R. G. SHANKS M.D., D.Sc

Total Page:16

File Type:pdf, Size:1020Kb

R. G. SHANKS M.D., D.Sc Postgrad Med J: first published as 10.1136/pgmj.50.587.560 on 1 September 1974. Downloaded from Postgraduate Medical Journal (September 1974) 50, 560-561. Pharmacology of vascular control R. G. SHANKS M.D., D.Sc. Department of Therapeutics and Pharmacology, The Queen's University of Belfast, Northern Ireland PROFESSOR Neil has discussed, in the preceding paper, replaces dopa as a precursor of noradrenaline with the physiological control of the circulation. This the result that methyl-noradrenaline is formed control depends for its proper functioning on the instead of noradrenaline. Methyl-noradrenaline is action of transmitter substances in various parts of described as a false transmitter, and as it has about the nervous system. These substances are drugs, for one hundredth the action of noradrenaline, the effect example, acetylcholine and noradrenaline, and have on the sympathetic system is greatly reduced. well defined pharmacological properties. The trans- These drugs reduce the effects of the sympathetic mitter substance in the brain, in the spinal cord and system and interfere with reflexes which involve an in the autonomic ganglia is acetylcholine. The final increase in sympathetic activity. The compensatory pathway of the transmission of nerve impulses in the cardiovascular responses to the Valsalva manoeuvre in autonomic system from the autonomic ganglia is are altered so that the tachycardia and increase Protected by copyright. the post-ganglionic fibre. The transmitter substance peripheral resistance, which result in the overshoot at sympathetic post-ganglionic nerve endings is in arterial pressure when the manoeuvre is stopped, noradrenaline and at parasympathetic endings, do not occur. acetylcholine. When noradrenaline is released from sympathetic As the sympathetic system, and drugs which nerve endings it activates a specialized part of the effect it, are probably of more relevance to this effector cell which has been termed the 'receptor', or present meeting, only this subject has been included adrenergic receptor. These can be stimulated by and in particular the effects of drugs on the arterial noradrenaline released from nerve endings or from side of the circulation. the adrenal medulla or other drugs administered, e.g. by intravenous injection. The sympathetic nervous system The sympathetic nervous system exerts powerful Receptors control on the arterioles in the peripheral circulation. Little is known about these receptors as they have Normally, tonic activity in these nerves maintains not been isolated biochemically or histologically. peripheral vascular resistance. Section or blockade They are a convenient basis by which to explain the http://pmj.bmj.com/ of these nerves to a particular region, e.g. the arm, mode of action of drugs affecting the adrenergic produces a marked dilatation of the blood vessels. nervous system. These receptors are part of the The effect of the sympathetic system is maintained effector cell as they do not disappear after degenera- through the continued release of noradrenaline from tion of the sympathetic nerve fibres. They can be the nerve ending. The action of noradrenaline is activated, not only by neuronally released nora- terminated by a combination of three processes- drenaline, but by other administered adrenergic the effect of mono-amine oxidase in the region of agonists. The receptors may be activated by a group the nerve ending, uptake of noradrenaline in the of drugs, including tyramine and ephedrine, which on September 28, 2021 by guest. noradrenaline pool in the nerve ending and carriage do not have a direct effect on the receptor but act to the liver in the blood where it is metabolized by through the release of noradrenaline from the catechol-o-methyl transferase. neuronal pool which then activates the receptor to initiate a response. Effect of drugs Adrenergic receptors were classified in 1948 by Many drugs have been developed which interfere Ahlquist into two separate groups which he desig- with these actions of noradrenaline. Guanethidine nated alpha and beta. Alpha adrenergic receptors inhibits transmission in the post-ganglionic sym- are present chiefly in the peripheral vessels in skin pathetic neurone and in addition depletes or reduces and in the kidney. They are activated selectively by the stores of noradrenaline at the nerve endings. phenylephrine and methoxamine. Beta adrenergic Reserpine has only the latter effect. Methyldopa receptors are present in the heart where they are Postgrad Med J: first published as 10.1136/pgmj.50.587.560 on 1 September 1974. Downloaded from Pharmacology of vascular control 561 responsible for inotropic and chronotropic responses, The intra-arterial injection of noradrenaline and and in the bronchi and blood vessels in skeletal phenylephrine decreases blood flow to the hand in muscle where activation relaxes smooth muscle. normal subjects. A similar response occurs after Beta adrenergic receptors are selectively stimulated acute division of the sympathetic fibres to an arm by isoprenaline and orciprenaline. These drugs have and also after chronic degeneration of the nerves. no effect on the alpha adrenergic receptors. Adrena- In contrast, ephedrine and methylamphetamine line and noradrenaline activate both alpha and beta decrease flow but have no effect after acute or receptors. chronic interruption of the sympathetic fibres as Thus the effect of any adrenergic drug depends on these drugs depend for their action on the presence the type of receptor which it activates and on the of intact stores of noradrenaline at the sympathetic distribution of these receptors. Isoprenaline will nerve endings. increase heart rate, dilate the bronchi and increase The administration of isoprenaline into the forearm blood flow as it activates beta adrenergic brachial artery has little effect on blood flow to the receptors which are present in these three sites. hand but produces a marked increase in forearm blood flow. A similar effect is obtained with orci- Drugs and adrenergic receptors prenaline. This vasodilator action of both drugs is This classification of adrenergic receptors has been inhibited by propranolol. vindicated by the development of drugs which The blood vessels in the skeletal muscles also selectively block either alpha or beta adrenergic contain alpha adrenergic receptors as the injection receptors. Drugs, such as phenoxybenzamine, the of adrenaline and noradrenaline decreases forearm ergot alkaloids, phentolamine and dibenamine, blood flow. When these receptors are blocked by the which have been available for many years, block prior administration of phentolamine, both drugs alpha adrenergic receptors but not beta receptors. increase forearm blood flow through activation of Protected by copyright. These drugs will inhibit the vasoconstrictor action beta adrenergic receptors. of phenylephrine, adrenaline and noradrenaline but Thus the effect of adrenergic drugs on the peri- not the inotropic, chronotropic or peripheral vaso- pheral blood vessels depends on a number of inter- dilator action of isoprenaline or adrenaline. related factors including the type of receptor in the The first drug, which would selectively block beta vessels in each particular vascular bed, the receptor adrenergic receptors, was dichloroisoprenaline which type activated by the drug and the effects of any was described by Powell and Slater in 1958. Since other concurrently administered drug. Although then many other drugs with this property have been these effects have been elucidated for the arterial side discovered. These include pronethalol, propranolol of the circulation to the limbs, much less informa- and oxprenolol. These drugs block the effects of tion is available about the venous side and about isoprenaline on beta adrenergic receptors. Practolol organs such as the liver and kidney. selectively antagonizes the effects of isoprenaline on beta adrenergic receptors in the heart (beta 1) but References not those in the smooth muscle of the bronchi or AHLQUIST, R.P. (1948) A study of the adrenotropic receptors. http://pmj.bmj.com/ blood vessels in skeletal muscle (beta 2). American Journal of Physiology, 153, 586. BRICK, I., HUTCHISON, K.J., MCDEVITT, D.G., RODDIE, IC. The effects of drugs on the peripheral circulation & SHANKS, R.G. (1968) Comparison of the effects of I.C.I. in man has been studied using venous occlusion 50172 and propranolol on the cardiovasular responses to plethysmography to measure blood flow to hand or adrenaline, isoprenaline and exercise. British Journal of forearm. The former reflects changes in skin blood Pharmacology and Chemotherapy, 34, 127. to muscle. POWELL, C.E. & SLATER, I.H. (1958) Blocking of inhibitory flow and the latter changes in blood flow adrenergic receptors by a dichloro analog of isoproterenol. The drugs can be administered either by injection Journal of Pharmacology and Experimental Therapeutics, into the brachial artery or by intravenous injection. 122, 480. on September 28, 2021 by guest..
Recommended publications
  • Cardioactive Agents : Metoprolol, Sotalol and Milrinone. Influence of Myocardial Content and Systolic Interval
    3Õ' î'qt ACUTE HAEMODYNAMIC EFFECTS OF THREE CARDIOACTIVE AGENTS : METOPROLOL, SOTALOL AND MILRINONE. INFLUENCE OF MYOCARDIAL CONTENT AND SYSTOLIC INTERVAL. by Rebecca Helen Ritchie, B.Sc (Hons) A thesis submitted for the degree of Doctor of Philosophy ln The University of Adelaide (Faculty of Medicine) February 1994 Department of Medicine (Cardiology Unit, The Queen Elizabeth Hospital) The University of Adelaide Adelaide, SA, 5000. ll ¡ r -tL',. r,0';(', /1L.)/'t :.: 1 TABLE OF CONTENTS Table of contents 1 Declaration vtl Acknowledgements v111 Publications and communications to learned societies in support of thesis D( Summary xl Chapter 1: General Introduction 1 1.1 Overview 2 1.2 Acute effeots of cardioactive drugs 3 1.2.1 Drug effects 4 l.2.2Determnants of drug effects 5 1.3 Myocardial drug gPtake of cardioactive agents 8 1.3.1 Methods of assessment in humans invívo 9 1.3.2 Results of previous studies 10 1.4Influence of cardioactive drugs on contractile state 11 1.4. 1 Conventional indices 11 I.4.2 The staircase phenomenon t2 1.4.3 The mechanical restitution curve t2 1.5 The present study t4 1.5.1 Current relevant knowledge of the acute haemodynamic effects of the cardioactive drugs under investigation r4 1.5.1.1 Metoprolol 15 1.5.1.2 Sotalol 28 1.5.1.3 Milrinone 43 1.5.2 Cunent relevant knowledge of the short-term pharmacokinetics of the cardioactive drugs under investigation 59 1.5.2.1Metoprolol 59 1.5.2.2 Sotalol 7I ll 1.5.2.3 Milrinone 78 1.5.3 Current relevant knowledge of the potential for rate-dependence of the effects of these
    [Show full text]
  • PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulphate Syrup House Standard 2 Mg/Ml Β2-Adrenergic Stimulant Bronchodilator AA P
    PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulphate Syrup House Standard 2 mg/mL 2-Adrenergic Stimulant Bronchodilator AA PHARMA INC. DATE OF PREPARATION: 1165 Creditstone Road, Unit #1 April 10, 2014 Vaughan, Ontario L4K 4N7 Control Number: 172362 1 PRODUCT MONOGRAPH ORCIPRENALINE Orciprenaline Sulfate Syrup House Standard 2 mg/mL THERAPEUTIC CLASSIFICATION 2–Adrenergic Stimulant Bronchodilator ACTIONS AND CLINICAL PHARMACOLOGY Orciprenaline sulphate is a bronchodilating agent. The bronchospasm associated with various pulmonary diseases - chronic bronchitis, pulmonary emphysema, bronchial asthma, silicosis, tuberculosis, sarcoidosis and carcinoma of the lung, has been successfully reversed by therapy with orciprenaline sulphate. Orciprenaline sulphate has the following major characteristics: 1) Pharmacologically, the action of orciprenaline sulphate is one of beta stimulation. Receptor sites in the bronchi and bronchioles are more sensitive to the drug than those in the heart and blood vessels, so that the ratio of bronchodilating to cardiovascular effects is favourable. Consequently, it is usually possible clinically to produce good bronchodilation at dosage levels which are unlikely to cause cardiovascular side effects. 2 2) The efficacy of the bronchodilator after both oral and inhalation administration has been demonstrated by pulmonary function studies (spirometry, and by measurement of airways resistance by body plethysmography). 3) Rapid onset of action follows administration of orciprenaline sulphate inhalants, and the effect is usually noted immediately. Following oral administration, the effect is usually noted within 30 minutes. 4) The peak effect of bronchodilator activity following orciprenaline sulphate generally occurs within 60 to 90 minutes, and this activity lasts for 3 to 6 hours. 5) Orciprenaline sulphate taken orally potentiates the action of a bronchodilator inhalant administered 90 minutes later, whereas no additive effect occurs when the drugs are given in reverse order.
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • ADD/ADHD: Strattera • Allergy/Anti-Inflammatories
    EXAMPLES OF PERMITTED MEDICATIONS - 2015 ADD/ADHD: Strattera Allergy/Anti-Inflammatories: Corticosteroids, including Decadron, Depo-Medrol, Entocort, Solu-Medrol, Prednisone, Prednisolone, and Methylprednisolone Anesthetics: Alcaine, Articadent, Bupivacaine HCI, Chloroprocaine, Citanest Plain Dental, Itch-X, Lidocaine, Marcaine, Mepivacaine HCI, Naropin, Nesacaine, Novacain, Ophthetic, Oraqix, Paracaine, Polocaine, Pontocaine Hydrochloride, PrameGel, Prax, Proparacaine HCI, Ropivacaine, Sarna Ultra, Sensorcaine, Synera, Tetracaine, Tronothane HCI, and Xylocaine Antacids: Calci-Chew, Di-Gel, Gaviscon, Gelusil, Maalox, Mintox Plus, Mylanta, Oyst-Cal 500, Rolaids, and Tums Anti-Anxiety: Alprazolam, Atarax, Ativan, Buspar, Buspirone HCI, Chlordiazepoxide HCI, Clonazepam, Chlorazepate Dipotassium, Diastat, Diazepam, Hydroxyzine, Klonopin, Librium, Lorazepam, Niravam, Tranxene T-tab, Valium, Vistaril, and Xanax Antibiotics: Acetasol HC, Amoxil, Ampicillin, Antiben, Antibiotic-Cort, Antihist, Antituss, Avelox, Ceftazidime, Ceftin, Cefuroxime Axetil, Ceptaz, Cleocin, Cloxapen, Cortane-B Aqueous, Cortic, Cresylate, Debrox, Doryx, EarSol-HC, Fortaz, Gantrisin, Mezlin, Moxifloxacin, Neotic, Otocain, Principen, Tazicef, Tazidime, Trioxin, and Zyvox Anti-Depressants: Adapin, Anafranil, Asendin, Bolvidon, Celexa, Cymbalata, Deprilept, Effexor, Elavil, Lexapro, Luvox, Norpramin, Pamelor, Paxil, Pristiq, Prozac, Savella, Surmontil, Tofranil, Vivactil, Wellbutrin, Zoloft, and Zyban Anti-Diabetics: Actos, Amaryl, Avandia, Glipizide, Glucophage,
    [Show full text]
  • Etats Rapides
    List of European Pharmacopoeia Reference Standards Effective from 2015/12/24 Order Reference Standard Batch n° Quantity Sale Information Monograph Leaflet Storage Price Code per vial Unit Y0001756 Exemestane for system suitability 1 10 mg 1 2766 Yes +5°C ± 3°C 79 ! Y0001561 Abacavir sulfate 1 20 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001552 Abacavir for peak identification 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0001551 Abacavir for system suitability 1 10 mg 1 2589 Yes +5°C ± 3°C 79 ! Y0000055 Acamprosate calcium - reference spectrum 1 n/a 1 1585 79 ! Y0000116 Acamprosate impurity A 1 50 mg 1 3-aminopropane-1-sulphonic acid 1585 Yes +5°C ± 3°C 79 ! Y0000500 Acarbose 3 100 mg 1 See leaflet ; Batch 2 is valid until 31 August 2015 2089 Yes +5°C ± 3°C 79 ! Y0000354 Acarbose for identification 1 10 mg 1 2089 Yes +5°C ± 3°C 79 ! Y0000427 Acarbose for peak identification 3 20 mg 1 Batch 2 is valid until 31 January 2015 2089 Yes +5°C ± 3°C 79 ! A0040000 Acebutolol hydrochloride 1 50 mg 1 0871 Yes +5°C ± 3°C 79 ! Y0000359 Acebutolol impurity B 2 10 mg 1 -[3-acetyl-4-[(2RS)-2-hydroxy-3-[(1-methylethyl)amino] propoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! acetamide (diacetolol) Y0000127 Acebutolol impurity C 1 20 mg 1 N-(3-acetyl-4-hydroxyphenyl)butanamide 0871 Yes +5°C ± 3°C 79 ! Y0000128 Acebutolol impurity I 2 0.004 mg 1 N-[3-acetyl-4-[(2RS)-3-(ethylamino)-2-hydroxypropoxy]phenyl] 0871 Yes +5°C ± 3°C 79 ! butanamide Y0000056 Aceclofenac - reference spectrum 1 n/a 1 1281 79 ! Y0000085 Aceclofenac impurity F 2 15 mg 1 benzyl[[[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxy]acetate
    [Show full text]
  • Clinical Trial of Orciprenaline in Bradyarrhythmias
    100 SINGAPORE MEDICAL JOURNAL Vol. 16, No. 2. June, 1975. CLINICAL TRIAL OF ORCIPRENALINE IN BRADYARRHYTHMIAS By Chin Hock, Lirn, Charles C. S. Toh and Oon Teik, Khoo SYNOPSIS The intravenous and oral forms of orciprenaline was used in the treatment of patients with severe sinus bradycardia, high grade atrio -ventricular block or the sick sinus syndrome. Intra- venous orciprenaline can be used to tide patients over a period of severe bradyarrhythmia, or prior to cardiac pacing. One patient developed ventricular tachycardia following an intravenous bolus of orciprenaline. Oral orciprenaline was used in 23 patients with severe bradyarrhythmia. Two patients responded poorly to it. Saventrine was given sequentially in nine patients. The merits and side effects of both drugs are discussed. INTRODUCTION efficiency of orciprenaline and to compare it with Saventrine in the treatment of complete In 1952, Nathanson and Miller introduced heart block and other forms of bradyarrhyth- isoprenaline for the treatment of heart block and mias. it still has an important role in the treatment of bradyarrhythmias. Nis Innissen and Thompson PHARMACOLOGY (1965) felt that the use of a sustained release form of isoprenaline could reduce the need for Orciprenaline (Alupent*) is a derivative of pacemakers. Intravenous isoprenaline and orci- isoprenaline but it has predominant beta -two prenaline may be used to treat patients with stimulatine effects and is commonly used as a Stokes Adams (S.A.) attacks resulting from very bronchodilator (Bogdan, 1969). However, it has slow ventricular rates in acute myocardial chronotropic and inotropic effects. It stimulates infarction, either alone or prior to cardiac the sino -atrial and atrioventricular nodes and pacing.
    [Show full text]
  • Adrenoceptors Regulating Cholinergic Activity in the Guinea-Pig Ileum 1978) G.M
    - + ! ,' Br. J. Pharmac. (1978), 64, 293-300. F'(O t.,," e reab- ,ellular PHARMACOLOGICAL CHARACTERIZATION OF THE PRESYNAPTIC _-ADRENOCEPTORS REGULATING CHOLINERGIC ACTIVITY IN THE GUINEA-PIG ILEUM 1978) G.M. Departmentof Pharmacology,Allen and HzmburysResearchLimited, Ware, Hertfordshire,SG12 ODJ I The presynaptic ct-adrenoceptors located on the terminals of the cholinergic nerves of the guinea- pig myenteric plexus have been characterized according to their sensitivities to at-adrenoceptor agonists and antagonists. 2 Electrical stimulation of the cholinergic nerves supplying the longitudinal muscle of the guinea-pig ! ileum caused a twitch response. Clonidine caused a concentration-dependent inhibition of the twitch i response; the maximum inhibition obtained was 80 to 95_o of the twitch response. Oxymetazoline and xylazine were qualitatively similar to clonidine but were about 5 times less potent. Phenylephrine and methoxamine also inhibited the twitch response but were at least 10,000 times less potent than clonidine. 3 The twitch-inhibitory effects of clonidine, oxymetazoline and xylazine, but not those of phenyl- ephrine or methoxamine, were reversed by piperoxan (0.3 to 1.0 lag/ml). 4 Lysergic acid diethylamide (LSD) inhibited the twitch response, but also increased the basal tone of the ileum. Mepyramine prevented the increase in tone but did not affect the inhibitory action of LSD. Piperoxan or phentolamine only partially antagonized the inhibitory effect of LSD. 5 Phentolamine, yohimbine, piperoxan and tolazoline were potent, competitive antagonists of the inhibitory effect of clonidine with pA2 values of 8.51, 7.78, 7.64 and 6.57 respectively. 6 Thymoxamine was a weak antagonist of clonidine; it also antagonized the twitch-inhibitory effect of morphine.
    [Show full text]
  • Orciprenaline Sulphate (Alupent): Planned Withdrawal from the UK Market Following a Risk-Benefit Analysis
    MHRA PUBLIC ASSESSMENT REPORT Orciprenaline sulphate (Alupent): planned withdrawal from the UK market following a risk-benefit analysis November 2009 Executive summary 2 1. Introduction 3 2. Summary of data 3 2.1 Clinical pharmacology 3 2.2 Efficacy 3 2.3 Safety 4 3. Conclusions 8 4. References 9 5. Glossary 10 1 EXECUTIVE SUMMARY (Please note that this summary is intended to be accessible to all members of the public, including health professionals) Background The Medicines and Healthcare products Regulatory Agency (MHRA) is the government agency responsible for regulating the effectiveness and safety of medicines and medical devices in the UK. We continually review the safety of all medicines in the UK, and inform healthcare professionals and the public of the latest safety updates. In our Public Assessment Reports, we discuss the evidence for a safety issue with a particular drug or drug class, and changes made to the product information for the drug on the basis of this evidence, which will help safeguard public health. This MHRA Public Assessment Report discusses a review of the risks and benefits of a medicine called orciprenaline sulphate. Orciprenaline sulphate is available for oral administration as a syrup used to treat reversible airways obstructiona, which is a symptom of asthmab and chronic obstructive pulmonary diseasec. It acts on specific areas in the body called β- receptors, which relaxes the muscles used for breathing and opens the airways in the lungs. Orciprenaline sulphate was licensed in 1972 and is marketed in the UK under the brand name Alupent Syrup. As with any medicine, the use of orciprenaline sulphate may lead to adverse reactions (side-effects) in some individuals, which are described in the product information, including the patient information leaflet (see the Electronic Medicines Compendium (product information) website).
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date.
    [Show full text]
  • NATURE 199 Heart Was Removed with the Great Vessels Cut Close to the Heart, A~D the Organ Weighed
    No. 49t5 January 11, 1964 NATURE 199 heart was removed with the great vessels cut close to the heart, a~d the organ weighed. The weights of each OH embryo and 1ts heart are seen tabulated in Fig. l. · CH • The largest embryos were seen at 37·5° C. The heart:; /\ /~_CH. CH2 N( . CH, from the group at 32·5° C were largest, even though the j 'H embryos bearing these hearts were smaller than those at Vv# the normal temperature. On gross examination we saw I that the increase in size at 32·5° C consisted of enlarge­ OH NR2 ment ~f the chambers of the heart as well as thickening IIa ~·~ - N(CH,.)2 of thmr walls. On microscopic section the increased CH . CH2 • N . R 2 heart tissue mass was found to be composed of heart I muscle and supporting tissues, not of an inflammatory exudate or cedoma. Two other gross changes were consistently present. In 00 II the low-temperature groups the intra-abdominal veins of the embryos as well as veins of the extra-embryonic to discover whether pronethalol also could produce local membranes were distended. Also the kidneys were en­ anresthesia. larged-both the mesonephric and metanephric kidneys. Guinea pigs were lightly anresthetized with sodium To seo whether the variation in the size of heart pentobarbitone (30 mgfkg intraperitoneally) and local resulting from the difference in temperature of incubation anresthetic potency determined by the intradermal weal would be observed in heart fragments transplanted to method of Biilbring and Wajda•. It was found that the chorioallantoic membrane, we removed the hearts of pronethalol is 1·8 times as active as procaine (log R = several 8-day-old embryos, pooled them, cut them into 0·270 ± 0·05).
    [Show full text]
  • UV-Vis-5-Compressed.Pdf
    Ultraviolet and visible spectroscopy David G. Watson Lecture 5 EMADALSAMARRAI Fig.4.13 The complex formed between adrenaline and iron, which is used to analyse adrenaline at low levels in an injection. Adrenaline iron (ll) complex l'iiiitl.iiitiliiiil Self-test 4.7 iiri:lilllr:i!!!f !!:ill Adrenaline in bupivacaine/adrenaline injection is assayed by complex formation with iron (ll). 20 ml of the injection is mixed with 0.2 ml of reagent and 2 ml of buffer and a reading istaken in a 4 cm pathlength cell. A reading of a solution containing 5.21 pglml of adrenaline is taken under the same conditions. The following results were obtained: . Absorbance of sample:0.173 . Absorbance of standard solution:0.18i Calculate the percentage of w/v of adrenaline in the injection. t n/rvr %s000'0 :JaMsuv Difference spectrop hotometry In difference spectroscopy, a component in a mixture is analysed by carrying out a reaction which is selective for the analyte. This could be simply bringing about a shift in wavelength through adjustment of the pH of the solution in which the analyte is dissolved or a chemical reaction such as oxidation or reduction. In the following example the selective alkaline shift of aspirin is used to determine it in a preparation also containing dextropropoxyphene, naphthalene sulphonic acid and caffeine. Caffeine, dextropropoxyphene and the naphthalene sulphonic acid anion do not undergo appreciable alkaline shifts whereas aspirin does. Figure 4.14A shows the spectrum of the extract from tablets in 0.1 M HCI - in fact there is relatively minor interference at the wavelength used for the determination of aspirin but by using the sample in HCI in place of a blank in the reference cell one can be sure that interference from the excipients is eliminated.
    [Show full text]
  • ACMD Advisory Council on the Misuse of Drugs
    ACMD Advisory Council on the Misuse of Drugs Consideration of the naphthylpyrovalerone analogues and related compounds. 1 ACMD Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Will Reynolds 3rd Floor (SW), Seacole Building 2 Marsham Street London SW1P 4DF Tel: 020 7035 0454 [email protected] Rt Hon Theresa May MP 2 Marsham Street London SW1P 4DF 7th July 2010 Dear Home Secretary, The ACMD indicated in its advice of 31st March 2010 on the cathinones that it would provide you with further advice on the naphthyl analogues of pyrovalerone (including naphyrone) and other such analogues. I have pleasure in attaching the Advisory Council on the Misuse of Drugs report on the ‘Consideration of the naphthylpyrovalerone analogues and related compounds’. The ACMD recognise the significant public health issue that ‘legal highs’ present. Our report references recent work on test purchases of a number of ‘legal highs’ that demonstrate their many and varied compositions. In this report the evidence highlights the dangers of purchasing compounds which are likely to contain harmful compounds and very often will not be the same as the material advertised and may be more harmful and illegal. Users of ‘legal highs’ should be acutely aware that just because it is being advertised as legal does not make a substance safe, nor may it be legal. Along with mephedrone and related compounds, the public health response should focus on the discrepancy between the compounds that are purported to be contained in the ‘legal high’ for sale and what the customer actually gets.
    [Show full text]