Fossil Primates 1

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Primates 1 Fossil primates 1 Family Parapithecidae (extinct Fossil primates Oligocene monkeys) Extinct members of the order of mammals to which Infraorder Platyrrhini (New World anthro- humans belong. All current classifications divide the poids) living primates into two major groups (suborders), Superfamily Ateloidea (New World but zoologists differ as to whether the tarsier (Tar- monkeys) sius) should be classified with the lower primates Family Atelidae (howler, spider, (lemurs, lorises, and bushbabies) or the higher pri- saki, titi, and owl monkeys) mates (New and Old World monkeys, greater and Family Cebidae (squirrel, capuchin, lesser apes, and humans). and marmoset monkeys) All primates have a common origin which, how- Infraorder Catarrhini (Old World anthro- ever, is not reflected in the universal possession of poids) a suite of diagnostic features. The order as a whole Parvorder Eocatarrhini (archaic has been characterized in terms of showing a group catarrhines) of progressive evolutionary trends, notably toward Family Propliopithecidae (extinct the predominance of the visual sense, the reduction common ancestors of hominoids of the sense of smell and associated structures, im- and cercopithecoids) proved grasping and manipulative capacities, and en- Family Pliopithecidae (extinct early largement of the higher centers of the brain. Among catarrhines) the extant primates, the lower primates more closely Parvorder Eucatarrhini (advanced catar- resemble forms that evolved relatively early in the rhines) history of the order, while the higher primates rep- Superfamily Hominoidea (apes and resent a group more recently evolved (Fig. 1). A humans) classification of the primates, as accepted here, is as Family Proconsulidae (extinct early follows: apes) Family Hylobatidae (gibbons, lesser Primates apes) Semiorder Plesiadapiformes (archaic extinct Family Hominidae (great apes, primates) humans, and extinct relatives) Superfamily Paromomyoidea (paro- Superfamily Cercopithecoidea (Old momyids, picrodontids) World monkeys) Superfamily Plesiadapoidea (plesia- Family Cercopithecidae (Old World dapids, carpolestids) monkeys) Semiorder Euprimates (modern primates) Suborder Strepsirhini (toothcombed “prosimi- Early primates. The earliest primates are placed in ans” and extinct allies) their own suborder, Plesiadapiformes, because they Infraorder Adapiformes (extinct early have no direct evolutionary links with, and bear strepsirhines) no adaptive resemblances to, any group of living Superfamily Adapoidea (extinct early primates. However, the chewing teeth and the strepsirhines) locomotor anatomy of these fossil forms sufficiently Infraorder Lemuriformes (modern resemble those of later primates to demonstrate strepsirhines) the common origin of the two groups. Best known Superfamily Lemuroidea (typical from the Paleocene Epoch, around 66–54 million lemurs) years ago (Ma), and found in both the Old World Superfamily Indrioidea (indris, and the New World, the plesiadapiforms retained aye-ayes, and subfossil relatives) clawed hands and feet, had rather small brains Superfamily Lorisoidea (lorises, compared to their body size, possessed large special- bushbabies, mouse and dwarf ized front teeth, and were probably arboreal in habit lemurs) (Fig. 2). These animals are also known from fossil Suborder Haplorhini (tarsiers and higher deposits on Ellesmere Island, in Arctic Canada, which primates) was then covered by the subtropical forest stretching Hyporder Tarsiiformes (tarsiers and extinct continuously from western North America across a relatives) landlocked North Atlantic into western Europe. Superfamily Tarsioidea (tarsiers and Eocene primates. There is no known plesiadapi- close relatives) form that is a satisfactory candidate for the ances- Superfamily Omomyoidea (extinct try of the fossil primates of modern aspect typical early haplorhines) of the succeeding epoch, the Eocene (54–34 Ma). Hyporder Anthropoidea (higher primates) Often termed euprimates, they are divided broadly Infraorder Paracatarrhini (archaic anthro- into lemurlike forms, usually grouped into the poids) superfamily Adapoidea, and tarsierlike forms Family Oligopithecidae (archaic (Omomyoidea), although this division may prove to protoanthropoids) be oversimplified. Eocene primates of both the Old 2 Fossil primates STREPSIRHINI TARSIIFORMES Lemuridae Indriidae Daubentoniidae Lorisidae Tarsiidae ANTHROPOIDEA Cebidae Atelidae Cercopithecidae Hylobatidae Hominidae Fig. 1. Representatives of living primate families. and New Worlds already display the trends that mark It is possible that the origins of some specific modern primates as a whole: These arboreal animals groups of extant lower primates may be traced back possessed grasping hands and feet in which sharp to or through certain known primate genera of the claws were replaced by flat nails backing sensitive Eocene. Even if this is not the case, however, it is pads; the snout was reduced, suggesting a deempha- universally accepted that the antecedents of these sis of smell, while the bone-ringed eyes faced more living forms are to be sought somewhere within the forward, producing stereoscopic vision and suggest- Eocene primate radiation, though the details of this ing primary reliance on the sense of sight; and the ancestry may remain unclear. In North America and brain was somewhat enlarged relative to body size Europe, lower primates had nearly disappeared by when compared to those of other mammals of the the close of the Eocene, while virtually all known period. fossil lower primates of later epochs in Africa and 10 cm Fig. 2. Reconstructed skeleton of Plesiadapis tricuspidens, a Eurasian plesiadapiform from about 60 Ma. Known parts are shaded. Fossil primates 3 Asia are closely related to modern primates of these areas. Modern lower primates. The extant lower primates are allocated to the suborder Prosimii if Tarsius is in- cluded, and to the suborder Strepsirhini if this strange primate is excluded, as is provisionally done here. All extant strepsirhines possess dental scrapers (tooth- combs), in which the lower front teeth are elon- 20 cm gated, closely approximated, and forwardly project- ing. These specialized structures are used both in feeding and in social grooming. Additionally,all living strepsirhines retain a moist, naked rhinarium (wet nose, as in a dog) and related structures, reflecting a greater reliance on the sense of smell than is typical of higher primates. All are also united by possessing a toilet claw (used for self-cleaning) on the second digit of the foot. Although all strepsirhines possess grasping hands and feet, their manual dexterity is generally inferior to that of higher primates; their brains are also relatively small. There is no ancient primate fossil record in Mada- gascar, home of the most diverse group of modern lower primates, but extinct species little more than a thousand years old document a much wider adap- tive radiation before the arrival of humans on the Fig. 3. Anjohibe specimen of Paleopropithecus ingens, mounted in probable habitat posture. (Photo courtesy of American Geological Institute) island. Notable among those extinct lemurs are Paleopropithecus, a large-bodied climber-hanger somewhat like the orangutan in its locomotion more recent common ancestry with apes and hu- (Fig. 3); the semiterrestrial and dentally specialized mans, with which they are grouped in the infraorder members of the subfamily Archaeolemurinae, related Catarrhini. to the living indriids but adapted somewhat like ba- The earliest known anthropoids may be repre- boons; and Megaladapis, a very large, vertically sented by a few teeth (of Algeripithecus)from postured, short-limbed, and probably slow-moving Algeria about 45 million years old, but better- climber with adaptive resemblances to the koala preserved forms appear in the Fayum region of Egypt of Australia. Fragmentary remains of lorisoid strep- between 35 and 33 Ma. Although now a desert, at the sirhines are known from the Miocene of East Africa time this was a lush tropical forest through which and Pakistan. meandered the sluggish proto-Nile river. Three main Tarsiers. The tiny Tarsius, which lives today in groups of early higher primates are represented: the Southeast Asia, represents a link between the tooth- oligopithecids, the parapithecids, and the proplio- combed strepsirhines and the anthropoids (mon- pithecids. The former two appear to be only distantly keys, apes, and humans). In many respects (such as related to any of the living monkeys or apes, although lack of toothcomb, dry nasal area, molecular biology, they may be termed monkeys in the broad sense, as and placentation), it is related to the anthropoids, their adaptations are similar to those of modern mon- but dentally it is usually thought primitive, although keys. The propliopithecids (species of Propliopithe- some authors have found similarities to some strep- cus, including Aegyptopithecus) may be close to the sirhines. The extinct Eocene omomyoids are close to common ancestry of later catarrhines (Old World an- tarsiers skeletally; they are often considered broadly thropoids). These arboreal animals were the size of ancestral to the anthropoids for that reason and also small cats, with apelike teeth, small brain, and limbs because some have monkeylike front teeth. A tarsier- similar to those of the acrobatic South American like fossil has been recovered in Egypt from deposits atelines. Representatives of modern lineages begin to of early Oligocene age (35 Ma). Living tarsiers
Recommended publications
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • The Mio-Pliocene European Primate Fossil Record: Dynamics and Habitat Tracking
    Journal of Human Evolution 47 (2004) 323e341 The Mio-Pliocene European primate fossil record: dynamics and habitat tracking Jussi T. Eronena,*, Lorenzo Rookb aDepartment of Geology, P.O. Box 64, FIN-00014 University of Helsinki, Finland bDipartimento di Scienze della Terra, Universita di Firenze, Via G.La Pira 4, 59121 Firenze, Italy Received 16 September 2003; accepted 13 August 2004 Abstract We present here a study of European Neogene primate occurrences in the context of changing humidity. We studied the differences of primate localities versus non-primate localities by using the mammal communities and the ecomorphological data of the taxa present in the communities. The distribution of primates is influenced by humidity changes during the whole Neogene, and the results suggest that the primates track the changes in humidity through time. The exception to this is the Superfamily Cercopithecoidea which shows a wider range of choices in habitats. All primate localities seem to differ from non-primate localities in that the mammal community structure is more closed habitat oriented, while in non-primate localities the community structure changes towards open-habitat oriented in the late Neogene. The differences in primate and non-primate localities are stronger during the times of deep environmental change, when primates are found in their preferred habitats and non-primate localities have faunas better able to adapt to changing conditions. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: fossil primates; Cercopithecoidea; herbivore humidity proxy; hypsodonty; community structure; habitat tracking; Late Neogene; Europe Introduction look at the paleoecological scenarios for the temporal and geographical variation of different The Primate record of Europe is comparatively primate families and genera (e.g.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1997 Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution Clare Katharine Stott University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Anthropology Commons Recommended Citation Stott, Clare Katharine, "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution. " Master's Thesis, University of Tennessee, 1997. https://trace.tennessee.edu/utk_gradthes/4234 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Clare Katharine Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on hominoid Evolution." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology. Andrew Kramer, Major Professor We have read this thesis and recommend its acceptance: Richard Jantz, Lyle Konigsberg Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Clare K. Stott entitled "Aspects of Ecology and Adaptation with an Emphasis on Hominoid Evolution".
    [Show full text]
  • Patterns of Cranial Shape Variation in the Papionini (Primates
    Michelle Singleton Patterns of cranial shape variation in the Department of Anatomy, Papionini (Primates: Cercopithecinae) Midwestern University, 555 31st Street, Downers Grove, Traditional classifications of the Old World monkey tribe Papionini Illinois 60515, U.S.A. (Primates: Cercopithecinae) recognized the mangabey genera E-mail: Cercocebus and Lophocebus as sister taxa. However, molecular studies [email protected] have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other Received 10 January 2001 papionins. Recent studies have identified cranial and postcranial Revision received features which distinguish the Cercocebus–Mandrillus clade, however 26 October 2001 and the detailed similarities in cranial shape between the mangabey accepted 12 December 2001 genera are more difficult to reconcile with the molecular evidence. ff Keywords: Papionini, Given the large size di erential between members of the papionin molecular clades, it has frequently been suggested that allometric mangabey diphyly, cranial ff homoplasy, allometry, e ects account for homoplasy in papionin cranial form. A combina- geometric morphometrics. tion of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development. Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differ- ences in regression lines also were noted.
    [Show full text]
  • Primate Evolution and Human Origins (Eds: W
    11/9/11 (1) Evolution of the Primate Brain To appear in Handbook of Palaeoanthropology, Vol. 2: Primate Evolution and Human Origins (Eds: W. Henke, H. Rothe & I. Tattersall), Springer-Verlag, in press. (1) Evolution of the Primate Brain Dean Falk Department of Anthropology Florida State University Tallahassee, FL 32306-7772 [email protected] (12.) 1 Introduction The mammalian order of primates is known for a variety of species that are lively, curious, social, and intelligent. Nonhuman primates are of special interest to people, not only because they are appealing and entertaining to watch, but also because certain species (e.g., of macaques or baboons) are genetically close to humans, which makes them excellent animal models for medical research. As curious primates ourselves, we wonder about our evolutionary origins. One way to address this topic is to study and compare species from living primates that are thought to approximate broad stages (or grades) that occurred during some 65 million years of primate evolution. Thus, one may compare particular anatomical structures or behaviors across appropriate representatives from the series prosimian-> monkey-> ape -> human. When possible, such a comparative method should be supplemented with the direct method of studying fossil primates, which adds elements of specificity and time to the picture. Within this broader context, we are also interested in the more specific question of how humans came to be, not only the largest-brained primate, but also the most intelligent species on Earth. In order to address this question, one must study primate brain evolution. From our general understanding of primate evolution, we know that certain major adaptations occurred in some groups and that these changed and sculpted evolving brains during many millions of years.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • The Presence of a Large Cercopithecine (Cf. Theropithecus Sp.) in the ‘Ubeidiya Formation (Early Pleistocene, Israel)
    ARTICLE IN PRESS Journal of Human Evolution xxx (2009) 1–11 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The presence of a large cercopithecine (cf. Theropithecus sp.) in the ‘Ubeidiya formation (Early Pleistocene, Israel) Miriam Belmaker Department of Anthropology, Harvard University, 11 Divinity Ave, Cambridge MA 02138, USA article info abstract Article history: This study presents the discovery of a right cercopithecine calcaneus from the site of ‘Ubeidiya, Israel, Received 25 June 2008 dated to ca. 1.6 Ma. The fossil is described and statistically compared to bones of modern and fossil Accepted 20 August 2009 cercopithecids. The specimen can be attributed to a large-bodied cercopithecine and represents a new primate taxon previously unidentified in the Early Pleistocene of the Southern Levant. Among extant Keywords: genera, it is most clearly similar to calcanei of Theropithecus. However, it could also represent Para- Primate biogeography dolichopithecus, but this alternative is unlikely due to the morphological uniqueness of the latter taxon. Out of Africa I The finding of an African taxon in the Levant suggests a circum-Mediterranean dispersal route for the Cercopithecidae taxon out of Africa, and emphasizes the importance of the Levantine corridor as a biogeographic dispersal route between Africa and Eurasia during the Early Pleistocene. Evidence for the biogeography of large-bodied primates is essential for the understanding of the dispersal routes of ‘‘Out of Africa I’’ taxa and can help elucidate Homo dispersal patterns in the Early Pleistocene. Ó 2009 Elsevier Ltd. All rights reserved. Introduction Pleistocene contexts (Delson, 1980).
    [Show full text]
  • A Comparative Analysis of the Wrist and Ankle Morphology of Hominoids and Lorisids, with Implications for the Evolution of Hominoid Locomotion
    Durham E-Theses A comparative analysis of the wrist and ankle morphology of hominoids and lorisids, with implications for the evolution of hominoid locomotion Read, Catriona S. How to cite: Read, Catriona S. (2001) A comparative analysis of the wrist and ankle morphology of hominoids and lorisids, with implications for the evolution of hominoid locomotion, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3775/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 A Comparative Analysis of the Wrist and Ankle Morphology of Hominoids and Lorisids, with Implications for the Evolution of Hominoid Locomotion A Dissertation presented by Catriona S. Read to The Graduate School For the degree of Master of Science m Biological Anthropology Department of Anthropology University of Durham September 2001 The co11yright of this thesis rests with the author.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • A New Dryopithecine Mandibular Fragment from the Middle Miocene
    Journal of Human Evolution 145 (2020) 102790 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Short Communications A new dryopithecine mandibular fragment from the middle Miocene of Abocador de Can Mata and the taxonomic status of ‘Sivapithecus’ occidentalis from Can Vila (Valles-Pened es Basin, NE Iberian Peninsula) * David M. Alba a, , Josep Fortuny a, Josep M. Robles a, Federico Bernardini b, c, Miriam Perez de los Ríos d, Claudio Tuniz c, b, e, Salvador Moya-Sol a a, f, g, * Clement Zanolli h, a Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, Cerdanyola del Valles, Barcelona, 08193, Spain b Centro Fermi, Museo Storico della Fisica e Centro di Studi e Ricerche ‘Enrico Fermi’, Piazza del Viminale 1, Roma, 00184, Italy c Multidisciplinary Laboratory, The ‘Abdus Salam’ International Centre for Theoretical Physics, Via Beirut 31, Trieste, 34151, Italy d ~ Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto, 1045, Nunoa,~ Santiago, Chile e Center for Archaeological Science, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia f Unitat d'Antropologia Biologica, Department de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, Campus de la UAB, Cerdanyola del Valles, Barcelona, Spain g Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain h Laboratoire PACEA, UMR 5199 CNRS, Universite de Bordeaux, allee Geoffroy Saint Hilaire, 33615 Pessac Cedex, France article info Article history: 2012; Alba et al., 2018).
    [Show full text]