Aufeis of the Indigirka River Basin (Russia): the Database From

Total Page:16

File Type:pdf, Size:1020Kb

Aufeis of the Indigirka River Basin (Russia): the Database From Commented [AL1]: How about: 1 Aufeis of the Indigirka river basin (Russia): the database “Historical and recent aufeis, Indigirka River basin, Russia“ 2 from historical data and recent Landsat images 3 *Olga Makarieva1,2,, Andrey Shikhov3, Nataliia Nesterova2,4, Andrey Ostashov2 4 1Melnikov Permafrost Institute of RAS, Yakutsk 5 2St. Petersburg State University, St. Petersburg 6 3Perm State University, Perm 7 4State Hydrological institute, St. Petersburg 8 RUSSIA 9 *[email protected] 10 Abstract: A dDetailed spatial geodatabase of aufeis (or naled in Russian) within the 11 Indigirka River watershed (, the basin area 305 000 km2), Russia, was compiled from historical 12 Russian publications (year 1958) the Cadaster of aufeis of the North-East of the USSR published 13 in 1958, topographic maps (year xxx), and Landsat images for (year 2013-2017). The aufeis area 14 sharecoverage varies from 0.26 to 1.15% in different river sub-basins within the Indigirka River 15 watershedstudied area. The 16 dDigitized historical archive (Cadaster, (1958) contains the coordinates and 17 characteristics of 897 aufeises with total area of 2064 km2. The Landsat-based identification of 18 aufeises for 2013-2017 allowed the description ofincluded 1213 aufeises on with a total area of 19 1287 km2. The combined digital database of the aufeis is available at 20 https://doi.pangaea.de/10.1594/PANGAEA.891036. Accordingly, tThe satellite-derived total 21 aufeis area of aufeis is 1.6 times less than in the Cadaster (1958) dataset. At the same 22 timeHowever, more than 600 aufeis identified by from Landsat images analyses are missing in 23 the Cadaster (1958) archive. It is therefore possible implies that the conditions for aufeis 24 formation conditions may have been changed between from the mid-20th century and to the 25 present. 26 About 60% of total area presents 10% of the largest aufeis. Most aufeis are located in the Commented [AL2]: Present or historical? 27 elevation band of 1 100 – 1 300 m. About 60% of total aufeis area are represented by top presents 28 10% of the largest of the largest aufeis. 29 The iInterannual variability of the aufeis area for the period of 2001-2016 was estimated 30 by the example of assessed at the Bolshaya Momskaya naled (aufeis) and the for a group of large 31 aufeis (>xx km2 each) in the basin of the Syuryuktyakh River for the period of 2001-2016. The 32 results of analysis indicate a tendency towards an area decrease in the area of the Bolshaya 33 Momskaya naled in recent years, while no at the same time the reduction Syuryuktyakh Riverin 34 the aufeis area in the basin of the Syuryuktyakh River has not occurredwas observed. The 35 combined digital database of the aufeis is available at 36 https://doi.pangaea.de/10.1594/PANGAEA.891036. 37 38 Keywords: aufies, the Indigirka river, the Map and Cadaster of aufeises, Landsat images, 39 database, interannual variability, the Bolshaya Momskaya naled (aufeis) 40 41 1. Introduction 42 Aufeis (naled in Russian, icings in English) is one of thea glaciation periglacial landforms, 43 standing on the same level with other types o that is characteristic of many streams in cold regions 44 f snow-ice formations and that affecting affects water exchange and economic activity (Alekseev, 45 1987). They are distributedAufeis are found in permafrost regions, for example, such as Alaska 46 (Slaughter, 1982), Siberia (Alekseev, 1987), Canada (Pollard, 2005), Greenland (Yde and 1 47 Knudsen, 2005) and others (Yoshikawa et al., 2007). Intensification of aAufeis formation 48 processes can result in significant economic expenses as; they aufeis may negatively affect 49 engineering constructions’ sustainabilityinfrastructure, and therefore natural resource extraction 50 as well as complicate exploitation of hydro-technical and industrial constructions (Aufeis of 51 Siberia…, 1981). Moreover, the springs that often , feeding aufeis may, in some cases can be the Commented [AL3]: I think you need to list the last name of the author here (not the title) or alternatively, the publisher, and the 52 only source of water supply for inhabited localitiesremote communities (Simakov, publication year. 53 Shilnikovskaya, 1958). 54 In Russia, aufeis are found in the North-East, Transbaikal region, Yakutia, and West Siberia. 55 Sokolov (1975) assessed estimated that the total aufeis water storage in aufeis of Russia to be not 56 less than at least 50 km3, which approximately equals the Indigirka River total annual streamflow. 57 The main hydrological role of aufeis is the seasonal redistribution of the underground 58 groundwater component of river runoff, where the from winter groundwater discharge is released 59 to summer streamflow through melting of aufeis to spring-summer season (Surface water 60 resources, 1972). In most cases, the share of the aufeis component in a river’s annual streamflow 61 accounts for 3-7 %, reaching 25-30 % in particular river basins with an extremely large proportion 62 of aufeis (Reedyk et al., 1995; Kane & Slaughter, 1973; Sokolov, 1975). The most significant 63 water inflow from aufeis melting takes place in May-June (Sokolov, 1975). For example, the share 64 of the aufeis flow accounts for more than 11% from of total annual streamflow at the Indigirka 65 River (gauging station Yurty, basin area 51 100 km2). In May, it aufeis melt may be represent 50 66 % of monthly total streamflow, but decreases in June to 35 % (Sokolov, 1975). 67 It is important to understand how climate change may impact aufeis formation may be Formatted: Indent: First line: 0.49" 68 impacted by climate change. Aufeis are formed by a complex interconnection between river and 69 groundwater. Currently mMany studies have reported the increase of minimum flow in Arctic 70 rivers (Rennermalm and Wood, 2010; Tananaev et al., 2016), including those where aufeis are 71 observed in abundance (Makarieva et al., 2018, in review). The A widely accepted hypothesis for 72 permafrost regions is that a warming climate improves increase the connection between surface- 73 and groundwater in permafrost areas which that in turn leads to the increase of streamflow, both 74 in cold seasons and in annual flow (Bense et al., 2012; Ge et al., 2011; Walvoord et al., 2012; 75 Walvoord and Kurylyk., 2016). The dynamic ofVariation and changes in aufeis extent which can 76 partly be assessed based on the analysis ofusing remote sensing data techniques, where aufeis 77 dynamics can serve as an can be viewed as one indicator of groundwater changes which that are 78 is otherwise difficult to be observe d naturally in remote arctic areas (Topchiev, 2008; Yoshikawa 79 et al., 2007). 80 Projected assessments of change inThe understanding of how aufeis respond to a in warming 81 conditions climate vary. Observations Alekseev (2016) points out that in long-term regime of 82 aufeis in general there are suggests 3, 7 andthree to 11 year up and down cycles of aufeis maximum 83 annual size, whichs, during which they may vary by up to 25-30 % in comparison with average 84 long-term average values (Alekseev, 2016). However, for the last 50-60 years there is a decrease Commented [AL4]: Would be good to include which region this 85 in the volumes of spring discharge,s which feed aufeis , in agreement with other evidences of study represents. 86 current cryosphere degradation (Alekseev, 2016). Some authors expect suggest that degradation 87 of permafrost in the discontinuous and island-like zones will lead to the decrease of the number of Commented [AL5]: Do you mean sporadic permafrost regions? 88 aufeis and in facteven an almost complete disappearance. of them. Meanwhile, in the zone of 89 continuous permafrost in North-East Siberia, a climate warming of 2-3°С being projected for 90 North-East Siberia by the end of the 21th century, will is not projected to not lead to the significant 91 changes in permafrost regimeextent, but will increase number and size volumes of both through- 92 and open taliks by the end of the 21th century (Pomortsev et al., 2010). This Such a scenario may 93 result in dispersion of large aufeis and formation of new small ones aufeis (Pomortsev et al., 2010). 94 The projections of increasing dynamics of aufeis formation under climate change are 95 confirmed by direct observations. Indeed, inIn the aufeis valleys of Ulakhan Taryn and Bulus, 96 (central Yakutia, Russia,) only in four4 out of 10 aufeis seasons in this century aufeis didn’t reach 97 their maximum area, volume and depth (Pomortsev et al., 2007). In Alaska, however, according Commented [AL6]: It is unclear what you are trying to say here. 98 to Yoshikawa et. al (2007), on the contrary, there are no significant changes were documented in 2 99 the area and volume of aufeis over the past few decades or even a century (Yoshikawa et. al, 2007). 100 Yoshikawa et. al (2007) suggested that the formation and melting of ice is less dependent on 101 climate change and more so on the source (spring) water properties such as temperature and 102 volume (discharge). 103 In 1958, Simakov and Shilnikovskaya (1958) compiled and published the mMap (scale 1:2 104 000 000) and the Cadasterinventory of aufeis of the North-East USSR (scale 1:2 000 000). In the 105 last 60 yearsSince then, there has been no update onf the information on aufeis in general in this 106 region, apart from some specific studies. In 1980-1982, the Cataloguean inventory of aufeis of in 107 the zone of the Baikal-Amur Mainline was published (Catalog of Aufeis…, 1980, 1981, 1982). 108 Markov et al. (2017) summarized the results of field studies onf the aufeis in the southern mountain 109 taiga of Eastern Siberia in the period from 1976 to 1983.
Recommended publications
  • Supplementary Information
    Supplementary Information Table S1. List of samples that yielded DNA in this study (EE2-EE26), followed by successfully amplified samples of cave lion from the study by Barnett et al. 2009. ALA=Alaska, EUR=Europe, SIB=Siberia, NC=not calibrated as out of range. The asterisk (*) denotes the approximate age as reported in Barnett et al. 2009. Sample CR haplotype/ Uncalibrated Calendar years Site and geographic region ID Genbank nr. 14C date before present EE2 D/ DQ899903 Schusterlucke cave (EUR) 15400 ± 130 18521 ± 1844 EE4 - Tyung, C Siberia (SIB) 46700±1300 48181 ± 6747 EE3 Y3 Tain cave, Urals (EUR) >49600 NC EE6 Y1 Elovka, Baikal (SIB) 18350 ± 75 21634 ± 1504 EE7 Y1 Volchika, C Siberia (SIB) 20085 ± 80 23266 ± 576 EE13 J/ DQ899909 New Siberian Islands (SIB) 47700 ± 800 48970 ± 6009 EE14 Y4 Yakutia, NE Siberia (SIB) >55400 NC EE15 B/ DQ899901 Yakutia, NE Siberia (SIB) 27720 ± 140 30880 ± 1543 EE16 Y2 Irkutsk, Baikal (SIB) 17910 ± 75 21024 ± 1041 EE17 B/ DQ899901 Khroma river, Yakutia (SIB) 19755 ± 80 20006 ± 404 EE19 - New Siberian Islands (SIB) 52000±1500 54373 ± 6396 EE20 J/ DQ899909 Yakutia, NE Siberia (SIB) >62400 NC EE21 G/ DQ899906 Nizhnyaya, C Siberia (SIB) 50500 ± 290 52785 ± 10541 EE26 Y5 (partial) Kyttyk Peninsula (SIB) 36550 ± 290 41025 ± 970 IB133 A/ DQ899900 Gold Run Creek, Yukon (ALA) 12640 ± 75 15016 ± 1463 RB112 A Caribou Creek, Yukon (ALA) n/a - RB74 A Fairbanks Creek, Alaska (ALA) n/a - RB75 A Ester Creek, Alaska (ALA) 12090 ± 80 13822 ± 341 IB134 B/ DQ899901 Gold Hill, Alaska (ALA) 18240 ± 90 21533 ± 1335 IB136 B Hunker
    [Show full text]
  • Description of Map Units Northeast Asia Geodynamics Map
    DESCRIPTION OF MAP UNITS NORTHEAST ASIA GEODYNAMICS MAP OVERLAP ASSEMBLAGES (Arranged alphabetically by map symbol) ad Adycha intermountain sedimentary basin (Miocene and Pliocene) (Yakutia) Basin forms a discontinuous chain along the foot of southwestern slope of Chersky Range in the Yana and Adycha Rivers basins. Contain Miocene and Pliocene sandstone, pebble gravel conglomerate, claystone, and minor boulder gravel conglomerate that range up to 400 m thick. REFERENCES: Grinenko and others, 1998. ag Agul (Rybinsk) molasse basin (Middle Devonian to Early Carboniferous) (Eastern Sayan) Consists of Middle Devonian through Early Carboniferous aerial and lacustrine sand-silt-mudstone, conglomerate, marl, and limestone with fauna and flora. Tuff, tuffite, and tuffaceous rock occur in Early Carboniferous sedimentary rocks. Ranges up to 2,000 m thick in southwestern margin of basin. Unconformably overlaps Early Devonian rocks of South Siberian volcanic-plutonic belt and Precambrian and early Paleozoic rocks of the Siberian Platform and surrounding fold belts. REFERENCES: Yanov, 1956; Graizer, Borovskaya, 1964. ags Argun sedimentary basin (Early Paleozoic) (Northeastern China) Occurs east of the Argun River in a discontinuously exposed, northeast-trending belt and consists of Cambrian and Ordovician marine, terrigenous detrital, and carbonate rocks. Cambrian units are composed of of feldspar- quartz sandstone, siltstone, shale and limestone and contain abundant Afaciacyathus sp., Bensocyathus sp., Robustocyathus yavorskii, Archaeocyathus yavorskii(Vologalin), Ethomophyllum hinganense Gu,o and other fossils. Ordovicain units consist of feldspar-quartz sandstone, siltstone, fine-grained sandstone and phylitic siltstone, and interlayered metamorphosed muddy siltstone and fine-grained sandstone with brachiopods, corals, and trilobites. Total thickness ranges up to 4,370 m. Basin unconformably overlies the Argunsky metamorphic terrane.
    [Show full text]
  • Geotectonic Setting of the Tertiary Uyandina and Indigirka-Zyryanka Basins, Republic Sakha (Yakutia), Northeast Russia, Using Coal Rank Data
    Stephan Mueller Spec. Publ. Ser., 4, 85–96, 2009 www.stephan-mueller-spec-publ-ser.net/4/85/2009/ Special © Author(s) 2009. This work is distributed under Publication the Creative Commons Attribution 3.0 License. Series Geotectonic setting of the Tertiary Uyandina and Indigirka-Zyryanka basins, Republic Sakha (Yakutia), Northeast Russia, using coal rank data H.-J. Paech Federal Institute for Geosciences and Natural Resources, Hannover, Germany now retired Abstract. Outcrops along the Inach River in the Uyandina of these studies was to determine whether Tertiary struc- basin and those along the Myatis’ River in the Indigirka- tures previously described by such authors as Imaev and Gri- Zyryanka basin were studied in detail and sampled for coal nenko (1989), Imaev et al. (1990, 1994, 1998) and Smetan- rank determinations. The Uyandina basin is an intramon- nikova et al. (1989) within the Circum-Arctic region of the tane pull-apart basin characterized by extensional structures Asian Continent are compressional or extensional in origin. within the Moma rift system. The coal rank is below 0.3% Preliminary results of the CASE-3 expedition are given in vitrinite reflectance (Rr ), which indicates shallow, imma- Paech et al. (1998). This contribution provides more detailed ture conditions of basin formation and very low subsidence. field observations and improved coal rank determinations. The Myatis’ River coal-bearing outcrops in the Indigirka- Zyryanka basin reveal compression induced by continent col- lision. The compressive deformation includes also lower- most Pliocene strata. Due to the position in the Verkhoyansk- 2 Study methods Chersky fold belt adjacent to the Kolyma-Omolon microcon- tinent the Indigirka-Zyryanka basin has much in common Logistic restrictions limited our investigations to a few areas: with a foredeep, i.e.
    [Show full text]
  • Inventory and Distribution of Rock Glaciers in Northeastern Yakutia
    land Article Inventory and Distribution of Rock Glaciers in Northeastern Yakutia Vasylii Lytkin Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia; [email protected] Received: 2 September 2020; Accepted: 8 October 2020; Published: 10 October 2020 Abstract: Rock glaciers are common forms of relief of the periglacial belt of many mountain structures in the world. They are potential sources of water in arid and semi-arid regions, and therefore their analysis is important in assessing water reserves. Mountain structures in the north-east of Yakutia have optimal conditions for the formation of rock glaciers, but they have not yet been studied in this regard. In this article, for the first time, we present a detailed list of rock glaciers in this region. Based on geoinformation mapping using remote sensing data and field studies within the Chersky, Verkhoyansk, Momsky and Suntar-Khayata ranges, 4503 rock glaciers with a total area of 224.6 km2 were discovered. They are located within absolute altitudes, from 503 to 2496 m. Their average minimum altitude was at 1456 m above sea level, and the maximum at 1527 m. Most of these formations are located on the sides of the trough valleys, and form extended sloping types of rock glaciers. An assessment of the exposure of the slopes where the rock glaciers are located showed that most of the rock glaciers are facing north and south. Keywords: rock glacier; permafrost; inventory; northeastern Yakutia; remote sensing 1. Introduction The geography of distribution of rock glaciers is quite extensive. They are found in many mountainous regions of Europe, North and South America and Asia, including some circumpolar regions [1–18].
    [Show full text]
  • Wild Reindeer of Yakutia
    The Sixth North American Caribou Workshop, Prince George, British Columbia, Canada, 1-4 March, 1994. Brief communication Wild reindeer of Yakutia V. M. Safronov Institute of Applied Ecology of the North, Siberian Division, Russian Academy of Sciences, Yakutsk, Russia. Abstract: Three major herds of wild reindeer (Rangifer tarandus tarandus L.), totaling over 200,000 animals, occur in the tundra and taiga of northern Yakutia. These herds have been expanding since the late 1950s and now occupy most of their historic range. In addition, several thousand wild reindeer occupy the New Siberian Islands and adjacent coastal mainland tundra, and there are about 60,000 largely sedentary forest reindeer in mountainous areas of the southern two- thirds of the province. Wild reindeer are commercially hunted throughout the mainland, and the production of wild meat is an important part of the economy of the province and of individual reindeer enterprises which produce both wild and domestic meat. Key words: commercial harvest, density, economic importance, industrial development, Lena-Olenek, movements, Russia, Sundrun, Yana-Indigirka Rangifer, Special Issue No. 9, 387-390 Introduction population dynamics, economic importance, and Three major herds of wild reindeer {Rangifer taran• conservation. dus) occur on the continental tundras of the autonomous province of Yakutia. These herds are Yana-Indigirka herd the Yana-Indigirka, Sundrun (Indigirka-Kolyma) Movements and distribution and Lena-Olenek (Bulun) (Fig. 1; Table 1). A sepa• The current range of the Yana-Indigirka herd covers rate herd also inhabits the New Siberian Islands in about 400,000 km2 (Fig. 1) and is similar to the range summer but winters extensively on the adjacent of this herd at the turn of the century (Mikhel, 1938).
    [Show full text]
  • 304 Isaev Layout 1
    CHANGE IN PTARMIGAN NUMBERS IN YAKUTIA ARKADY P. ISAEV Institute for Biological Problems of the Cryolithozone, Siberian Branch of the Russian Academy of Sciences, pr. Lewina 41, Yakutsk 677007, Russia. E-mail: [email protected] ABSTRACT.—Counts of Willow Ptarmigan (Lagopus lagopus) and Rock Ptarmigan (L. muta) have been conducted for as long as 25 years in some areas of the Russian Republic of Yakutia in tundra, taiga, and along the ecotone of these landscapes. The largest counts of Willow Ptarmigan occur in the tundra and forest-tundra. Willow Ptarmigan numbers fluctuate, and the length of the “cycles” vary among areas in Yakutia. Fluctuations in ptarmigan numbers are greater in the tundra and forest-tundra than in the northern taiga. Rock Ptarmigan are common in the mountain areas and tundra of Yakutia, and their numbers also fluctuate. Factors affecting ptarmigan populations are weather shifts in early spring and unfavorable weather during hatching. A decrease in the num- ber of Willow Ptarmigan in the taiga belt of Yakutia is most likely explained by a greater anthro- pogenic load. Current Willow and Rock Ptarmigan populations in Yakutia appear stable, except for central and southern areas. Received 1 February 2011, accepted 31 May 2011. ISAEV, A. P. 2011. Change in ptarmigan number in Yakutia. Pages 259–266 in R. T. Watson, T. J. Cade, M. Fuller, G. Hunt, and E. Potapov (Eds.). Gyrfalcons and Ptarmigan in a Changing World, Volume II. The Peregrine Fund, Boise, Idaho, USA. http://dx.doi.org/10.4080/gpcw.2011.0304 Key words: Willow Ptarmigan, Rock Ptarmigan, Yakutia, Russia, count changes.
    [Show full text]
  • OYMYAKON RING STRUCTURE in the NORTH-EASTERN SIBERIA: ONE MORE TERRESTRIAL COUNTERPART of Coronm on VENUS; G.A
    LPS XXVT 189 OYMYAKON RING STRUCTURE IN THE NORTH-EASTERN SIBERIA: ONE MORE TERRESTRIAL COUNTERPART OF CORONm ON VENUS; G.A. Burba, Vernadsky Institute, Moscow 117975, Russia The highest area of the vast mountain country in the NE Siberia consists of the mountain ranges arranged as a 380-km-diameter ring structure. It is located between 62 and 66 N latitude, 139 and 148 E longitude, centering at 64 N, 143.5 E. The general topographic shape of this ring structure - a higher mountain ring (up to 3000 m) with a lower, but still topographically high (1000-1200 m), plateau inside, and lowland plains outside - resembles typical topography of the large circular features on Venus termed Corona (pl. - Coronae). The ring structure under consideration will be referred further as Oymyakon Ring Structure (OyRS) after Oymyakon Highland (Oymyakonskoye Nagorye) which occupies the considerable area within this ring structure, as well as after Oymyakon settlement located close to the structure's center. This settlement is well known as the Earth's Northern hemisphere "pole of cold". The topographically most prominent parts of the OyRS rim are Chersky Range (Khrebet Cherskogo) as NE segment, and Suntar-Khayata Range as SW segment. The following description is tracing the rim crest position from the South part of the rim to West, North, East, and back to South. SW segment of OyRS rim goes from Druza Mt. (2745 m) westward along Suntar- Khayata Range to 2933 m Mount, then to Mus-Khaya Mt. (2959 m), then to 2409 m Mount. NW segment of OyRS rim goes from 2409 m Mount (Western Suntar-Khayata Range) northward to 2041 m Mount at western edge of Oymyakon Highland, then to 1872 m Mount at southern part of Elgin Plateau (Elginskoye Ploskogorye), then some 50 km east of Vershina-Tuoydakh Mt.
    [Show full text]
  • Detailed Species Accounts from the Threatened Birds Of
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Crustal Architecture of the East Siberian Arctic Shelf and Adjacent Arctic Ocean Constrained by Seismic Data and Gravity Modeling Results
    This is a repository copy of Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129730/ Version: Accepted Version Article: Drachev, SS, Mazur, S, Campbell, S et al. (2 more authors) (2018) Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. Journal of Geodynamics, 119. pp. 123-148. ISSN 0264-3707 https://doi.org/10.1016/j.jog.2018.03.005 Crown Copyright © 2018 Published by Elsevier Ltd. This is an author produced version of a paper published in Journal of Geodynamics. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • A Contribution to the Liverwort Flora of the Upper Course of Indigirka River, East Yakutia Материалы К Флоре Печеночников Верхнего Течения Р
    Arctoa (2018) 27: 157–163 doi: 10.15298/arctoa.27.15 A CONTRIBUTION TO THE LIVERWORT FLORA OF THE UPPER COURSE OF INDIGIRKA RIVER, EAST YAKUTIA МАТЕРИАЛЫ К ФЛОРЕ ПЕЧЕНОЧНИКОВ ВЕРХНЕГО ТЕЧЕНИЯ Р. ИНДИГИРКА, ВОСТОЧНАЯ ЯКУТИЯ ELENA V. S OFRONOVA1 ЕЛЕНА В. СОФРОНОВА1 Abstract The list of liverworts of Upper Course of the Indigirka River was first updated in 1980. An anno- tated list of liverworts collected and reported here includes 65 species. The data on structures associ- ated with reproduction, localities, substrates, habitats, and growth pattern are also provided. Marsupella sprucei is recorded for the first time for Yakutia. In several plant communities, a very small number of liverworts have been collected. Almost all the diversity of species was found to occur along the banks of watercourses, in wet niches of rock-fields and in moist, shaded cracks of rock. On the banks of a small brook, numerous rock outcrops and rock-fields on Tas-Kystabyt Mt. Range, eight rare species were found – Calycularia laxa, Cryptocolea imbricata, Marchantia romanica, Marsupella boeckii, Pseudotritomaria heterophylla, Scapania kaurinii, S. rufidula, S. sphaerifera. Asterella saccata and Mannia fragrans are limited here in their distribution only to steppes. Another rare species – Haplomitrium hookeri – is found in the moss community on old rut winter road. Резюме Приводится аннотированный список печеночников для верхнего течения р. Индигирка, включающий 65 видов. Для каждого вида указано наличие структур, связанных с размножением, выявленные местонахождения, субстрат, местообитания, характер произрастания. Marsupella sprucei впервые приводится для флоры печеночников Якутии. В растительных сообществах отмечено очень небольшое число печеночников. Почти все разнообразие видов обнаружено вдоль берегов водотоков, во влажных нишах курумов и трещинах скал.
    [Show full text]
  • DISTRIBUTION, DENSITIES, and ECOLOGY of SIBERIAN CRANES in the KHROMA RIVER REGION of NORTHERN YAKUTIA in NORTHEASTERN RUSSIA Inga P
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the North American Crane North American Crane Working Group Workshop 2016 DISTRIBUTION, DENSITIES, AND ECOLOGY OF SIBERIAN CRANES IN THE KHROMA RIVER REGION OF NORTHERN YAKUTIA IN NORTHEASTERN RUSSIA Inga P. Bysykatova Russian Academy of Sciences Gary L. Krapu U. S. Geological Survey Nicolai I. Germogenov Institute for Biological Problems of the Permafrost Zone Deborah A. Buhl U. S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/nacwgproc Part of the Behavior and Ethology Commons, Biodiversity Commons, Ornithology Commons, Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons Bysykatova, Inga P.; Krapu, Gary L.; Germogenov, Nicolai I.; and Buhl, Deborah A., "DISTRIBUTION, DENSITIES, AND ECOLOGY OF SIBERIAN CRANES IN THE KHROMA RIVER REGION OF NORTHERN YAKUTIA IN NORTHEASTERN RUSSIA" (2016). Proceedings of the North American Crane Workshop. 381. https://digitalcommons.unl.edu/nacwgproc/381 This Article is brought to you for free and open access by the North American Crane Working Group at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the North American Crane Workshop by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. DISTRIBUTION, DENSITIES, AND ECOLOGY OF SIBERIAN CRANES IN THE KHROMA RIVER REGION OF NORTHERN YAKUTIA IN NORTHEASTERN RUSSIA INGA P. BYSYKATOVA, Russian Academy of Science, Sakha Division, Institute for Biological Problems of the Permafrost Zone, 41 Lenin Street, Yakutsk, Sakha Republic, Russian Federation GARY L. KRAPU, U. S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street SE, Jamestown, North Dakota, USA NICOLAI I.
    [Show full text]
  • Mountain Glaciers of NE Asia in the Near Future: a Projection Based on Climate-Glacier Systems’ Interaction M
    Mountain glaciers of NE Asia in the near future: a projection based on climate-glacier systems’ interaction M. D. Ananicheva, A. N. Krenke, E. Hanna To cite this version: M. D. Ananicheva, A. N. Krenke, E. Hanna. Mountain glaciers of NE Asia in the near future: a projection based on climate-glacier systems’ interaction. The Cryosphere Discussions, Copernicus, 2008, 2 (1), pp.1-21. hal-00298533 HAL Id: hal-00298533 https://hal.archives-ouvertes.fr/hal-00298533 Submitted on 7 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cryosphere Discuss., 2, 1–21, 2008 The Cryosphere www.the-cryosphere-discuss.net/2/1/2008/ Discussions TCD © Author(s) 2008. This work is licensed 2, 1–21, 2008 under a Creative Commons License. The Cryosphere Discussions is the access reviewed discussion forum of The Cryosphere Mountain glaciers of NE Asia M. D. Ananicheva et al. Title Page Mountain glaciers of NE Asia in the near Abstract Introduction future: a projection based on Conclusions References climate-glacier systems’ interaction Tables Figures ◭ ◮ M. D. Ananicheva1, A. N. Krenke1, and E. Hanna2 ◭ ◮ 1Institute of Geography, Russian Academy of Sciences, Moscow, Russia 2Department of Geography, University of Sheffield, UK Back Close Received: 22 November 2007 – Accepted: 26 November 2007 – Published: 7 January 2008 Full Screen / Esc Correspondence to: E.
    [Show full text]