NASA Experience with Automated and Autonomous Navigation in Deep Space

Total Page:16

File Type:pdf, Size:1020Kb

NASA Experience with Automated and Autonomous Navigation in Deep Space Jet Propulsion Laboratory California Institute of Technology NASA Experience with Automated and Autonomous Navigation in Deep Space Ed Riedel Optical Navigation Group Mission Design and Navigation Section Jet Propulsion Laboratory California Institute of Technology A description of work with many contributions from: Andrew Vaughan, Nick Mastrodemos, Shyam Bhaskaran, William M. Owen, Dan Kubitscheck, Bob Werner, Bob Gaskell (all JPL) Christopher Grasso (BSE) Jet Propulsion Laboratory California Institute of Technology Introductory Remarks 2 Jet Propulsion Laboratory California Institute of Technology What is Optical Navigation? Optical Navigation: + The location of a near-field + object (e.g. the Moon) + + relative to a well-known far- + + field object (e.g. the background starfield) or relative to well known camera attitude. (However, with a sufficiently wide-field imager, pointing knowledge can be obtained simultaneous to position knowledge) Optical Navigation variously requires: • Accurate star catalogs, and physical body models, including landmarks. • Accurate camera calibrations including geometric distortions and photometric modeling. • Astrometric-quality imaging systems (often) with high-dynamic range. • Filtering and estimation of optical-relevant parameters with s/c position and attitude. • Ground-based Optical Navigation processing is very similar to radiometric ground processing - with the addition of (sometimes difficult and labor-intensive) image processing. Jet Propulsion Laboratory California Institute of Technology Optical Navigation Syllabus • Opti-metrics: “Doppler” (Red/Blue shift) and range extracted from an optical com link • LASER Altimetry: such as done by LRO (LOLA) • Earth based astrometry: using telescopes to see the spacecraft, probably via the downlink optical com signal • Classical Optical Navigation – Observing distant point-like objects against stars – Observing large near-field objects, and extracting limbs or landmarks (also called Target-Relative-Navigation (TRN)) – These OpNav pictures can be processed on the ground or onboard • AutoNav: a software set that performed classical optical navigation on Deep Space 1, Stardust and Deep Impact (as well as NExT and EPOXI) 4 Jet Propulsion Laboratory A Brief History of Deep-Space Optical California Institute of Technology Navigation Viking at Mars, 1976 • 1976: Viking orbiters demonstrated optical navigation using Phobos and Deimos. • 1978-1989: Voyager requires optical navigation to meet mission objectives at Jupiter, Saturn, Uranus and Neptune. This method improves navigation performance over conventional radio by factors of 2 to 20. • 1991-1996: Galileo Mission utilizes optical navigation to capture images of Gaspra and Ida, and to accurately achieve orbit. Voyager 1 at Jupiter, 1980 • 1996-1998: Deep Space 1: optical navigation automated and adapted to onboard operation (AutoNav), used in cruise flight in 1999. • 2000-2001: NEAR orbital operations - JPL uses ground-based optical navigation to orbit and land. • 2001: Deep Space 1 AutoNav Captures Images of Comet Borelly Galileo at Gaspra, 1991 • 2002-present: Cassini optical navigation • 2004: Stardust AutoNav captures Images of comet Wild 2 • 2005: Deep Impact AutoNav impacts comet Tempel 1, and subsequently captures images of impact crater. • 2006: MRO performs demonstration navigation with the Mars NEAR at (and Optical Navigation Camera (ONC). on) Eros, 2001 • 2010: AutoNav targeting Deep Impact (EPOXI) at Hartley 2 • 2011: AutoNav targeting Stardust/NExT at Tempel 2 • 2012-2013 Optical Nav at Vesta for Dawn • 2014: Optical Nav at 67P/Churyumov-Gerasimenko (CG) for Rosetta Rosetta at 67P, (done by JPL as ‘shadow Nav’) 2014 • 2015-2016: Optical Nav at Ceres for Dawn • 2015: New Horizons at Pluto Jet Propulsion Laboratory California Institute of Technology Recent Optical Navigation Experience 6 Jet Propulsion Laboratory California Institute of Technology JPL Experience: Recent Autonomous OpNav and Autonomous Navigation Technology Successes DS1 AutoNav Stardust AutoNav Deep Cruise, Navigation at Annefrank and Wild 2, Sept.1999 Nov. 2002, Jan. 2004. DS1 AutoNav Deep Impact AutoNav At Borrelly Sept., 2001 at Tempel 1 July 2005 Deep Impact AutoNav Hayabusa Imaging Hartley 2, Nov. 4, 2010 Science: Itokawa MRO OpNav Shape Camera Stardust AutoNav Model, Sept. 2005 Validation Feb. Tempel 1, Feb 14, 2011 2006 ! Using Optical Navigation and Landmark-based Jet Propulsion Laboratory California Institute of Technology Navigation to Perform the Navigation at Vesta A control network of tens of thousands of landmarks has been created to navigate Vesta on a daily basis, merging radiometric and optical data Analysis shows that this work could be done optically only, but the inertial reference (SRU) on the Dawn s/c would need some serious analysis and modeling GN&C / 8 Jet Propulsion Laboratory California Institute of Technology AutoNav On July 4, 2005, AutoNav bagged the third of NASA’s first three comet nuclei missions (at left); the other two being: Borrelly, Sept 2001, Wild 2, Nov. 2002, both also captured with AutoNav. These were followed by Hartley2 in 2010, and a Tempel 1 revisit in 2011. AutoNav placed optical navigation elements onboard for otherwise impossible speedy turn-around of navigation operations. 9 Jet Propulsion Laboratory California Institute of Technology AutoNav on the DI Impactor 9P/Tempel 1 at Impact-2 hrs spans 10 pixels; AutoNav begins controlling the Impactor 10 Jet Propulsion Laboratory California Institute of Technology AutoNav on the DI Impactor 9P/Tempel 1 at Impact-2 hrs spans 10 pixels 11 Jet Propulsion Laboratory Flyby AutoNav - Deep Impact Encounter California Institute of Technology MRI & HRI Cameras 64 MRI pixel subframe 512 HRI pixel subframe (0.04º) (0.06º) 12 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Landmarks 13 Jet Propulsion Laboratory Navigating in proximity to a natural California Institute of Technology body using landmarks Step 1: Survey pass or orbits, where many images are taken, with multiple views of distinct topography areas on the surface. These areas are modeled, including high-precision topocentric location, and these become landmarks in the Navigation Landmark Control Network, this requires accurate s/c position determination, usually via the combined use of radio and optical methods. Step 2: Using the landmark network, the s/c observes the surface, performs precision image-location of the known terrain elements, and - by knowing the location of the Step 3: The elements - determines its own instantaneous position. instantaneous s/c positions are combined into a navigation filter that estimates s/c dynamics (e.g. position, velocity and propulsive events) and body dynamics (e.g. gravity field components.) 14 The accuracy of terrain relative navigation using landmarks is potentially limited only by 14 the resolution of the imaging system - modest cameras can give very high accuracy. Developing Topography and Landmarks From Jet Propulsion Laboratory California Institute of Technology Multiple Stereo Views and Limbs Using Stereophotoclinometry Limb View Digital Terrain Map (DTM) of Landmark Vectors describing Local Reference Plane Local DTM Stereo View 2 Process : Center of Landmark • Multiple images (often dozens) of the same location are combined into an estimate of a local Digital Terrain Map (DTM): a set of local altitude vectors. example 50x50 pixel Stereo View 1 • Many landmarks are observed in many images, and observation patch the locations of all landmarks can be estimated simultaneously, the global residual “stress” is removed through a numerical relaxation process. Local Coordinate • The amalgam of DTMs forms a global topography System (Including and shape model. Simultaneous estimation of Local Normal) surface reflectance also produces albedo maps. Landmark DTM • Simultaneous Estimation of body gravity rn asteroid parameters, and s/c orbit parameters as well as (and albedo map) landmark locations can be made in the landmark or LMAP location estimate process. 15 • Solutions for all parameters can use optical and radiometric navigation data in combined solutions. Stereophotoclinometry potentially turns the entire surface of the body into high accuracy navigation beacons that can be used at all attitudes, ranges and lighting conditions. National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology OpNav at the Moon 16 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology 1024x1024km Topography Map of the Lunar South Pole Region (centered on Cabeus) and Developed Using Stereophotoclinometry, from Apollo, LO, Clementine and LRO Images. Map developed by Robert Gaskell Resolution 100-200m 17 National Aeronautics and Space Administration Jet Propulsion Laboratory Navigating at the Moon with SPC- California Institute of Technology Derived Landmarks - LCROSS LCROSS Image Element LCROSS Image SPC Model Descent image taken from ~6000km altitude 18 National Aeronautics and Space Administration Jet Propulsion Laboratory Navigating at the Moon with SPC- California Institute of Technology Derived Landmarks - LCROSS LCROSS Image LCROSS Image Element SPC Model • Final Vis Descent image taken from ~200km altitude • With 150m resolution maps, LCROSS Navigation was able to resolve positions with the radiometric solutions to the 50m level. • It is believed that this result is consistent with the ensemble map
Recommended publications
  • NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
    Geophysical Research Abstracts Vol. 13, EGU2011-5107-2, 2011 EGU General Assembly 2011 © Author(s) 2011 NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Richard Elphic (1), Gregory Delory (1,2), Anthony Colaprete (1), Mihaly Horanyi (3), Paul Mahaffy (4), Butler Hine (1), Steven McClard (5), Joan Salute (6), Edwin Grayzeck (6), and Don Boroson (7) (1) NASA Ames Research Center, Moffett Field, CA USA ([email protected]), (2) Space Sciences Laboratory, University of California, Berkeley, CA USA, (3) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD USA, (5) LunarQuest Program Office, NASA Marshall Space Flight Center, Huntsville, AL USA, (6) Planetary Science Division, Science Mission Directorate, NASA, Washington, DC USA, (7) Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA USA Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent “Scientific Context for Exploration of the Moon” (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Atlas V Launches LRO/LCROSS Mission Overview
    Atlas V Launches LRO/LCROSS Mission Overview Atlas V 401 Cape Canaveral Air Force Station, FL Space Launch Complex-41 AV-020/LRO/LCROSS United Launch Alliance is proud to be a part of the Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) mission with the National Aeronautics and Space Administration (NASA). The LRO/LCROSS mission marks the sixteenth Atlas V launch and the seventh flight of an Atlas V 401 configuration. LRO/LCROSS is a dual-spacecraft (SC) launch. LRO is a lunar orbiter that will investigate resources, landing sites, and the lunar radiation environment in preparation for future human missions to the Moon. LCROSS will search for the presence of water ice that may exist on the permanently shadowed floors of lunar polar craters. The LCROSS mission will use two Lunar Kinetic Impactors, the inert Centaur upper stage and the LCROSS SC itself, to produce debris plumes that may reveal the presence of water ice under spectroscopic analysis. My thanks to the entire Atlas team for its dedication in bringing LRO/LCROSS to launch, and to NASA for selecting Atlas for this ground-breaking mission. Go Atlas, Go Centaur, Go LRO/LCROSS! Mark Wilkins Vice President, Atlas Product Line Atlas V Launch History Flight Config. Mission Mission Date AV-001 401 Eutelsat Hotbird 6 21 Aug 2002 AV-002 401 HellasSat 13 May 2003 AV-003 521 Rainbow 1 17 Jul 2003 AV-005 521 AMC-16 17 Dec 2004 AV-004 431 Inmarsat 4-F1 11 Mar 2005 AV-007 401 Mars Reconnaissance Orbiter 12 Aug 2005 AV-010 551 Pluto New Horizons 19 Jan 2006 AV-008 411 Astra 1KR 20 Apr 2006 AV-013 401 STP-1 08 Mar 2007 AV-009 401 NROL-30 15 Jun 2007 AV-011 421 WGS SV-1 10 Oct 2007 AV-015 401 NROL-24 10 Dec 2007 AV-006 411 NROL-28 13 Mar 2008 AV-014 421 ICO G1 14 Apr 2008 AV-016 421 WGS-2 03 Apr 2009 Payload Fairing Number of Solid Atlas V Size (meters) Rocket Boosters Flight/Configuration Key AV-XXX ### Number of Centaur Engines 3-digit Tail Number 3-digit Configuration Number LRO Overview LRO is the first mission in NASA’s planned return to the Moon.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • SMART-1 Highlights & Apollo Celebration
    EPSC Abstracts Vol. 13, EPSC-DPS2019-824-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. SMART-1 Highlights & Apollo Celebration B.H. Foing, G.Racca, A. Marini, O. Camino, D. Koschny, D. Frew, J. Volp, J.-L. Josset, S. Beauvivre, Y. Shkuratov, K. Muinonen, U. Mall, A. Nathues, M. Grande, B. Kellett, P. Pinet, S. Chevrel, P. Cerroni, M.A. Barucci, S. Erard, D. Despan, V. Shevchenko, P. McMannamon, A.Borst, M. Ellouzi, B. Grieger, M. Almeida, S.Besse, P. Ehrenfreund, C.Veillet, M. Burchell, P. Stooke , SMART1 project, STWT teams, (1) ESA ESTEC, postbus 299, NL-2200 AG Noordwijk, ([email protected]) (2) ILEWG ([email protected]) Abstract SMART-1 results have been relevant for lunar science 11-first mission preparing the ground for ESA and exploration, in relation with previous missions collaboration in Chandrayaan-1, Chang’ E1-2, landers (Apollo, Luna) and subsequent missions (Kaguya, and future international lunar exploration. Chang'E1-2, Chandrayaan-1, LRO, LCROSS, GRAIL, 12-first Earth and Moon family portraits of during cruise LADEE, Chang’E3-4 and future landers). We present and lunar eclipse (Figs 1-2) and Earthrise SMART-1 highlights that celebrate APOLLO legacy after 50 years. Overview of SMART-1 mission and payload: SMART-1 was the first in the programme of ESA’s Small Missions for Advanced Research and Technology [1,2,3]. Its first objective has been achieved to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments.
    [Show full text]
  • NASA Ames Research Center Intelligent Systems and High End Computing
    NASA Ames Research Center Intelligent Systems and High End Computing Dr. Eugene Tu, Director NASA Ames Research Center Moffett Field, CA 94035-1000 A 80-year Journey 1960 Soviet Union United States Russia Japan ESA India 2020 Illustration by: Bryan Christie Design Updated: 2015 Protecting our Planet, Exploring the Universe Earth Heliophysics Planetary Astrophysics Launch missions such as JWST to Advance knowledge unravel the of Earth as a Determine the mysteries of the system to meet the content, origin, and universe, explore challenges of Understand the sun evolution of the how it began and environmental and its interactions solar system and evolved, and search change and to with Earth and the the potential for life for life on planets improve life on solar system. elsewhere around other stars earth “NASA Is With You When You Fly” Safe, Transition Efficient to Low- Growth in Carbon Global Propulsion Operations Innovation in Real-Time Commercial System- Supersonic Wide Aircraft Safety Assurance Assured Ultra-Efficient Autonomy for Commercial Aviation Vehicles Transformation NASA Centers and Installations Goddard Institute for Space Studies Plum Brook Glenn Research Station Independent Center Verification and Ames Validation Facility Research Center Goddard Space Flight Center Headquarters Jet Propulsion Wallops Laboratory Flight Facility Armstrong Flight Research Center Langley Research White Sands Center Test Facility Stennis Marshall Space Kennedy Johnson Space Space Michoud Flight Center Space Center Center Assembly Center Facility
    [Show full text]
  • Unambiguous Detection of OH and H2O on the Moon from Chandrayaan-2 Imaging Infrared Spectrometer Reflectance Data Using 3 Μm Hydration Feature
    RESEARCH ARTICLES Unambiguous detection of OH and H2O on the Moon from Chandrayaan-2 Imaging Infrared Spectrometer reflectance data using 3 μm hydration feature Prakash Chauhan1,*, Mamta Chauhan1, Prabhakar A. Verma1, Supriya Sharma1, Satadru Bhattacharya2, Aditya Kumar Dagar2, Amitabh2, Abhishek N. Patil2, Ajay Kumar Parashar2, Ankush Kumar2, Nilesh Desai2, Ritu Karidhal3 and A. S. Kiran Kumar4 1Indian Institute of Remote Sensing, Indian Space Research Organization, Dehradun 248 001, India 2Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, India 3U.R. Rao Satellite Centre, ISRO, Bengaluru 560 017, India 4Indian Space Research Organisation Head Quarters, Bengaluru 560 094, India several other laboratory studies9–11. The hydration feature Imaging Infrared Spectrometer (IIRS) on-board Chandrayaan-2 is designed to measure lunar reflected in the 2.8–3.5 μm spectral region of the electromagnetic and emitted solar radiation in 0.8–5.0 μm spectral spectrum (more commonly the ‘3 μm band’) is due to the range. Its high spatial resolution (~80 m) and extended presence of hydroxyl (OH) groups attached to a metal spectral range is most suitable to completely charac- cation or molecular water (H2O), or a combination of the terize lunar hydration (2.8–3.5 μm region) attributed two. Remote detection of water and/or hydroxyl signa- to the presence of OH and/or H2O. Here we present tures on the lunar surface has acquired significant impor- initial results from IIRS reflectance data analysed to tance as it provides important clues to understand the unambiguously detect and quantify lunar 3 μm absorp- various sources such as exogenous and endogenous origin tion feature.
    [Show full text]
  • The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight
    Space Sci Rev (2012) 167:23–69 DOI 10.1007/s11214-011-9753-4 The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight Kimberly Ennico · Mark Shirley · Anthony Colaprete · Leonid Osetinsky Received: 8 October 2010 / Accepted: 25 January 2011 / Published online: 19 February 2011 © US Government 2011 Abstract The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shad- owed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most im- portantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of pay- load. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in- flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload’s instrument complement.
    [Show full text]
  • USA Space Debris Environment and Operational Updates
    National Aeronautics and Space Administration USA Space Debris Environment and Operational Updates Presentation to the 47 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations 8-19 February 2010 National Aeronautics and Space Administration Presentation Outline • Evolution of Low Earth Orbit Satellite Population • Space missions in 2009 • Collision Avoidance Maneuvers • GEO Population and Retirement of USA GEO Spacecraft in 2009 • Satellite Fragmentations in 2009 • Inspection of Hubble Space Telescope • First International Conference on Orbital Debris Removal 2 National Aeronautics and Space Administration Growth of the Cataloged Satellite Population in Low Earth Orbit: Numbers of Objects • The number of cataloged objects in low Earth orbit has increased 62% since 1 January 2007. 12000 11000 Total Objects Iridium 33 and Cosmos 2251 Collision Fragmentation Debris 10000 Spacecraft 9000 Mission -related Debris Destruction of Fengyun-1C 8000 Rocket Bodies 7000 6000 5000 4000 3000 Number of CatalogedCatalogedObjects Objects ofof Number Number 2000 1000 0 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 3 • National Aeronautics and Space Administration tons per year. ISSbelow (data does year. per c notinclude tons orbi Earth growththe mass rate inlowof Recently, Mass in Orbit (millions of kg) in Population SatelliteCataloged the of Growth 0.0 0.5 1.0 1.5 2.0 2.5 1957 1959 Low Earth Orbit: Mass of Objects of Mass Earth Orbit: Low 1961 1963 1965 Mission-related Debris Mission-related Debris Fragmentation Bodies Rocket Spacecraft Objects Total 1967 1969 1971 1973 1975 1977 1979 4 1981 1983 1985 1987 1989 1991 omponents) t has averaged 50 averaged has metric t 1993 1995 1997 Mir De-orbit Mir 1999 2001 2003 2005 2007 2009 National Aeronautics and Space Administration NASA Space Missions of 2009 • Twelve NASA space missions were undertaken in 2009.
    [Show full text]
  • Diviner Lunar Radiometer Observations of the LCROSS Impact Paul O
    REPORTS a broad range of temperatures (5) (table S1). Diviner Lunar Radiometer Daytime brightness temperatures (Fig. 1B) show that the LCROSS impact site in Cabeus crater Observations of the LCROSS Impact is in persistent shadow, with a nearly isother- mal surface at ~ 40 K just before impact (6). Figure 1 shows that the LCROSS impact oc- Paul O. Hayne,1* Benjamin T. Greenhagen,2 Marc C. Foote,2 Matthew A. Siegler,1 curred near the center of one of the coldest re- Ashwin R. Vasavada,2 David A. Paige1 gions of Cabeus crater. Thermal models (2)place the LCROSS impact site’s annual average tem- The Lunar Reconnaissance Orbiter (LRO) Diviner instrument detected a thermal emission signature perature at 37 K, in the 99.7th percentile (by 90 seconds after the Lunar Crater Observation and Sensing Satellite (LCROSS) Centaur impact and on area) for the region poleward of 80°S. two subsequent orbits. The impact heated a region of 30 to 200 square meters to at least 950 kelvin, The LRO orbit was modified to put the providing a sustained heat source for the sublimation of up to ~300 kilograms of water ice during closest approach (slant range 78 km) at 90 s after the 4 minutes of LCROSS post-impact observations. Diviner visible observations constrain the mass of impact of the launch vehicle’s spent Centaur up- the sunlit ejecta column to be ~10−6 to 10−5 kilograms per square meter, which is consistent with per stage, in order to better observe the LCROSS LCROSS estimates used to derive the relative abundance of the ice within the regolith.
    [Show full text]
  • Surveying Outreach and Citizen Science Opportunities for Planetary Defense
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1488-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Surveying Outreach and Citizen Science Opportunities for Planetary Defense Brian Day NASA Solar System Exploration Research Virtual Institute. NASA Ames Research Center. Moffett Field, CA, USA. ([email protected]) Abstract mission is a challenging task. However, examination of how past missions have done this successfully will Planetary defense stands out among the various yield critical lessons learned for future planetary topics of space science as an endeavour which the defense missions. general public can understand, for which they can readily appreciate the value, and in which they can 2. Informational Outreach find significant relevance to their own lives. This is Outreach and communications converge especially in well illustrated in the extensive coverage that the this area. We will survey a number of the existing international general media continues to give to the resources available. These include informational IAA Planetary Defense Conferences and their programming such as NASA Science Now, online hypothetical NEO/Earth impact event scenarios. resources such as solarsystem.nasa.gov provide wide- However, frequent doomsday predictions and bad ranging information while NASA’s Solar System movie plots illustrate that this is also an area for Treks is partnering with the OSIRIS-REx and misinformation, misconceptions, and Hayabusa2 missions to allow members of the public misunderstanding. In an endeavour as high-profile to conduct their own interactive flyovers and and critical as planetary defense, a campaign of explorations of the NEAs Bennu and Ryugu using accurate and effective public outreach is essential.
    [Show full text]
  • Nasa Tv Schedule Rev. R
    ***************************************************************************************************************************************************************************************** NASA TELEVISION SCHEDULE STS-128 / ISS 17A LEONARDO MULTIPURPOSE LOGISTICS MODULE REV R 9/10/09 ***************************************************************************************************************************************************************************************** Standard-Definition NASA TV satellite coordinates are available at: http://www1.nasa.gov/multimedia/nasatv/digital.html. High -Definition NASA TV Channel #105 is broadcast at 720p @ 59.94 fps, carried on an MPEG-2 digital signal on satellite AMC-6, Transponder 17C, at 72 degrees west longitude, 4040 MHz, vertical polarization. A Digital Video Broadcast (DVB) - compliant Integrated Receiver Decoder (IRD) with modulation of QPSK/DBV, data rate of 36.86, symbol 26.665 and FEC 3/4 will be needed for reception. Mission Audio can be accessed at: http://www.nasa.gov/ntv. Clients actively participating in Standard-Definition on-orbit interviews, interactive press briefings and satellite interviews must use the LIMO Channel, accessed via satellite AMC-6, 72 degrees west longitude, transponder 5C, 3785.5 MHz, vertical polarization. A Digital Video Broadcast (DVB) - compliant Integrated Receiver Decoder (IRD) with modulation of QPSK/DBV, data rate of 6.00 and FEC 3/4 will be needed for reception. ALL TIMES SUBJECT TO CHANGE This TV schedule is available via the Internet. The address is:
    [Show full text]