Bond Activation by Unconventional Lewis Pairs by Jacob Geri A

Total Page:16

File Type:pdf, Size:1020Kb

Bond Activation by Unconventional Lewis Pairs by Jacob Geri A Bond Activation by Unconventional Lewis Pairs by Jacob Geri A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2018 Doctoral Committee: Associate Professor Nathaniel Szymczak, Chair Professor Richard Laine Professor Melanie Sanford Professor John Wolfe Jacob B. Geri [email protected] ORCID iD: 0000-0002-9215-5610 © Jacob B. Geri 2018 Dedication This thesis is dedicated to my family: inherited, given, and chosen. But most importantly, my mother. ii Acknowledgements Nathaniel Szymczak has been an ideal PhD supervisor. He provides a high degree of freedom to his students, which forces them to take responsibility for the success or failure of fundamental project hypotheses from their first days in the lab. With Nate as a guide, I learned essential scientific skills: how to formulate testable hypotheses, how to recognize and escape from intractable approaches to chemical problems, and how to design robust experiments which provide definitive yes/no answers. In other words, Nate taught me a language in which one can ask Nature questions and get answers back. He also made me a better scientific communicator, and I tried to follow his example when mentoring undergraduate and graduate students later in my graduate career. He put an extraordinary amount of effort into my training; I estimate that he has spent between five and seven hundred hours teaching me how to be a good scientist. He always supported my work, always believed in my projects and dreams, never gave me an order, and never told me “no”. His integrity, intelligence, sensitivity, and idealism will inspire me for the rest of my life. I appreciate the helpful advice and suggestions of PhD committee members Richard Laine, John Wolf, and Melanie Sanford. I am especially thankful to Melanie Sanford, who gave me very insightful professional advice and excellent training while I worked in her lab during a first-year lab rotation. I also need to thank Vincent Pecoraro, who gave me my first lab experiences in graduate school while I was an entirely inexperienced synthetic chemist, and Nicolai Lehnert, who was very patient with my questions in his Advanced Inorganic Spectroscopy course. Corinna Schindler also provided essential experimental assistance. Much of my PhD work would not have been possible without the tireless work of Jeff Kampf, who provided crystal data for numerous difficult and unstable molecules. I would also like to thank Paul Lennon, James Windak, Eugenio Alvarado, and Chris Kojiro, who provided instrumental support and training, and Gunther Kellner for his help with equipment. The members of the Szymczak Lab have been wonderful comrades and friends. I am grateful for their patience with my idiosyncrasies and excesses over the last five years; without iii their support, scientific conversations, and frequent rebuttals to my crazier ideas I think I would still be deep in the scientific wilderness. Eric Dahl was an especially helpful; we worked well together and helped each other reach many crucial realizations and invent new research directions. Grayson Ritch has been a close personal friend, and has never hesitated to call me out on my excesses. Lily Hale’s piercing intelligence, indefatigable work ethic, idealism, and illuminating scientific conversations have always inspired me to be better and never accept failure. James Shanahan has been a close collaborator and friend, and his careful work and depth of vision have provided much needed perspective at crucial junctures. The five of us have been close, and I look forward to seeing what new directions our lives will take. In my early years in the lab, I was still quite inexperienced in the lab and benefited greatly from the mentorship of Dr. Cameron Moore at an important and precarious time. Oscar Tutusaus and Laura Essex also provided important support and validation at this time. Tyler Carter, another early Szymczak lab member, unknowingly enabled most of my later work by leaving behind a very consequential vial full of extra hexamethylborazine when he graduated. I had the pleasure of working with three very talented undergraduate students: Justin Wang, Tyler Lopez, and Joanna Ciatti. Tyler and Joanna were amazingly hard-working members of the lab, and impressed me with their drive and ambition. I am especially happy that I was able to see Joanna develop into an independent scientist over the course of her long tenure in the Szymczak lab, transitioning from working on an established project to leading a new effort, and am excited to see how her bright future unfolds. I have enjoyed watching Michael Wade Wolfe’s synthetic skills, knowledge, and scientific thinking develop over the past two years while pursuing independent work relating to our borazine fluoroalkylation reagents. I am especially happy that unfinished aspects of my project can continue in the hands of such an excellent colleague. Lastly, I need to thank all of my wonderful friends and family members for their love and support. Matthew Wolfe, Isaac Roles, Martin Hurtado, Claire Radigan, Julian Hurtado, Philip and Vicki Kiser, Jefferson Clayton, Raymond Rivera, Justin Straughan, Robert Campana, Alonso Arguelles, Aaron Proctor, Michael Robo, Michael Carnegie, Roland Philbin, Ethan Preston, Ryan Pool, and Noah Allington are wonderful friends who gave me perspective on life beyond the laboratory. I thank my family, but especially Lisa Geri, Barry Stipe, Carol Cushing, and Monica Stipe. Most importantly, I need to thank Jihkai Yeh for all of the love, energy, and happiness he has given me in our time together. iv Table of Contents Dedication ii Acknowledgements iii List of Figures viii Abstract xii Chapter 1. Introduction 1 1.1 The Frustrated Lewis Pair (FLP) Concept 1 1.2 Intermolecular Transition-Metal Based FLPs 3 1.3 Intramolecular Transition-Metal Based FLPs 5 1.4 FLPs Using Reduced Transition Metals as Lewis Bases 9 1.5 Organic electronically frustrated Lewis pairs 12 Chapter 2. A Proton-Switchable Nitrile Hydroboration Catalyst 15 2.1 Abstract 15 2.2 Introduction 15 2.3 Synthesis, Characterization, and Structural Features of Designed Complexes 17 2.4 E-H Heterolysis: Reactions and Kinetics 19 2.5 Catalytic Hydroboration of Polar Bonds 21 2.6 Mechanistic Analysis 23 2.7 Conclusions 26 2.8 Experimental Details 27 Chapter 3. Charge Effects Regulate Reversible CO 2 Reduction Catalysis 40 3.1 Abstract 40 3.2 Introduction 40 3.3 Reaction Optimization 41 3.4 Effect of Ligand Design Parameters on Catalytic Activity 42 3.5 Preliminary Mechanistic Analysis 44 v 3.6 Conclusions 46 3.7 Experimental Details 46 Chapter 4. Testing the Push-Pull Hypothesis: Lewis-Acid Augmented N 2 Activation 53 4.1 Abstract 53 4.2 Introduction 53 4.3 Preparation and Characterization of Fe-N2-LA Adducts 55 4.4 Computational Analysis of Fe-N2-LA Adducts 56 4.5 Electrochemical Characterization of Fe-N2-LA Adducts 58 4.6 Selective -N Protonation of N 2 59 4.7 Synthesis of Push-Pull Bimetallic N 2 Complexes 60 4.8 Conclusions 61 4.9 Experimental Details 61 Chapter 5. Recyclable Trifluoromethylation Reagents from Fluoroform 73 5.1 Abstract 73 5.2 Introduction 73 5.3 Computational Selection of Lewis Acids for Experimental Investigation 75 5.4 Experimental Screening of Lewis Acids 75 - 5.5 Synthesis and Characterization of Borazine-CF 3 Adducts 76 - 5.6 Preliminary Investigation of CF 3 Transfer to Organic Electrophiles 78 - + 5.7 Synthesis of Existing CF 3 , CF 3•, and CF 3 Reagents 79 5.8 Conclusions 80 5.9 Experimental Details 81 Chapter 6. Room-Temperature, Rapid, and Broad Scope Trifluoromethylation of Organic and - Inorganic Electrophiles with Borazine-CF 3 Adducts 93 6.1 Abstract 93 6.2 Introduction 93 6.3 Trifluoromethylation of Transition Metal Electrophiles 94 6.4 Trifluoromethylation of Main Group Inorganic Electrophiles 95 6.5 Comparison with Previously Reported Reagents 96 6.6 Raid Synthesis of Togni I from HCF 3 and its In-Situ Use 96 - 6.7 Addition of CF 3 to Carbonyl and Imine-Containing Compounds 97 vi - 6.8 Nucleophilic Aromatic Substitution and Heteroaromatic Addition with CF 3 97 6.9 Selective C-H Trifluoromethylation Reactions with Unsubstituted Quinolines 97 6.10 Conclusions 99 6.11 Experimental Details 99 Chapter 7. The Difluoromethyl Group as a Masked Nucleophile 122 7.1 Abstract 122 7.2 Introduction 122 - 7.3 Deprotonation of PhCF 2H and Capture of PhCF 2 Anion 126 7.4 Difluorobenzylation of Organic Electrophiles 127 7.5 K(iPr) 2 as a Base for PhCF 2H Deprotonation 128 - 7.6 Broad-Scope Preparation of Nucleophilic ArCF 2 Reagents 129 7.7 Conclusions 131 7.8 Difluoromethyl anion transfer reagents generated from difluoromethane 132 7.9 Experimental Details 135 Chapter 8. Summary and Future Outlook 148 8.1 Summary 148 8.2 Future Outlook 150 Bibliography 153 vii List of Figures Figure 1-1 Polar bond heterolysis ................................................................................................... 2 Figure 1-2 The FLP concept ........................................................................................................... 2 Figure 1-3 Example systems used in Chapters 2-7 ......................................................................... 3 Figure 1-4 Intermolecular transition metal-based FLPs ................................................................. 4 Figure 1-5 Intramolecular transition-metal based FLPs with primary coordination-sphere bound bases ...............................................................................................................................................
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • ORGANIC CHEMISTRY Alkynes
    University of Michigan new functional groups. (3) Developing novel routes for functionalizing readily available organic building blocks DEPARTMENT OF CHEMISTRY such as alkenes and alkynes. (4) Exploring the reduc- tive coupling of aldehydes and alkynes or enones and ORGANIC CHEMISTRY alkynes. Recent studies have demonstrated strategies involving redox isomerization to avoid the use of reduc- Graduate Program ing agents in processes of this type. (5) The discovery of new glycosylation methods and their application in collaborative projects involving enzymatic C-H oxida- tion reactions. Traditional Synthetic Novel C–H Bond Approach Functionalization Approach Fluorinated amino acids can be used to make super-stable “Tef- O O N O NH N lon” proteins; here the interior of a small protein is packed with the Michigan offers a diverse selection of research oppor- 2 Br 1. Br cat. PdII fluorous amino acid hexafluoroleucine (Marsh). O N tunities in Organic Chemistry with particular strengths Y Y Y N 2. NH3/MeOH Oxidant–X in Organometallic Chemistry, Organic Synthesis, Bioor- X X H 3. CH3I ganic Chemistry, and Organic Materials. Our innovative treatment of autoimmune diseases and cancer. (3) Anti-anxiety research rotation program allows students to explore Anti-convulsant Developing and applying chemical tools to study a range of exciting possibilities before choosing an Palladium-catalyzed C-H functionalization of an arene (Sanford). the role of oxidants as signaling molecules and the advisor. Specific research projects in each area are biological basis of aging. (4) Elucidating catalytic highlighted below. mechanisms and essential active site features of me- talloenzymes and ribozymes, including protein farnes- Organic Synthesis yltransferase, UDP-3-O-acyl-GlcNAC deacetylase, his- R3 H tone deacetylase and ribonuclease P.
    [Show full text]
  • Specific Determination of Airborne Sulfates and Sulfuric Acid
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1977 Specific etD ermination of Airborne Sulfates and Sulfuric Acid. Purnendu Kumar Dasgupta Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Dasgupta, Purnendu Kumar, "Specific eD termination of Airborne Sulfates and Sulfuric Acid." (1977). LSU Historical Dissertations and Theses. 3152. https://digitalcommons.lsu.edu/gradschool_disstheses/3152 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Acids Lewis Acids and Bases Lewis Acids Lewis Acids: H+ Cu2+ Al3+ Lewis Bases
    E5 Lewis Acids and Bases (Session 1) Acids November 5 - 11 Session one Bronsted: Acids are proton donors. • Pre-lab (p.151) due • Problem • 1st hour discussion of E4 • Compounds containing cations other than • Lab (Parts 1and 2A) H+ are acids! Session two DEMO • Lab: Parts 2B, 3 and 4 Problem: Some acids do not contain protons Lewis Acids and Bases Example: Al3+ (aq) = ≈ pH 3! Defines acid/base without using the word proton: + H H H • Cl-H + • O Cl- • • •• O H H Acid Base Base Acid . A BASE DONATES unbonded ELECTRON PAIR/S. An ACID ACCEPTS ELECTRON PAIR/S . Deodorants and acid loving plant foods contain aluminum salts Lewis Acids Lewis Bases . Electron rich species; electron pair donors. Electron deficient species ; potential electron pair acceptors. Lewis acids: H+ Cu2+ Al3+ “I’m deficient!” Ammonia hydroxide ion water__ (ammine) (hydroxo) (aquo) Acid 1 Lewis Acid-Base Reactions Lewis Acid-Base Reactions Example Metal ion + BONDED H H H + • to water H + • O O • • •• molecules H H Metal ion Acid + Base Complex ion surrounded by water . The acid reacts with the base by bonding to one molecules or more available electron pairs on the base. The acid-base bond is coordinate covalent. The product is a complex or complex ion Lewis Acid-Base Reaction Products Lewis Acid-Base Reaction Products Net Reaction Examples Net Reaction Examples 2+ 2+ + + Pb + 4 H2O [Pb(H2O)4] H + H2O [H(H2O)] Lewis acid Lewis base Tetra aquo lead ion Lewis acid Lewis base Hydronium ion 2+ 2+ 2+ 2+ Ni + 6 H2O [Ni(H2O)6] Cu + 4 H2O [Cu(H2O)4] Lewis acid Lewis base Hexa aquo nickel ion Lewis acid Lewis base Tetra aquo copper(II)ion DEMO DEMO Metal Aquo Complex Ions Part 1.
    [Show full text]
  • Ate Complexes for Catalytic C-C Bond Forming Reaction 1/13
    2007/09/08 Literature seminer Tomoyuki Mashiko (M1 part) Ate Complexes for Catalytic C-C Bond Forming Reaction 1/13 Organometallics R Lewis acid Lewis base - B R B R Li+ R-Li + Ate complex R Al R-MgX etc R-Na etc Zn etc • Central metal is anionic. Cu The reaction proceeds as anionic character is lost. Generalization of Reaction Pathways for Ate Complexes 1) Non-Oxidative Charge Cancellation (Ligand Transfer) R R <representative example> M- (n) M(n) R R R LiAlH , NaBH .. R- M = B, Al, Zn etc 4 4. 2) Oxidative Charge Cancellation (Non-Ligand Transfer) <representative example> R + E R Gilman reagent M- (n) (n+2) R R M M = Cu R E LiCuR , R Cu(CN)Li .. R 2 2 2. O- Ⅱ + + [LiCuR2] - Ⅰ - O + LiCuR2 O Ⅰ O Li + RCu O R Ⅲ Ⅰ R CuR CuR2 0 Today's contents 1. Grignard Reaction for the Synthesis of 3°-Alcohol with Ate Complex 1-0 Introduction about Grignard Reaction of Ketone 1-1 Grignard Reaction of Ketone with Mg Ate Complex/ Zn Ate Complex (Prof. Ishihara and Dr. Hatano's work) O RMgX+ 2RLi or RMgCl+ ZnCl2 (cat) OH R R1 R2 R1 R2 1-2 History About Zn Ate Complex 1-3 Perspective of Catalytic Synthesis of 3°-alcohol with Grignard Reaction 2. Cross Coupling Reaction of Alkyl Halide Catalyzed by Ate Complex 2-0 Introduction about the Relation between Cross Coupling and Ate Complex 2-1 Cross Coupling with Ni or Pd Ate Complex (Prof. Kambe and Dr. Terao's work) NiCl2 (cat) Alkyl-R Alkyl-X + Ⅱ R-m Ni 2-2 Cross Coupling with Cu Ate Complex (Prof.
    [Show full text]
  • Lesson 21: Acids & Bases
    Lesson 21: Acids & Bases - Far From Basic Lesson Objectives: • Students will identify acids and bases by the Lewis, Bronsted-Lowry, and Arrhenius models. • Students will calculate the pH of given solutions. Getting Curious You’ve probably heard of pH before. Many personal hygiene products make claims about pH that are sometimes based on true science, but frequently are not. pH is the measurement of [H+] ion concentration in any solution. Generally, it can tell us about the acidity or alkaline (basicness) of a solution. Click on the CK-12 PLIX Interactive below for an introduction to acids, bases, and pH, and then answer the questions below. Directions: Log into CK-12 as follows: Username - your Whitmore School Username Password - whitmore2018 Questions: Copy and paste questions 1-3 in the Submit Box at the bottom of this page, and answer the questions before going any further in the lesson: 1. After dragging the small white circles (in this simulation, the indicator papers) onto each substance, what do you observe about the pH of each substance? 2. If you were to taste each substance (highly inadvisable in the chemistry laboratory!), how would you imagine they would taste? 3. Of the three substances, which would you characterize as acid? Which as basic? Which as neutral? Use the observed pH levels to support your hypotheses. Chemistry Time Properties of Acids and Bases Acids and bases are versatile and useful materials in many chemical reactions. Some properties that are common to aqueous solutions of acids and bases are listed in the table below. Acids Bases conduct electricity in solution conduct electricity in solution turn blue litmus paper red turn red litmus paper blue have a sour taste have a slippery feeling react with acids to create a neutral react with bases to create a neutral solution solution react with active metals to produce hydrogen gas Note: Litmus paper is a type of treated paper that changes color based on the acidity of the solution it comes in contact with.
    [Show full text]
  • Document 4. Memòria D'activitats 2019
    MEMÒRIA D’ACTIVITATS FUNDACIÓ INSTITUT CATALÀ D’INVESTIGACIÓ QUÍMICA ANY 2019 Memòria d’Activitats ICIQ 2019 2 Memòria d’Activitats ICIQ 2019 Sumari 1. L’Institut – visió general ......................................................................................................... 5 2. Governança i organització ..................................................................................................... 6 2.1. Governança .............................................................................................................. 6 2.2. Organització ............................................................................................................. 8 2.3. Àrea de Recerca ..................................................................................................... 11 3. Recursos humans ................................................................................................................. 16 3.1. Pla de formació ...................................................................................................... 18 4. Resultats de recerca ............................................................................................................ 21 4.1. Publicacions científiques ........................................................................................ 21 4.1.1. Anàlisi bibliomètric .................................................................................. 21 4.1.2. Publicacions en portades o contraportades de revistes ......................... 26 4.2. Recerca destacada ................................................................................................
    [Show full text]
  • Clark, Hobart, and Neu 1995
    Waste Isolation Pilot Plant Compliance Certification Application Reference 135 Clark, D.L., D.E. Hobart, and M.P. Neu. 1995. Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry, Chem Revs. Vol. 95; 25-48. Submitted in accordance with 40 CFR $194.13, Submission of Reference Materials. Carera, ;., Neurcan. 3.p.. - 986 "Est~rncaonoi ?x:ier Parcrneters L'nae; Panslent anc' S:eadu Sco:z ~oi~icions,2. Unlacaness, Stc;z.:ird, and solucion ftiqo:ithrns." 9. Clark, D.L.. Floba~.D.E., Neu, M.P.. 1995 '9ctinicz Carbonate Complexes ana Thslr Irnporcccca in Ect;nide Environmencai G,~mrsny."=?em Revs. ',Jot. 05, 25-48. ON ' ; x 28.C3 398.00 Cleveland, J.M.. i 9* nGit:calRevleu of Plutonium Eov~lbrioof Environrnencal Concern. In Moueirng in Equmus S;lstms: Smrct:on, So~ubrlrtuanu tlnq of t9e Emencan Chernrcc~Societu, Pdiarnr Beacn, Fi, Series: 3521 -336. Cti~- ; x CLO.CC 220.30 . - , I. 2av1s.G.B.. Jcnnsco i 984 'Ccxxenc on Cmcamincnc Tianspor: :n fracturad PONS Media: fcr s Sjscern cS ~rciielFrcc:vres" 5y SLG~C~U,C.A., and Fmd, E.O.,' Rasc~rcesRzsecrcn, \jot. 23,i\.'o. 9. s?. : 321 - 1 322, Szpt. ., -- ? 984. 1 Qtl; I i x i 3.:: ' 48.50 , , -. - 4 Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry I David L. Clark,'~~~David E. Hobart,lb and Mary P. Neda Chemical Science and Technology Division, Los Alamas National Laboratory, Los Alamos, Mw Me& 87545, l?eThe Sciems DMm, Lawrence Berkeley Laboratory, BeBerky, California 94720, and UE G. T. Seabog imWe for Transactinium Scienae, I Livemre, California 94551 I Received May 16, 1994 (Revised Manuscript ReceM September 16, 1994) Table 1.
    [Show full text]
  • Acids and Bases
    self study Most of this is probably background from a prior chemistry course; some near the end is GG325 review Aqueous Inorganic Geochemistry of Natural Waters Three important topics: 1. Acids, bases and the aqueous CO 2 system 2. Behavior of ions in aqueous solution 3. Quantifying aqueous solubility and total dissolved solids (TDS) Pease read Manahan chapter 3 and review chapter 28 (6 th Ed) for next week GG425 Wk2, S2016 Acids and Bases GG425 Wk2, S2016 1 1. Two Types of Acids and Bases: a. Brönstead acids and bases contain H + and OH - HCl ↔ H + + + Cl- (acid) NaOH ↔ Na + + OH - (base). + - water is acid and base simultaneously, H 2O ↔ H + OH . pure water and acid neutral aqueous solutions have equal amounts of H + and OH -. b. Lewis acids and bases Brönstead acids can be thought of as electron deficient ions and bases as electron excessive ions , which provides a different perspective on acidity/basisity that we can extend to other (non protic and non hydroxyl) compounds. We call this the Lewis acid/base concept. GG425 Wk2, S2016 Brönstead acidity: Kw is the equilibrium constant for the dissociation of water. + - H2O ↔ H + OH + - -14 Kw = [H ][OH ] = 10 at 25 EC Kw has a slight temperature dependence: Temp ( EC) Kw 0 10 -14.94 less dissociated 25 10 -14 60 10 -13.02 more dissociated GG425 Wk2, S2016 2 Brönstead acidity: + - H2O ↔ H + OH + - Kw = [H ][OH ] An acid neutral solution always has [H +] = [OH -]. Setting [H +] = x, yields x 2= 10 -14 x = 10 -7 = moles of H + in this solution.
    [Show full text]
  • The Reactivity of Hydrogen and Carbon Dioxide Mediated by Main Group Compounds
    THE REACTIVITY OF HYDROGEN AND CARBON DIOXIDE MEDIATED BY MAIN GROUP COMPOUNDS A dissertation submitted to Imperial College London for the degree of Doctor of Philosophy By Thomas James Herrington MChem (Oxon), Imperial College London May 2014 CID: 00467189 Supervised By Dr Andrew Ashley & Dr George Britovsek Chemistry Department 1 ABSTRACT The Reactivity of Hydrogen and Carbon Dioxide Mediated by Main Group Compounds The focus of this thesis has been the design and synthesis of new frustrated Lewis pair (FLP) systems which from structural modifications retain their ability to activate H2/CO2, while displaying differing reactivity modes. Chapter Two describes the first practical synthesis of tris[3,5- bis(trifluoromethyl)phenyl]borane (BArF18). Gutmann-Beckett Lewis acidity measurements reveal that this borane is a more powerful Lewis acid than B(C6F5)3, but it nevertheless is found to bind H2O much more reversibly than B(C6F5)3. The BArF18/2,2,6,6- tetramethylpiperidine (TMP) FLP provides a rare example of H2 activation in Et2O solvent, in which the borohydride salt has been structurally characterised by X-ray crystallography. A – novel bridging borohydride [-H(BArF18)2] was revealed, which contrasts to the characteristic terminal borohydrides formed by other borane based mediated FLP systems. Chapter Three details the design of fluorinated trisalkylboranes including B[CH(C6F5)2]3 which has been synthesised for the first time. This borane has been structurally characterised using X-ray crystallography and displays hydrogen bonding interactions between the ortho fluorines on each aryl ring and the adjacent CH proton. Interestingly, and despite this borane showing no Lewis acidity using Gutmann-Beckett and Childs techniques, the B[CH(C6F5)2]3/TMP FLP provides a rare example of H2 activation in THF solvent.
    [Show full text]
  • Group 16 Elements in Frustrated Lewis Pair Chemistry
    Group 16 Elements in Frustrated Lewis Pair Chemistry by Fu An Tsao A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Toronto © Copyright by Fu An Tsao 2018 Group 16 Elements in Frustrated Lewis Pair Chemistry Fu An Tsao Doctor of Philosophy Department of Chemistry University of Toronto 2018 Abstract Frustrated Lewis Pairs (FLPs) describe combinations of sterically encumbered Lewis acids and bases that do not form classical adducts. This unquenched reactivity has been shown to activate a wide plethora of small molecules, including H2, CO2, alkynes and ketones. While many different main group compounds have been applied in this context, studies of group 16 elements in FLP chemistry remain scarce. The main objective of this dissertation is to expand the scope of FLP chemistry to include group 16 elements, as they can function both as Lewis bases and as Lewis acids. The first portion of this dissertation focuses on the syntheses and reactivity studies of tellurium-boron heterocycles, wherein tellurium acts as a Lewis base. 1,1-carboboration of tellurium-substituted acetylides was shown to proceed smoothly at room temperature, leading to the formation of Te/B intramolecular FLP and 1,4-telluraborine. Several 1,4- telluraborines were found to have mild to high aromaticity as manifested by their unusual stability against oxygen and moisture. They can also undergo a number of unique reactions, including FLP-type alkyne exchange reactions and selective protonolysis of the exocyclic B–C bond. These findings allowed for the facile derivatization of this new class of compounds.
    [Show full text]
  • Development of Novel Methodologies in Organic Synthesis Based on Ate Complex Formation
    No.171 No.171 ResearchResearch ArticleArticle Development of Novel Methodologies in Organic Synthesis Based on Ate Complex Formation Keiichi Hirano1* and Masanobu Uchiyama1,2* 1 Graduate School of Pharmaceutical Sciences, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 2 Elements Chemistry Laboratory, RIKEN,2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan E-mail: [email protected]; [email protected] Abstract: We have been focusing on development of novel synthetic methodologies based on ate complex formation. By fine-tuning of coordination environments of various main-group metals (Zn, Al, and B) as well as transition metal (Cu), a wide range of carbon-carbon bond and carbon-heteroatom bond (C–I, C–O, C–N, C–H, C–Si, and C–B) formation reactions have been realized in highly regio- and chemoselective manner taking advantage of characteristics of the elements. Keywords: Ate complex, Halogen-metal exchange, Deprotonative metalation, Chemoselectivity, Regioselectivity 1. Introduction 2. Ate Complexes Ate complexes are known to be anionic organometallic Discovery of the first mono-anion type zincate, Na[ZnEt3], complexes, whose central metals have increased valence by by James A. Wanklyn dates back to 1859,1) and even di-anion accepting Lewis basic ligands to their vacant orbitals. They type zincate, Li2[ZnMe4], was already reported by Dallas T. are attractive chemical species offering tunable reactivity due Hurd in 1948.2) Zincates experienced a long blank after these to their flexible choices of central metals, counter cations, important findings before they started to attract attentions and coordination environments.
    [Show full text]