Pacific Giant Salamander

Total Page:16

File Type:pdf, Size:1020Kb

Pacific Giant Salamander Pacific Giant Salamander British Columbia’s largest salamander is probably declining due to expanding towns, intensive agriculture, and the effects of logging. Province of British Columbia Ministry of Environment, Lands and Parks population size is not known, and What is their status? would be very difficult to determine. ike most other wildlife in the prov- Human activities, such as the drain- ince, the Pacific Giant Salamander is age of Sumas Lake and land develop- protected from killing or collecting Why are Pacific Giant ment for farming and settlement along L under the Wildlife Act. Using Salamanders at risk? Vedder Mountain and in the Cultus criteria such as the limited extent of its lthough the Pacific Giant Salaman- Lake area, may have reduced the British distribution, its low reproductive rate, der is found along the west coast of Columbia distribution range of the Pa- and the rate of habitat loss, it has been North America from northern Cali- cific Giant Salamander. Other activities, classified by BC Environment as a “spe- Afornia to southern British Co- such as logging, have probably had det- cies at risk” and placed on the Red List - lumbia, it has an extremely limited rimental effects in some areas, particu- the category of greatest concern. Red- range in this province. Its range extends larly where all streamside forest has listed species are those being considered into British Columbia only in the been removed and small creeks are for legal designation as “Threatened” or Chilliwack River watershed and imme- choked with debris. Poor logging prac- “Endangered.” It is designated by the diately adjacent areas, about 100 kilo- tices can result in more variable Committee on the Status of Endangered metres east of streamflows, erosion and siltation Wildlife in Canada () as Vancouver. Its This of stream habitats, removal of “Vulnerable.” total range in salamander streamside cover, and increased The Pacific Giant Salamander has the British Colum- water temperature. These effects most restricted distribution range of bia is about 250 has the most are all detrimental for salaman- any of the 18 species of amphibians that square kilome- restricted ders and for many of the species are native to British Columbia. It is a tres, a meagre they depend on for food. good example of a “peripheral” species 0.03 percent of distribution of A major cause of mortality of – one that is relatively widespread out- the area of the any of British Pacific Giant Salamanders is side of this province but only barely ex- province. The probably predation. Reported tends into it. For genetic reasons, pe- species has been Columbia’s predators in the United States in- ripheral species are considered by BC observed at only amphibian clude garter snakes, River Environment to a few dozen loca- Otters, weasels and Water Poor logging be of provincial tions within that species. Shrews, species that also oc- practices can management range over the cur here. Other likely preda- concern, and past 65 years and does not occur else- tors include Mink, trout, and result in conservation ef- where in Canada. Dolly Varden Char. The natural variable forts for them The distribution range of Pacific Gi- reproductive rate is normally high emphasize habi- ant Salamanders in British Columbia is enough to overcome such losses. streamflows, tat preservation. limited by barriers that include the In good habitat, enough salaman- increased In British Co- Fraser River and adjacent farmlands to ders survive to breeding age to lumbia, this un- the north and west, and by the colder maintain the population, despite erosion and ique large am- and drier inland climate to the east. some losses caused by predation. siltation, and phibian has been Their upper elevational limit, about Extreme climate events, such as recorded along 1050 metres, is probably also set by win- summer drought and resulting the removal of streams of the ter climate. Within their general range desiccation, severe winters, or de- streamside Chilliwack River in the Chilliwack watershed and vicin- bris torrents down streams during drainage from ity, their distribution and abundance is record rainfall, can adversely af- cover. Vedder Crossing limited by the availability of suitable fect salamander habitat. However, to the United stream habitats. Experts feel that the to persist in this area, the salamanders States border and in nearby areas such species is probably declining in abun- have obviously been able to recover as Bridal Veil Creek, and small streams dance due to the effects of development from these periodic natural events. along the west side of Vedder Moun- and industry on streams and on riparian tain. All British Columbia records are (streamside) habitats, which are critical from below 1050 m elevation. Searches for its survival. However, the actual have so far failed to find the species in adjacent areas south of the Fraser River, larva to adult occurs at about five to six Although secretive and seldom seen, such as the Silverhope and Skagit valleys years of age, when the larvae have adults are readily identified by their col- or Sumas Mountain. The Fraser River is reached a size of 15-20 centimetres. ouring. The head, back, and sides have a a major barrier to northward dispersal. However, some larvae continue to grow distinctive marbled or reticulate pattern This salamander is more widely dis- to adult size and become sexually ma- of dark blotches on a light brown or tributed in Washington, Oregon, and ture without losing their gills. This proc- brassy-coloured background. The belly northern California, occurring in suit- ess is called neoteny, and these individu- is a uniform slate or tan colour. The able habitats from the coast inland to als are referred to as neotenes. broad head has a the crest of the Cascade Range. Closely Neoteny is common in this spe- The Pacific shovel-like snout, related species, which were until re- cies in British Columbia. Giant and a fold of skin cently considered to be varieties of the As its name implies, this is a (the gular fold) Pacific Giant Salamander, occur along large salamander; in fact, it is the Salamander across the throat. the central coast of California, on the largest salamander in British Co- can reach The eyes are me- Olympic Peninsula, and in Idaho. lumbia. Adults and neotenes are dium-sized and stout-bodied and may reach 30 centimetres have a brass-flecked What do they look like? cm or more in total length. Like all or more iris and large black ike most salamanders, the Pacific salamanders, this one has four pupil. Adult-sized Giant Salamander (Dicamptodon toes on the front feet, five toes on in length. neotenes have a tenebrosus) has gill-breathing larvae the hind feet, and a tail. The tail, uniform brown col- L that live entirely in water, and ter- about 40 percent of the total length, is ouring on their heads, backs and sides in restrial (land-dwelling) adults. In Brit- laterally compressed (from side to side, contrast to the marbled pattern of trans- ish Columbia, transformation from like an eel) as an aid for swimming. formed adults, and they retain their external gills. Colour varies consider- have cornified (hardened) toes for this Present distribution of the ably throughout the range of this purpose. They frequently dig into sur- Pacific Giant Salamander in Canada and the United States salamander. face material to find food or protective Larvae of the Pacific Giant Salaman- cover. They avoid brightly lit areas and der are streamlined and adapted for life direct sunlight, and prefer damp sur- in flowing water. They have small, fuzzy roundings where their skin will not gills behind their heads and a fin around dry out. the top and bottom of their tails. Young Adults often display aggressive be- larvae have tiny, scattered dark brown haviour toward others of their kind or or black patches on their backs, sides potential predators. They will defend and upper surface of their tails. small caverns against subordinate indi- The Pacific Giant Salamander is the viduals, an indication of territoriality. If only salamander in British Columbia threatened or attacked, adults engage in that normally occurs in fast-flowing biting and tail-thrashing, and generally mountain streams. Salamander larvae, try to look as formidable as possible. adults, or neotenes observed in clear Foul-tasting secretions from glands on mountain streams in the Chilliwack the top of the tail also aid in defence. River area are almost certain to be of This species is said to produce sounds this species. described as “rattles,” “barks,” or “growls,” but researchers in British Co- What makes them unique? lumbia have not observed this here. The he Pacific Giant Salamander is par- tendency to vocalize and to use defen- ticularly elusive, moving about and sive postures varies from place to place, feeding mostly at night, and hiding and little study has been done in British cannibalized by males or eaten by other T by day. It tends to be least active and Columbia. predators, and eats little or nothing her- most hidden in winter, a response to self. At hatching, the larvae are about 3 cold weather. Consequently, little is How do they reproduce? cm long, including the tail, and have a known about the behaviour of this sala- exually mature individuals of the Pa- large yolk sac. The larvae stay in the nest mander in the wild, particularly in Brit- cific Giant Salamander migrate to area and live off their yolk for a further ish Columbia. Almost all research on suitable streams or springs for two to four months, finally beginning to the Pacific Giant Salamander has been Sbreeding, which is believed to occur hunt for small prey when about 4 cm in carried out in the United States.
Recommended publications
  • An Ecomorphological Analysis of Locomotion in Larvae and Neotenes of Two Salamander Species: Dicamptodon Tenebrosus (Stream-Type) and Ambystoma Gracile (Pond-Type)
    AN ECOMORPHOLOGICAL ANALYSIS OF LOCOMOTION IN LARVAE AND NEOTENES OF TWO SALAMANDER SPECIES: DICAMPTODON TENEBROSUS (STREAM-TYPE) AND AMBYSTOMA GRACILE (POND-TYPE). By Ethan Snee A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. John O. Reiss, Committee Chair Dr. Sharyn Marks, Committee Member Dr. Justus Ortega, Committee Member Dr. Micaela Szykman Gunther, Committee Member Dr. Erik Jules, Program Graduate Coordinator December 2020 ABSTRACT AN ECOMORPHOLOGICAL ANALYSIS OF LOCOMOTION IN LARVAE AND NEOTENES OF TWO SALAMANDER SPECIES: DICAMPTODON TENEBROSUS (STREAM-TYPE) AND AMBYSTOMA GRACILE (POND-TYPE). Ethan Snee Morphology is the physical expression of a species’ evolutionary history and adaptation to its environment and as such is tied to ecology. Salamander larvae have historically been separated into "pond-type" and "stream-type" groups based on their morphology, however no studies have been performed quantifying the relationship between morphology and ecology. In this study I utilized in-situ behavioral observations, morphological measurements, and in-lab performance tests of Dicamptodon tenebrosus (stream-type) and Ambystoma gracile (pond-type) to examine the relationship between salamander larval morphology and ecology. In the field, behavior was videorecorded during nighttime surveys; afterwards animals were captured and limb measurements were taken. Flow resistance was measured in the lab using a flow chamber and water velocity meter. Swim escapes were videorecorded in lab trials and analyzed using video analysis software. In the field, aquatic walking was the predominant form of movement observed in D. tenebrosus, constituting 98.1 percent of all movements; by contrast, aquatic walking made up only 65.4 percent of all movements in A.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
    INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES.......................................................................................................................................
    [Show full text]
  • Successful Reproduction of the Mole Salamander Ambystoma Talpoideum in Captivity, with an Emphasis on Stimuli Environmental Determinants
    SHORT NOTE The Herpetological Bulletin 141, 2017: 28-31 Successful reproduction of the mole salamander Ambystoma talpoideum in captivity, with an emphasis on stimuli environmental determinants AXEL HERNANDEZ Department of Environmental Sciences, Faculty of Sciences and Technics, University Pasquale Paoli of Corsica, Corte, 20250, France Author Email: [email protected] ABSTRACT - Generating and promoting evidence-based husbandry protocols for urodeles, commonly known as newts and salamanders, is urgently needed because most of the up-to-date ex situ programs are focused on frogs and toads than Urodela. Data on biology, life history, ecology and environmental parameters are lacking for many species and are needed to establish suitable husbandry and breeding conditions in captive environments. Two adult females and two adult males, of the mole salamander Ambystoma talpoideum successfully reproduced in captivity. It was found that reproduction of this species depends on various complex stimuli: including natural photoperiod 12:12, rainwater (acidic to neutral pH) and an aquarium full of various debris. Additionally high temperature variations ranging from 2 °C to 17 °C (a decrease followed by an increase) between November and February showed that it is possible to breed adults in aquariums provided the right stimuli are applied at the right moment of time in winter. A. talpoideum shows an explosive breeding mode as previously reported for the whole genus Ambystoma. INTRODUCTION with an emphasis on the environmental determinant stimuli involved. These data may assist in improving breeding these ince the 1980s, the current global amphibian extinction salamanders under artificial conditions. crisis has been discussed and acknowledged (Wake, A.
    [Show full text]
  • Northern Spring Salamander Fact Sheet
    WILDLIFE IN CONNECTICUT STATE THREATENED SPECIES © COURTESY D. QUINN © COURTESY Northern Spring Salamander Gyrinophilus p. porphyriticus Background and Range The northern spring salamander is a brightly-colored member of the lungless salamander family (Plethodontidae). True to its name, it resides in cool water springs and streams, making it an excellent indicator of a clean, well- oxygenated water source. Due to its strict habitat and clean water requirements, it is only found in a handful of locations within Connecticut. The Central Connecticut Lowlands divide this amphibian's range into distinct populations. Litchfield and Hartford Counties support the greatest populations of spring salamanders. This salamander is listed as a threatened species in Connecticut. In North America, the spring salamander occurs from extreme southeastern Canada south through New England, west to Ohio, and south down the Appalachians as far as northern Georgia and Alabama. Description This large, robust salamander ranges in color from salmon to reddish-brown to purplish-brown, with a translucent white underbelly. The snout appears “square” when viewed from above and the salamander has well-defined grooves near its eyes to its snout. The tail is laterally flattened with a fin-like tip. Young spring salamanders are lighter in color and have small gills. Their coloration does not have deeper reddish tints until adulthood. Total length ranges from 5 to 7.5 inches. Habitat and Diet Spring salamanders require very clean, cool, and well-oxygenated water. They can be found in streams, brooks, and seepage areas. Preferred habitat lies within steep, rocky hemlock forests. This species is intolerant to disturbances.
    [Show full text]
  • AMPHIBIANS of OHIO F I E L D G U I D E DIVISION of WILDLIFE INTRODUCTION
    AMPHIBIANS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE INTRODUCTION Amphibians are typically shy, secre- Unlike reptiles, their skin is not scaly. Amphibian eggs must remain moist if tive animals. While a few amphibians Nor do they have claws on their toes. they are to hatch. The eggs do not have are relatively large, most are small, deli- Most amphibians prefer to come out at shells but rather are covered with a jelly- cately attractive, and brightly colored. night. like substance. Amphibians lay eggs sin- That some of these more vulnerable spe- gly, in masses, or in strings in the water The young undergo what is known cies survive at all is cause for wonder. or in some other moist place. as metamorphosis. They pass through Nearly 200 million years ago, amphib- a larval, usually aquatic, stage before As with all Ohio wildlife, the only ians were the first creatures to emerge drastically changing form and becoming real threat to their continued existence from the seas to begin life on land. The adults. is habitat degradation and destruction. term amphibian comes from the Greek Only by conserving suitable habitat to- Ohio is fortunate in having many spe- amphi, which means dual, and bios, day will we enable future generations to cies of amphibians. Although generally meaning life. While it is true that many study and enjoy Ohio’s amphibians. inconspicuous most of the year, during amphibians live a double life — spend- the breeding season, especially follow- ing part of their lives in water and the ing a warm, early spring rain, amphib- rest on land — some never go into the ians appear in great numbers seemingly water and others never leave it.
    [Show full text]
  • Thurston County Species List
    Washington Gap Analysis Project 202 Species Predicted or Breeding in: Thurston County CODE COMMON NAME Amphibians RACAT Bullfrog RHCAS Cascade torrent salamander ENES Ensatina AMMA Long-toed salamander AMGR Northwestern salamander RAPR Oregon spotted frog DITE Pacific giant salamander PSRE Pacific treefrog (Chorus frog) RAAU Red-legged frog TAGR Roughskin newt ASTR Tailed frog PLVA Van Dyke's salamander PLVE Western redback salamander BUBO Western toad Birds BOLE American bittern FUAM American coot COBR American crow CIME American dipper CATR American goldfinch FASP American kestrel TUMI American robin HALE Bald eagle COFA Band-tailed pigeon HIRU Barn swallow STVA Barred owl CEAL Belted kingfisher THBE Bewick's wren PAAT Black-capped chickadee PHME Black-headed grosbeak ELLE Black-shouldered kite (White-tailed kite DENI Black-throated gray warbler DEOB Blue grouse ANDI Blue-winged teal EUCY Brewer's blackbird CEAM Brown creeper MOAT Brown-headed cowbird PSMI Bushtit CACAL California quail BRCA Canada goose VISO Cassin's vireo (Solitary vireo) BOCE Cedar waxwing PARU Chestnut-backed chickadee SPPA Chipping sparrow NatureMapping 2007 Washington Gap Analysis Project ANCY Cinnamon teal HIPY Cliff swallow TYAL Common barn-owl MERME Common merganser CHMI Common nighthawk COCOR Common raven GAGA Common snipe GETR Common yellowthroat ACCO Cooper's hawk JUHY Dark-eyed (Oregon) junco PIPU Downy woodpecker STVU European starling COVE Evening grosbeak PAIL Fox sparrow ANST Gadwall AQCH Golden eagle RESA Golden-crowned kinglet PECA Gray jay ARHE Great
    [Show full text]
  • Invited Review the Phylogenetic Odyssey of the Erythrocyte. IV. The
    Histol Histopathol (1997) 12: 147-170 Histology and 001: 10.14670/HH-12.147 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Invited Review The phylogenetic odyssey of the erythrocyte. IV. The amphibians C.A. Glomski, J. Tamburlin, R. Hard and M. Chainani State University of New York at Buffalo, Department of Anatomy and Cell Biology, School of Medicine, Buffalo, New York, USA Summary. Amphibians mani fes t permanently nucleated , Introduction oval. flatte ned , biconvex ery throcytes. These cell s demonstrate a cytoskeleton which is responsible for their H e moglo bin is a n unique, a nc ie nt respirato ry morphogeneti c conversion from a sphere to an ellipse me ta ll o -pig m e nt w hose s pec ia li zed func ti o ns a nd imparts to the ir cellular m ass revers ibility of a re d e mo ns tra bly e nha nced by it s m ic ro ­ traumati c deformati o n. The class Amphibia has the environmentali zati on in a passive-flowi ng, circulating largest of all erythrocytes attaining volumes greater than cell as opposed to free physical solution in the plasma as 10,000 fe mto lite rs in the Amphiuma. The la rge seen at the in vertebrate level (Glomski and Tamburlin, dimensions re fl ect evolutionary processes, genomic size, 1989). The degree of its polymeri zati on, association with plo id y a nd the re lative size of o the r somati c cell s. interactive enzyme syste ms, and the structure o f it s Conversely, the ery throcyte count a nd he mog lobin globin chains confe r upon the compound a spectrum of concentrat io n of these spec ies are low.
    [Show full text]
  • Recovery Strategy for the Pacific Giant Salamander (Dicamptodon Tenebrosus) in British Columbia
    British Columbia Recovery Strategy Series Recovery Strategy for the Pacific Giant Salamander (Dicamptodon tenebrosus) in British Columbia Prepared by the Pacific Giant Salamander Recovery Team April 2010 About the British Columbia Recovery Strategy Series This series presents the recovery strategies that are prepared as advice to the Province of British Columbia on the general strategic approach required to recover species at risk. The Province prepares recovery strategies to meet its commitments to recover species at risk under the Accord for the Protection of Species at Risk in Canada, and the Canada – British Columbia Agreement on Species at Risk. What is recovery? Species at risk recovery is the process by which the decline of an endangered, threatened, or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of a species’ persistence in the wild. What is a recovery strategy? A recovery strategy represents the best available scientific knowledge on what is required to achieve recovery of a species or ecosystem. A recovery strategy outlines what is and what is not known about a species or ecosystem; it also identifies threats to the species or ecosystem, and what should be done to mitigate those threats. Recovery strategies set recovery goals and objectives, and recommend approaches to recover the species or ecosystem. Recovery strategies are usually prepared by a recovery team with members from agencies responsible for the management of the species or ecosystem, experts from other agencies, universities, conservation groups, aboriginal groups, and stakeholder groups as appropriate. What’s next? In most cases, one or more action plan(s) will be developed to define and guide implementation of the recovery strategy.
    [Show full text]
  • Observation of the Breeding Behavior of the Chinese Giant Salamander (Andrias Davidianus) Using a Digital Monitoring System
    animals Article Observation of the Breeding Behavior of the Chinese Giant Salamander (Andrias davidianus) Using a Digital Monitoring System Qinghua Luo 1,2,3,* , Fang Tong 1, Yingjie Song 1,3, Han Wang 1,3, Maolin Du 4 and Hongbing Ji 2 1 Hunan Engineering Laboratory for Chinese Giant Salamander’s Resource Protection and Comprehensive Utilization, Jishou University, Zhangjiajie 427000, China; [email protected] (F.T.); [email protected] (Y.S.); [email protected] (H.W.) 2 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 3 Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China 4 Zhangjiajie Zhuyuan Biological Technology of Chinese Giant Salamander Co. Ltd., Zhangjiajie 427000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-159-0740-8196; Fax: +86-0744-8231-386 Received: 4 August 2018; Accepted: 15 September 2018; Published: 25 September 2018 Simple Summary: Behavioral research on wild Chinese giant salamanders (Andrias davidianus) is in its infancy because A. davidianus inhabit underground river dens that are difficult to access. In order to ascertain the types of reproductive behavior exhibited by A. davidianus, this paper monitored their reproductive activity using a digital monitoring system in a simulated natural habitat. The survey uncovered reproductive behavior such as sand-pushing, showering, courtship, oviposition, and parental care. We also recorded the parental care time allocation for the first time. This study provides a scientific basis for the method optimization for the ecological reproduction of A. davidianus and the conservation of its wild population.
    [Show full text]
  • AMPHIBIANS Please Remember That All Plants and Animals Nature Lover’S Paradise
    Please help us protect our Hampton, VA Natural Resources Welcome to Hampton’s City Parks. The City of Hampton is located in what is Hampton City Park’s called the Peninsula area of the Coastal Plain region of the State of Virginia. The forests, fields, rivers, marshes, and grasslands are a AMPHIBIANS Please remember that all plants and animals nature lover’s paradise. found in Hampton’s City Parks are protect- During your visit to any of Hampton’s out- ed by law. It is illegal to molest, injure, or standing city parks, we hope you have the opportunity to observe our many and diverse remove any wildlife including their nests, species of fauna and flora. eggs, or young. It is also illegal to remove, cut, damage, or destroy any plants (including plant parts) found in the park. Help us conserve YOUR natural resources. Green Frog "Enjoy Hampton's Natural Areas" Chorus Frog Tadpole For more information… If you have any questions regarding this brochure, or if you would like more information about Hamp- ton City Parks and Recreation parks please contact us at: Hampton Parks , Recreation & Leisure Services 22 Lincoln Street Hampton, VA 23669 Tel: 757-727-6348 www.hampton.gov/parks American Bullfrog Frogs and Toads Salamanders What is an Amphibian? The typical frog (genus Rana) has a relatively While salamanders look similar to lizards, they are smooth skin and long legs for leaping. While very different. The typical salamander (many gene- Amphibians belong to the Class Amphibia. The the typical toad (genus Bufo) has a warty skin ra) has smooth or warty moist skin (not scaly) and is word “amphibious” is based on Greek words and and short legs for jumping.
    [Show full text]
  • Evaluating the Effects of Road Crossing Structures on Stream-Associated Amphibians in the Wilson River Watershed, Tillamook State Forest, Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-15-2013 Evaluating the Effects of Road Crossing Structures on Stream-Associated Amphibians in the Wilson River Watershed, Tillamook State Forest, Oregon Sara Erin Twitchell Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Aquaculture and Fisheries Commons, Other Forestry and Forest Sciences Commons, and the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Recommended Citation Twitchell, Sara Erin, "Evaluating the Effects of Road Crossing Structures on Stream-Associated Amphibians in the Wilson River Watershed, Tillamook State Forest, Oregon" (2013). Dissertations and Theses. Paper 678. https://doi.org/10.15760/etd.678 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Evaluating the Effects of Road Crossing Structures on Stream-Associated Amphibians in the Wilson River Watershed, Tillamook State Forest, Oregon by Sara Erin Twitchell A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Science and Management Thesis Committee: Joseph Maser, Chair Catherine DeRivera Alan Yeakely Portland State University 2013 © 2012 Sara Erin Twitchell Abstract As replacement and removal of undersized culverts gains momentum as an effective technique for restoring natural stream flows and removing fish passage barriers, it is important to evaluate the benefits of these efforts on the in-stream and adjacent riparian habitat for other species of potential concern.
    [Show full text]