuttallanthus canadensis.......................................................................................... 13 Oenothera biennis .................................................................................................... 14 Opuntia compressa ................................................................................................... 15 Solidago sempervirens .............................................................................................
    [Show full text]
  • Jason Giessow Testimony
    Raszka Shelley From: Gallagher Chuck Sent: Friday, March 27, 2015 9:50 AM To: Raszka Shelley Subject: FW: testimony on HB 2183 Attachments: Cal-IPCNews_Winter2015.pdf From: Jason Giessow [ mailto:[email protected] ] Sent: Friday, March 27, 2015 9:49 AM To: Gallagher Chuck Subject: testimony on HB 2183 Hi Chuck- I was the primary author on this Impact Assessment for CA. It is posted at this web site: http://www.cal-ipc.org/ip/research/arundo/index.php Basically- no one should be growing Arundo, it is destroying riverine systems in CA and Texas. There are entire conferences about how to control Arundo and tamarisk (the Deadly Duo). In the report is a CBA for coastal watersheds in CA and estimates $380 million dollars in damage . It destroys habitat- but also severely impacts flooding, fire, and water (the impact report has a chapter on each). That is why folks from both sides of the isle work on eradicating this plant. Planting it for commercial use is exceedingly dangerous, should be banned, or bonded at very high levels. CA has spent about $100 million dollars dealing with Arundo and its impacts (mostly state bond funds dealing with water: conservation, conveyance, and improvement). New state funding (Proposition 1) for water conservation and river conveyance will likely increase state funding for Arundo control to over $200 million dollars. Don’t let Oregon follow this trajectory. This recent article (attached- page 10) on the Salinas River Arundo program is one example of the impacts caused by Arundo, the complicated regulatory approval required to work on the issue, the high cost of the program, and most important- the farmers and landowners who pay the price for the impacts caused by Arundo (flooding, less water, fire, etc….).
    [Show full text]
  • Scaevola Taccada (Gaertn.) Roxb
    BioInvasions Records (2021) Volume 10, Issue 2: 425–435 CORRECTED PROOF Rapid Communication First record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) in southeastern Mexico Gonzalo Castillo-Campos1,*, José G. García-Franco2 and M. Luisa Martínez2 1Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, México 2Red de Ecología Funcional, Instituto de Ecología, A.C. Xalapa, Veracruz, 91073, México Author e-mails: [email protected] (GCC), [email protected] (JGGF), [email protected] (MLM) *Corresponding author Citation: Castillo-Campos G, García- Franco JG, Martínez ML (2021) First Abstract record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) Scaevola taccada (Gaertn.) Roxb. is native of Asia and eastern Africa but has been in southeastern Mexico. BioInvasions introduced into the Americas as an ornamental urban plant. This paper reports, for Records 10(2): 425–435, https://doi.org/10. the first time, the presence of Scaevola taccada in natural environments from 3391/bir.2021.10.2.21 southeastern Mexico. Several populations of S. taccada were identified during a Received: 23 July 2020 botanical survey of the coastal dunes of the Cozumel Island Biosphere Reserve Accepted: 22 October 2020 (State of Quintana Roo, Mexico) aimed at recording the most common plant Published: 22 January 2021 species. Scaevola taccada is considered as an invasive species of coastal areas in this region. Evidence of its invasiveness is suggested by the fact that populations Handling editor: Oliver Pescott consisting of individuals of different size classes are found distributed throughout Thematic editor: Stelios Katsanevakis the island. Furthermore, they appear to belong to different generations since we Copyright: © Castillo-Campos et al.
    [Show full text]
  • Impacts of Asiatic Sand Sedge on Native Plants and Arbuscular Mycorrhizal Fungi in a Barrier Dune
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2011 IMPACTS OF ASIATIC SAND SEDGE ON NATIVE PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI IN A BARRIER DUNE William Johnson University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Johnson, William, "IMPACTS OF ASIATIC SAND SEDGE ON NATIVE PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI IN A BARRIER DUNE" (2011). Open Access Master's Theses. Paper 104. https://digitalcommons.uri.edu/theses/104 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. IMPACTS OF ASIATIC SAND SEDGE ON NATIVE PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI IN A BARRIER DUNE BY WILLIAM JOHNSON A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2011 MASTER OF SCIENCE THESIS OF WILLIAM JOHNSON APPROVED: Thesis Committee: Major Professor_____Richard E. Koske______________ _____ Keith T. Killingbeck ___________ _____Laura A. Meyerson ____________ _____Nasser H. Zawia_______________ DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2011 ABSTRACT The recent expansion of the nonnative invasive Asiatic sand sedge (Carex kobomugi Ohwi) at East Beach State Park, Rhode Island, is reducing populations of the most important native, dune-building species and their associated arbuscular mycorrhizal fungi (AMF). In contrast to the native American beachgrass (Ammophila breviligulata Fern.) that is dependent upon AMF to thrive in nutrient- poor sand dunes, C.
    [Show full text]
  • New Hawaiian Plant Records from Herbarium Pacificum for 20081
    Records of the Hawaii Biological Survey for 2008. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 107: 19–26 (2010) New Hawaiian plant records from Herbarium Pacificum for 2008 1 BARBARA H. K ENNEDY , S HELLEY A. J AMES , & CLYDE T. I MADA (Hawaii Biological Survey, Bishop Museum, 1525 Bernice St, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected], [email protected]) These previously unpublished Hawaiian plant records report 2 new naturalized records, 13 new island records, 1 adventive species showing signs of naturalization, and nomen - clatural changes affecting the flora of Hawai‘i. All identifications were made by the authors, except where noted in the acknowledgments, and all supporting voucher speci - mens are on deposit at BISH. Apocynaceae Rauvolfia vomitoria Afzel. New naturalized record The following report is paraphrased from Melora K. Purell, Coordinator of the Kohala Watershed Partnership on the Big Island, who sent an email alert to the conservation com - munity in August 2008 reporting on the incipient outbreak of R. vomitoria, poison devil’s- pepper or swizzle stick, on 800–1200 ha (2000–3000 acres) in North Kohala, Hawai‘i Island. First noticed by field workers in North Kohala about ten years ago, swizzle stick has become a growing concern within the past year, as the tree has spread rapidly and invaded pastures, gulches, and closed-canopy alien and mixed alien-‘ōhi‘a forest in North Kohala, where it grows under the canopies of eucalyptus, strawberry guava, common guava, kukui, albizia, and ‘ōhi‘a. The current distribution is from 180–490 m (600–1600 ft) elevation, from Makapala to ‘Iole.
    [Show full text]
  • Soil Ecology of the Exotic Dune Grass Leymus Arenarius
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2018 Soil ecology of the exotic dune grass Leymus arenarius. Matthew L. Reid University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Botany Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Reid, Matthew L., "Soil ecology of the exotic dune grass Leymus arenarius." (2018). Electronic Theses and Dissertations. Paper 2995. https://doi.org/10.18297/etd/2995 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. SOIL ECOLOGY OF THE EXOTIC DUNE GRASS LEYMUS ARENARIUS By Matthew L. Reid B.A. Hendrix College, 2009 M.S. University of Louisiana at Monroe, 2013 A Dissertation Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Department of Biology University of Louisville Louisville, Kentucky May 2018 SOIL ECOLOGY OF THE EXOTIC DUNE GRASS LEYMUS ARENARIUS By Matthew L. Reid B.A. Hendrix College, 2009 M.S. University
    [Show full text]
  • TC CISMA Barrier Island Scaevola Removal
    The Treasure Coast CISMA Barrier Island Scaevola Removal Project Seaside Homeowners Living Adjacent to Public Conservation Lands… What Does Your Beach Look Like? Well-Managed Beach in Jupiter, Florida Unmanaged, Unhealthy Beach in Jupiter, Florida Healthy Treasure Coast Dune Habitat Unhealthy Treasure Coast Dune Habitat ° Long, flat beaches with softly rolling dunes ° Scaevola taccada invades dunes and shorelines ° Sea oats are plentiful and prevent beach erosion. ° Non-native dunes erode and cliff under Scaevola One of the few plants that actually grows better when taccada’s shallow root system regularly buried by sand! ° Scaevola taccada displaces sea oats, which prevent ° Invasive, dune-altering Scaevola taccada is absent beach erosion and rare plants such as inkberry , beach peanut and beach clustervine ° Sea oats and other dune grasses and herbs colonize ° Scaevola taccada degrades critical habitat for the shoreline, capturing blowing sand and provide federally listed sea turtles, shorebirds and a variety of superior dune protection rare plants and animals ° Scaevola taccada grows tall and blocks views ° Habitat is ideal for nesting sea turtles and shorebirds, as well as a variety of native songbirds, ° Beach erosion is a costly, long-term problem for butterflies and other desirable wildlife that are valued coastal property owners by residents and nature lovers alike ° Thousands of dollars have been spent restoring ° Long, sandy beaches are enjoyable for beachgoers beach dune habitat by removing Scaevola taccada from the Treasure Coast’s state parks, national wildlife ° Superior ocean views and accessibility refuges and county lands ° Lower long-term management costs ° Adjacent, private beaches serve as a Scaevola taccada seed source to public conservation lands Are you a good neighbor? Help Our Public Conservation Lands Endure For Future Generations… Coral Cove, Palm Beach County John D.
    [Show full text]
  • Y-17-008 Coastal Dune Ecology.Pdf
    AN ABSTRACT OF THE DISSERTATION OF Reuben Gabriel Biel for the degree of Doctor of Philosophy in Zoology presented on September 12, 2017. Title: Coastal Dune Ecology, Geomorphology, and Ecosystem Services: How Invasive Beachgrasses, their Interactions, and Sediment Dynamics Shape U.S. Pacific Northwest Dunes Abstract approved: ________________________________________________________________________ Sally D. Hacker Biological invasions and climate change represent two preeminent threats to ecological communities and biodiversity, altering the distribution and abundance of species, disrupting existing species interactions and forming unprecedented ones, and creating novel ecological communities. Many of the most successful invasive species are also ecosystem engineers, species that physically modify the abiotic state of the ecosystem, and consequently have broad impacts on community structure, ecosystem processes, and ecosystem services. As ecosystems face dual hazards from biological invasions and climate change, it is imperative to understand what factors influence invasion success, how invasive species alter physical and biological processes, and how a changing climate alters the course of invasion. In this dissertation, I investigate the interactions of two invasive, dune-forming beachgrasses within the U.S Pacific Northwest coastal dune ecosystem and their influence on dune geomorphology and ecosystem services. Two species of non-native beachgrasses, Ammophila arenaria (L.) Link and A. breviligulata (Fernald), were intentionally introduced to the Pacific Northwest in the early 20th century for the purpose of sand stabilization. Since their introductions, they have displaced numerous endemic plants and animals, and facilitated the formation of tall, stable, and well-vegetated shore- parallel dune ridges throughout the region. However, the two Ammophila species differ in their distributions and their impacts on dunes: biogeographically, A.
    [Show full text]