WRN Germline Mutation Is the Likely Inherited Etiology of Various Cancer Types in One Iranian Family

Total Page:16

File Type:pdf, Size:1020Kb

WRN Germline Mutation Is the Likely Inherited Etiology of Various Cancer Types in One Iranian Family ORIGINAL RESEARCH published: 07 June 2021 doi: 10.3389/fonc.2021.648649 WRN Germline Mutation Is the Likely Inherited Etiology of Various Cancer Types in One Iranian Family Mahnaz Norouzi 1, Mohammad Shafiei 1*†,ZeinabAbdollahi2,PanizMiar2, Hamid Galehdari 1, Mohammad Hasan Emami 3, Mehrdad Zeinalian 2 and Mohammad Amin Tabatabaiefar 2,4*† Edited by: 1 Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 2 Department of Genetics Israel Gomy, and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, 3 Department of Dana–Farber Cancer Institute, Gastroenterology, Poursina Hakim Digestive Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, United States 4 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Reviewed by: Isfahan University of Medical Sciences, Isfahan, Iran Mev Dominguez-Valentin, Oslo University Hospital, Norway Background: Familial cancers comprise a considerable distribution of colorectal cancers Reza Ghasemi, Washington University School of (CRCs), of which only about 5% occurs through well-established hereditary syndromes. It Medicine in St. Louis, has been demonstrated that deleterious variants at the newly identified cancer- United States predisposing genes could describe the etiology of undefined familial cancers. *Correspondence: Mohammad Amin Tabatabaiefar Methods: The present study aimed to identify the genetic etiology in a 32-year-old man [email protected]; with early onset familial CRC employing several molecular diagnostic techniques. DNA [email protected] Mohammad Shafiei was extracted from tumoral and normal formalin-fixed-paraffin-embedded (FFPE) shafi[email protected] blocks, and microsatellite instability (MSI) was evaluated. Immunohistochemistry † staining of MMR proteins was performed on tumoral FFPE blocks. Next-generation These authors have contributed fi equally to this work and share sequencing (NGS), multiplex ligation-dependent ampli cation (MLPA) assay, and senior authorship Sanger sequencing were applied on the genomic DNA extracted from peripheral blood. Data analysis was performed using bioinformatics tools. Genetic variants Specialty section: This article was submitted to interpretation was based on ACMG. Cancer Genetics, Results: MSI analysis indicated MSI-H phenotype, and IHC staining proved no a section of the journal Frontiers in Oncology expressions of MSH2 and MSH6 proteins. MLPA and NGS data showed no Received: 01 January 2021 pathogenic variants in MMR genes. Further analysis of NGS data revealed a candidate Accepted: 05 May 2021 WRN frameshift variant (p.R389Efs*3), which was validated with Sanger sequencing. The Published: 07 June 2021 variant was interpreted as pathogenic since it met the criteria based on the ACMG Citation: guideline including very strong (PVS1), strong (PS3), and moderate (PM2). Norouzi M, Shafiei M, Abdollahi Z, Miar P, Galehdari H, Emami MH, Conclusion: WRN is a DNA helicase participating in DNA repair pathways to sustain Zeinalian M and Tabatabaiefar MA fi (2021) WRN Germline Mutation Is the genomic stability. WRN de cient function may contribute to CRC development that is valuable Likely Inherited Etiology of Various for further investigation as a candidate gene in hereditary cancer syndrome diagnosis. Cancer Types in One Iranian Family. Front. Oncol. 11:648649. Keywords: colorectal cancer, microsatellite instability, hereditary non-polyposis colorectal cancer, next-generation doi: 10.3389/fonc.2021.648649 sequencing, WRN Frontiers in Oncology | www.frontiersin.org 1 June 2021 | Volume 11 | Article 648649 Norouzi et al. WRN Cause of Hereditary Cancer INTRODUCTION colorectal tumors, which typically arise in patients with late-onset cancer (12, 13). Unexplained dMMR CRC, termed “Lynch-like Hereditary cancer syndromes account for a small percentage of all syndrome”, is another MSI colorectal tumor for which neither the cancers diagnosed each year, although they are common in some deleterious germline variant of MMR genes nor the cancer forms, such as colorectal and breast cancers (1, 2). Colorectal hypermethylation of the MLH1 gene promoter can be identified cancer (CRC) is considered one of the most frequent malignancies (12, 15, 23).Somaticbi-allelicmutationsintheMMRgenesmay worldwide, and a family history of the condition is a major risk explain a large number of these Lynch-like dMMR tumors (nearly factor (1, 3). Notably, the relative risk of developing CRC increases 70%). However, the etiology of a large number of these unclassified in individuals with a family history of CRC. Alongside screening MSI/dMMR tumors is unclear (12, 23, 24). Moreover, dMMR CRCs and surveillance, another advantage of determining the molecular encompass around 60% of HNPCC cases. About 40% of HNPCC basis of familial CRC is its therapeutic relevance (4, 5). Meanwhile, patients do not represent MMR defects, and they are accordingly chromosomal instability arises in a remarkable portion of CRC introduced as familial colorectal cancer type X (FCCTX) with tumors. Microsatellite instability (MSI), which is caused by the undefined etiology. FCCTX is a group of heterogeneous diseases aberrant function of the DNA mismatch repair (MMR) system, characterized by microsatellite stable (MSS) and late-onset clinically accounts for nearly 15% of all CRC patients. In fact, insertion or different from LS (21, 25, 26). Despite the recent advances in gene deletion of a repetitive unit in a short tandemly repeated sequence identification technologies, the genetic etiology of many hereditary (STR), designated as MSI, is a robust diagnostic marker for cancers remains undefined, especially FCCTX groups (27, 28). identifying Lynch syndrome (LS) suspicious individuals (6–8). By the poor clinical diagnostic approaches, it is difficult to LS is an autosomal dominant hereditary cancer syndrome differentiate Lynch CRC tumors from non-hereditary ones due to caused by germline defects in the DNA mismatch repair genes, the high frequency of MSI occurrence in sporadic tumors. This including MLH1, MSH2, MSH6, PMS2, and EPCAM (9, 10). situation becomes more complicated when there is a positive family Most of the pathogenic variants of MMR genes include small history of developing CRC or different related cancer types (19). In insertions/deletions or large genetic rearrangements, missense, the present study, a CRC-affected individual from a fulfilled and nonsense variants (11–13). The majority of these gene Amsterdam II criteria pedigree, showing Lynch-associated MSI defects were found in MLH1 and MSH2 (60 to 80%) genes. and IHC phenotypes, underwent whole-exome sequencing (WES). Other detrimental variants in MSH6 or PMS2 and, rarely, to The analysis of WES data revealed no pathogenic variants in any of EpCAM genes have been identified associated with Lynch the MMR genes. Further evaluation unveiled a frameshift variant phenotype. Nevertheless, recent population studies have found in WRN (RECQL2; HGNC ID: 12791) gene as a potential candidate a higher frequency for germline pathogenic variants in MSH6 gene deserving subsequent considerations. and PMS2 genes (14–16). It was demonstrated that these genes WRN encodes a DNA helicase enzyme from the highly encompass lower penetrance pathogenic variants, and MSH6 conserved RECQ gene family and has a pivotal role in DNA deleterious variant carriers represent late-onset cancer compared repair and maintenance of genomic stability (29, 30). The WRN to MLH1 or MSH2 carriers (13). Moreover, an increased risk of has both helicase and exonuclease activity and has been extracolonic tumors, particularly endometrial cancer, has been considered a genomic caretaker (31). Homozygous truncating shown in MSH2 pathogenic variant carriers (13). Endometrial variants in the WRN gene cause Werner syndrome (WS; OMIM and ovarian cancers are the most prevalent Lynch-associated 277700) manifests, which are characterized by early onset age- tumors. Other associated cancers include pancreatic, biliary tract, associated diseases such as cancer (32, 33). In addition to the ureter, renal pelvis, gastric, small intestine, brain, sebaceous elevated risk of developing cancer in WS patients, several studies adenomas, sebaceous carcinomas, and keratoacanthomas (9). have indicated a tumor suppressor-like function for WRN, while LS is also known as hereditary non-polyposis colorectal cancer making it a prominent cancer-predisposing gene (34, 35). More (HNPCC), with an approximate prevalence of one in 600 to one in importantly, various evaluations have suggested a crucial role for 3,000 individuals (17, 18). HNPCC is a heterogeneous group of WRN associated with different types of familial cancers, disorders with overlapping features that are clinically evaluated using specifically breast and ovarian cancers (36–38). However, the Amsterdam (I or II) or Bethesda guidelines (19–22). Clinical association of germline WRN gene variants with familial CRC guidelines are based on family and personal history of cancer, and has not been established well. Herein, we aimed to introduce a their use as diagnostic tools for LS is restricted due to their low truncating variant in WRN (NM_000553:exon9:p.R389Efs*3) as sensitivity. Patients with HNPPCC are at increased risk for a pathogenic candidate based on ACMG standard guideline (39) metachronous or synchronous colon and extracolonic Lynch- in a patient affected by early onset familial CRC.
Recommended publications
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Fanconi Anemia: Guidelines for Diagnosis and Management
    Fanconi Anemia: Guidelines for Diagnosis and Management Fourth Edition • 2014 We are deeply grateful to the following generous donors, who made this publication possible: Pat and Stephanie Kilkenny Phil and Penny Knight Disclaimer Information provided in this handbook about medications, treatments or products should not be construed as medical instruction or scientific endorsement. Always consult your physician before taking any action based on this information. copyright© 1999; second edition 2003; third edition 2008; fourth edition 2014 Fanconi Anemia: Guidelines for Diagnosis and Management Fourth Edition • 2014 Managing Editor: Laura Hays, PhD Editors: Dave Frohnmayer, JD, Lynn Frohnmayer, MSW, Eva Guinan, MD, Teresa Kennedy, MA, and Kim Larsen Scientific Writers: SciScripter, LLC These guidelines for the clinical care of Fanconi anemia (FA) were developed at a conference held April 5-6, 2013 in Herndon, VA. We owe a tremendous debt of gratitude to Eva Guinan, MD, for serving as moderator of the conference, as she did for the consensus conferences for the first three editions, and for her skill in helping the participants arrive at consensus. We would like to thank all the participants for donating their time and expertise to develop these guidelines. The names and contact information of all participants appear in the Appendix. These guidelines are posted on our Web site and are available from: Fanconi Anemia Research Fund, Inc. Phone: 541-687-4658 or 888-326-2664 (US only) 1801 Willamette Street, Suite 200 FAX: 541-687-0548 Eugene, Oregon 97401 E-mail: [email protected] Web site: www.fanconi.org Facebook: www.facebook.com/fanconianemiaresearchfund Twitter: https://twitter.com/FAresearchfund Material from this book may be reprinted with the permission of the Fanconi Anemia Research Fund, Inc.
    [Show full text]
  • Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
    Mechanisms in E. coli and Human Mismatch Repair Nobel Lecture, December 8, 2015 by Paul Modrich Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA. he idea that mismatched base pairs occur in cells and that such lesions trig- T ger their own repair was suggested 50 years ago by Robin Holliday in the context of genetic recombination [1]. Breakage and rejoining of DNA helices was known to occur during this process [2], with precision of rejoining attributed to formation of a heteroduplex joint, a region of helix where the two strands are derived from the diferent recombining partners. Holliday pointed out that if this heteroduplex region should span a genetic diference between the two DNAs, then it will contain one or more mismatched base pairs. He invoked processing of such mismatches to explain the recombination-associated phenomenon of gene conversion [1], noting that “If there are enzymes which can repair points of damage in DNA, it would seem possible that the same enzymes could recognize the abnormality of base pairing, and by exchange reactions rectify this.” Direct evidence that mismatches provoke a repair reaction was provided by bacterial transformation experiments [3–5], and our interest in this efect was prompted by the Escherichia coli (E. coli) work done in Matt Meselson’s lab at Harvard. Using artifcially constructed heteroduplex DNAs containing multiple mismatched base pairs, Wagner and Meselson [6] demonstrated that mismatches elicit a repair reaction upon introduction into the E. coli cell. Tey also showed that closely spaced mismatches, mismatches separated by a 1000 base pairs or so, are usually repaired on the same DNA strand.
    [Show full text]
  • Open Full Page
    CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders.
    [Show full text]
  • Review of Cancer Genetics
    Review of Cancer Genetics Genes are pieces of information in the cells that make up the body. Cells are the basic units of life. Normally, cells grow, divide and make more cells in a controlled way as the body needs them to stay healthy. Cancer happens when a cell grows out of control in an abnormal way. All cancer is caused by a buildup of mutations (changes) in specific genes. Normally, these genes help the cell grow and divide in a controlled manner. The mutation in the gene damages this process and, as a result, the cell can grow out of control and become cancer. In most people who have cancer, the gene mutations that lead to their cancer cannot be passed on to their children. However, some families have a gene mutation that can get passed on from one generation to another. The differences between sporadic (non-hereditary) and hereditary forms of cancer are reviewed below. Additionally, some families have more cancer than would be expected by chance, but the cancer does not seem to be hereditary. This “familial” form of cancer is also discussed below. Sporadic Cancer Most cancer – 75% to 80% – is sporadic. In sporadic cancer, the gene mutations that cause the cancer are acquired (occur only in the tumor cells) and are not inherited. Risk for acquired gene mutations increases with age and is often influenced by environmental, lifestyle or medical factors. Cancer can sometimes happen by chance. Everyone has some risk of developing cancer in his or her lifetime. Because cancer is common, it is possible for a family to have more than one member who has cancer by chance.
    [Show full text]
  • A Dissertation Entitled the Role of Base Excision Repair And
    A Dissertation Entitled The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links. by Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science Dr. Stephan M. Patrick, Committee Chair Dr. Kandace Williams, Committee Member Dr. William Maltese, Committee Member Dr. Manohar Ratnam, Committee Member Dr. David Giovannucci, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2014 Copyright 2014, Akshada Sawant This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Role of Base Excision Repair and Mismatch Repair Proteins in the Processing of Cisplatin Interstrand Cross-Links By Akshada Sawant Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science The University of Toledo August 2014 Cisplatin is a well-known anticancer agent that forms a part of many combination chemotherapeutic treatments used against a variety of human cancers. Despite successful treatment, the development of resistance is the major limitation of the cisplatin based therapy. Base excision repair modulates cisplatin cytotoxicity. Moreover, mismatch repair deficiency gives rise to cisplatin resistance and leads to poor prognosis of the disease. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Our studies showed that these mismatches lead to the activation and the recruitment of mismatch repair proteins.
    [Show full text]
  • Hereditary Breast and Ovarian Cancer Syndrome
    Page 1 of 4 Hereditary Breast and Ovarian Cancer Syndrome Hereditary breast and/or ovarian cancer (HBOC) is an autosomal dominant cancer susceptibility syndrome, most commonly associated with an inherited BRCA1 or BRCA2 gene mutation. Approximately 1 in 300 to 1 in 400 people in the general population are born with an inherited mutation in either the BRCA1 or BRCA2 genes. The frequency of BRCA1 or BRCA2 gene mutations is approximately 1 in 40 for people with Ashkenazi Jewish heritage. Other high-risk genes associated with hereditary breast and/or ovarian cancers include: PALB2, TP53, PTEN, STK11, CDH1. Additional genes may also be discussed in the context of Hereditary Cancer Program assessment. Confirmation of HBOC is important both for people with cancer, because of the associated risk for another cancer, and to inform appropriate cancer risk management for their adult family members. Note to oncologists/GPOs: if your regular practice includes women who are eligible for BRCA1/BRCA2 testing, we offer training to prepare you to initiate genetic testing for patients whose personal history meets specific criteria. Please contact the Hereditary Cancer Program’s Clinical Coordinator (604-877- 6000 local 672198) if you are interested in this oncology clinic based genetic testing (GENONC) process. Referral Criteria Notes: 1. breast cancer includes DCIS (ductal carcinoma in situ) and excludes LCIS (lobular carcinoma in situ) 2. ovarian cancer refers to invasive non-mucinous epithelial ovarian cancer; includes cancer of the fallopian tubes, primary peritoneal cancer and STIC (serous tubal intraepithelial carcinoma); excludes borderline/LMP ovarian tumours 3. close relatives include: children, brothers, sisters, parents, aunts, uncles, grandchildren & grandparents on the same side of the family.
    [Show full text]
  • Senescence Induced by RECQL4 Dysfunction Contributes to Rothmund–Thomson Syndrome Features in Mice
    Citation: Cell Death and Disease (2014) 5, e1226; doi:10.1038/cddis.2014.168 OPEN & 2014 Macmillan Publishers Limited All rights reserved 2041-4889/14 www.nature.com/cddis Senescence induced by RECQL4 dysfunction contributes to Rothmund–Thomson syndrome features in mice HLu1, EF Fang1, P Sykora1, T Kulikowicz1, Y Zhang2, KG Becker2, DL Croteau1 and VA Bohr*,1 Cellular senescence refers to irreversible growth arrest of primary eukaryotic cells, a process thought to contribute to aging- related degeneration and disease. Deficiency of RecQ helicase RECQL4 leads to Rothmund–Thomson syndrome (RTS), and we have investigated whether senescence is involved using cellular approaches and a mouse model. We first systematically investigated whether depletion of RECQL4 and the other four human RecQ helicases, BLM, WRN, RECQL1 and RECQL5, impacts the proliferative potential of human primary fibroblasts. BLM-, WRN- and RECQL4-depleted cells display increased staining of senescence-associated b-galactosidase (SA-b-gal), higher expression of p16INK4a or/and p21WAF1 and accumulated persistent DNA damage foci. These features were less frequent in RECQL1- and RECQL5-depleted cells. We have mapped the region in RECQL4 that prevents cellular senescence to its N-terminal region and helicase domain. We further investigated senescence features in an RTS mouse model, Recql4-deficient mice (Recql4HD). Tail fibroblasts from Recql4HD showed increased SA-b-gal staining and increased DNA damage foci. We also identified sparser tail hair and fewer blood cells in Recql4HD mice accompanied with increased senescence in tail hair follicles and in bone marrow cells. In conclusion, dysfunction of RECQL4 increases DNA damage and triggers premature senescence in both human and mouse cells, which may contribute to symptoms in RTS patients.
    [Show full text]
  • DNA Repair with Its Consequences (E.G
    Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Arsenic Disruption of DNA Damage Responses—Potential Role in Carcinogenesis and Chemotherapy
    Biomolecules 2015, 5, 2184-2193; doi:10.3390/biom5042184 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review Arsenic Disruption of DNA Damage Responses—Potential Role in Carcinogenesis and Chemotherapy Clarisse S. Muenyi 1, Mats Ljungman 2 and J. Christopher States 3,* 1 Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; E-Mail: [email protected] 2 Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2800, USA; E-Mail: [email protected] 3 Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-502-852-5347; Fax: +1-502-852-3123. Academic Editors: Wolf-Dietrich Heyer, Thomas Helleday and Fumio Hanaoka Received: 14 August 2015 / Accepted: 9 September 2015 / Published: 24 September 2015 Abstract: Arsenic is a Class I human carcinogen and is widespread in the environment. Chronic arsenic exposure causes cancer in skin, lung and bladder, as well as in other organs. Paradoxically, arsenic also is a potent chemotherapeutic against acute promyelocytic leukemia and can potentiate the cytotoxic effects of DNA damaging chemotherapeutics, such as cisplatin, in vitro. Arsenic has long been implicated in DNA repair inhibition, cell cycle disruption, and ubiquitination dysregulation, all negatively impacting the DNA damage response and potentially contributing to both the carcinogenic and chemotherapeutic potential of arsenic. Recent studies have provided mechanistic insights into how arsenic interferes with these processes including disruption of zinc fingers and suppression of gene expression.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE NAME: Patricia Lynn Opresko BUSINESS ADDRESS: University of Pittsburgh Graduate School of Public Health Department of Environmental and UPMC Hillman Cancer Center 5117 Centre Avenue, Suite 2.6a Pittsburgh, PA15213-1863 Phone: 412-623-7764 Fax: 412-623-7761 E-mail: [email protected] EDUCATION AND TRAINING Undergraduate 1990 - 1994 DeSales University B.S., 1994 Chemistry and Center Valley, PA Biology Graduate 1994 - 2000 Pennsylvania State Ph.D., 2000 Biochemistry and University, College of Molecular Biology Medicine, Hershey, PA Post-Graduate 3/2000 - 5/2000 Pennsylvania State Postdoctoral Dr. Kristin Eckert, University, College of Fellow Mutagenesis and Medicine, Jake Gittlen Cancer etiology Cancer Research Institute Hershey, PA 2000-2005 National Institute on IRTA Postdoctoral Dr. Vilhelm Bohr Aging, National Fellow Molecular Institutes of Health, Gerontology and Baltimore, MD DNA Repair 1 APPOINTMENTS AND POSITIONS Academic 8/1/2018 – Co-leader Genome Stability Program, UPMC present Hillman Cancer Center 5/1/2018- Tenured Professor Pharmacology and Chemical Biology, present School of Medicine, University of Pittsburgh, Pittsburgh, PA 2/1/2018- Tenured Professor Environmental and Occupational Health, present Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 2014 – Tenured Associate Environmental and Occupational Health, 1/31/2018 Professor Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 2005 - 2014 Assistant Professor Environmental and Occupational Health, Graduate School
    [Show full text]