Orbit Determination of the Lunar Reconnaissance Orbiter

Total Page:16

File Type:pdf, Size:1020Kb

Orbit Determination of the Lunar Reconnaissance Orbiter JGeod DOI 10.1007/s00190-011-0509-4 ORIGINAL ARTICLE Orbit determination of the Lunar Reconnaissance Orbiter Erwan Mazarico · D. D. Rowlands · G. A. Neumann · D. E. Smith · M. H. Torrence · F. G. Lemoine · M. T. Zuber Received: 17 March 2011 / Accepted: 13 August 2011 © Springer-Verlag 2011 Abstract We present the results on precision orbit deter- Keywords Moon · Orbit determination · Gravity · mination from the radio science investigation of the Lunar Altimetric crossover · Geodesy Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowl- edge several times better than the required 50–100 m (in total 1 Introduction position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric track- 1.1 Objectives ing data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measure- The Lunar Reconnaissance Orbiter (LRO) mission (Chin ments, and show that they strongly improve the accuracy of et al. 2007) was designed to provide a comprehensive (global) the orbit reconstruction (total position overlap differences and detailed (high-resolution) survey of the Moon, in antic- decrease from ∼70 m to ∼23 m). To refine the spacecraft ipation of the needs of future orbital and landed exploration trajectory further, we develop a lunar gravity field by com- missions. The payload consists of seven instruments (Von- bining the newly acquired LRO data with the historical data. drak et al. 2010), some of which have very high spatial resolu- The reprocessing of the spacecraft trajectory with that model tion: better than 50 cm for the Lunar Reconnaissance Orbiter shows significantly increased accuracy (∼20 m with only the Camera (LROC) system (Robinson et al. 2010), ∼5-m foot- radiometric data, and ∼14 m with the addition of the altimet- prints and 10-cm vertical precision for the Lunar Orbiter ric crossovers). LOLA topographic maps and calibration data Laser Altimeter (LOLA, Smith et al. 2010a); 320 × 160 m from the Lunar Reconnaissance Orbiter Camera were used field-of-view for the Diviner Lunar Radiometer Experiment to supplement the results of the overlap analysis and demon- (DLRE, Paige et al. 2010); 30-m zoom resolution for the Min- strate the trajectory accuracy. iature Radio Frequency Technology Demonstration (Mini- RF, Nozette et al. 2010). The LRO datasets will ultimately be combined in a single reference frame based on the LOLA- Electronic supplementary material The online version of this defined geodetic grid, which requires accurate and consis- article (doi:10.1007/s00190-011-0509-4) contains supplementary tent trajectories for geolocation. As such, the LRO mission material, which is available to authorized users. defined a position knowledge requirement: 50–100 m total E. Mazarico · D. E. Smith · M. T. Zuber position and 1-m radially (Vondrak et al. 2010). Massachusetts Institute of Technology, Cambridge, USA Our goal is to report on the current status of the LRO precision orbit determination (POD). To determine precision E. Mazarico (B) · D. D. Rowlands · G. A. Neumann · D. E. Smith · M. H. Torrence · F. G. Lemoine orbits, the LRO trajectory from 13 July 2009 to 31 January NASA Goddard Space Flight Center, Planetary Geodynamics 2011 was reconstructed continuously, except for short gaps Laboratory, Greenbelt, USA near spacecraft maneuvers. As described below, the quality e-mail: [email protected] of the orbits is assessed primarily through overlap analysis, M. H. Torrence i.e., the consistency of trajectory segments when processed S.G.T. Inc., Greenbelt, USA in two consecutive time periods. 123 E. Mazarico et al. To obtain the most precise orbits for LRO, we have devel- the spacecraft commissioning phase was initiated on 27 June oped a gravity model based on the historical tracking data 2009. The commissioning orbit was a quasi-frozen ∼30 × (Mazarico et al. 2010) and further tuned with data from LRO. 200 km polar orbit (i ∼ 90◦), with its periapsis near the lunar This intermediary model is not optimized for geophysical south pole. purposes and is intended to be used only to improve the LRO The instrument commissioning phase began on 3 July position knowledge. The upcoming Gravity Recovery and 2009. LOLA was initially turned on for 2 days at that time Interior Laboratory (GRAIL) mission (Zuber et al. 2011), and started continuous data collection on 13 July 2009. Since scheduled for launch in September 2011, should provide a then, it has operated continuously except for the monthly sta- lunar gravity field with far greater accuracy than what is pos- tion-keeping (SK) maneuvers, and a February 2010 safehold sible to achieve from analysis of LRO tracking data. event. On 15 September 2009, the spacecraft transitioned to its 1.2 Previous work nominal 2-h period mapping orbit, with lower eccentricity and an average altitude of 50 km. Because of gravitational In the recent era of lunar exploration, the Clementine space- perturbations, the orbit eccentricity and argument of periap- craft was the first to provide the data to determine the Moon’s sis naturally evolve, and monthly station-keeping maneuvers gravity field to relatively high spatial resolutions (l = 70, are necessary to preserve the mapping orbit (Houghton et al. Lemoine et al. 1997). The subsequent Lunar Prospector, 2007). The eccentricity is 0.0054 ± 0.0019, and never more with its lower orbit, in particular during the extended mis- than 0.010, with the spacecraft altitude generally between 35 sion (<50 km), enabled features as small as ∼40 km (l = and 65 km (referenced to a 1,737.4 km sphere). After 1 year 150−165) to be resolved (Konopliv et al. 2001). The recent of the nominal Exploration mission, dedicated to the survey JAXA SELENE mission consisted of three spacecraft: the of the polar regions and of 50 sites selected for NASA’s Con- main orbiter Kaguya, in a 100 km-altitude circular orbit, stellation human space flight program, the LRO mission was and two sub-satellites which participated in a VLBI exper- extended for 2 years by the NASA Science Mission Direc- iment. One of those sub-satellites also provided relay capa- torate and began its Science mission. bility for the radio signals, between ground stations and the In addition to the monthly SK maneuvers, smaller angular main orbiter. This enabled radiometric tracking of the far- momentum desaturation events (δH) generally occur twice side for the first time and led to great improvements in the a month: once just before an SK maneuver, and the other determination of the lunar farside gravity field (Namiki 2009; about 2 weeks later. When the Sun-orbit geometry is favor- Matsumoto et al. 2010; Goossens et al. 2011). able (large β angle1), enough power can be generated with the solar panel held fixed, which reduces the angular momen- 1.3 Overview tum accumulated in the reaction wheels and can allow a δH to be skipped (e.g., in July 2010). After a brief summary of the LRO mission as it relates to Other kinds of maneuvers are less frequent (yaw flip every the presented work, we describe the tracking data types used 6 months, at β ∼ 0◦ to keep the single solar panel oriented here: radiometric Doppler and range, and altimetric cross- towards the Sun), or unique (phasing maneuver to observe overs from LOLA. The orbit determination process is then the LCROSS impact in October 2009). Table S1 lists the described in detail, followed by a discussion of the various maneuvers of the nominal and science missions. steps in the current-best orbit reconstruction: radiometric- The orbital maneuver plan leaves LRO in free flight for only orbits, the addition of the altimeter data, and the inver- ∼14-day periods, which is desirable for orbit determination sion of a new LRO-tuned gravity field (LLGM-1, LRO Lunar and gravity field estimation. It enables orbit reconstruction Gravity Model), which is used to converge the final trajectory. to be executed over extended time spans, thereby facilitat- Finally, orbit overlap analyses are supplemented by results ing the recovery of long-period perturbations due to the long using independent data: LOLA topographic maps of the polar wavelengths of the gravity field (i.e., low-degree spherical regions and LROC calibration information. harmonic expansion coefficients, especially the zonal and resonant terms). It also improves the contribution of altimet- 2Data ric crossovers to the solution, by reducing the number of effectively independent spacecraft initial states that need to 2.1 Mission summary be estimated. The regularity of the spacecraft SK maneuvers leads to The LRO spacecraft was launched at 22:32 UTC on 18 June a natural partition of the mission into monthly periods, 2009 from Cape Canaveral Launch Complex 41, and entered lunar orbit on 23 June 2009. Five maneuvers designed to 1 Thebetaangle(β) is the viewing angle of the Sun from the orbit, gradually circularize the initial eccentric orbit followed, and i.e., the angle between the orbit plane and the spacecraft–Sun vector. 123 LRO orbit determination or “phases”, each lasting for approximately one lunation atic because they usually provide the strongest control of the (28 days). In the time period presented here (13 July 2009 spacecraft orbit (Table S2). Early in the mission, the Doppler to 31 January 2011), there are 21 phases in total. Commis- data collected by the White Sands station were time-biased by sioning, which lacks SK maneuvers, is divided into three 1/76th of a second (around −13.16 ms); this was corrected phases of equivalent duration (CO_01 to CO_03). The nom- on 19 October 2009. The Range data from all stations are inal mission is split into 13 phases (NO_01 to NO_13), and also affected by timing biases.
Recommended publications
  • N98-L7433 World Space Foundation P.O
    175 A LUNAR POLAR EXPEDITION Richard Dowling, Robert L. Staehle, and Tomas Svitek N98-l7433 World Space Foundation P.O. Box Y South Pasadena CA 91031 Advanced exploration and development in harsh environments require mastery of basic human suroival skills. F.xpeditions into the lethal climates of Earth's polar regions offer useful lessons for tommrow's lunar pioneers. In Arctic and Antarctic exploration, "wintering over" was a cruciaJ milestone. 7be ability to establish a supply base and suroive months of polar cold and da1*ness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's, may offer the most hospitable site for habitation. 7be World space Foundation ts examining a scenario for establishing a .five.person expeditionary team on the lunar north pole for one year. 1bi.s paper ts a status report on a point design addressing site selection, transportation, power, and life support requirements. POLAR EXPWRATION AND North Pole on 6 April, 1909, and Roald Amundson's magnificently LUNAR OBJECl1VFS planned expedition reaching the South Pole on 14 December, 1911. Today there are permanent residents in both the Arctic and In March 1899, almost one hundred years ago, the explorer Antarctic pursuing commercial and scientific activities. Indeed, the Carsten E. Borchgrevnik established the first winter camp on the International Antarctic Treaty may prove a useful example for "white continent," Antarctica. Unlike the north polar regions, those trying to determine who "owns" the Moon. Antarctica had never been inhabited by man. Though marine birds Unlike Earth's polar regions, the lunar poles may be the most and animals visit the coastal regions, only primitive mo.....s and hospitable locations for early long-term human habitats, so we do lichen can survive the polar deserts of ice and snow.
    [Show full text]
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • A Summary of the Unified Lunar Control Network 2005 and Lunar Topographic Model B. A. Archinal, M. R. Rosiek, R. L. Kirk, and B
    A Summary of the Unified Lunar Control Network 2005 and Lunar Topographic Model B. A. Archinal, M. R. Rosiek, R. L. Kirk, and B. L. Redding U. S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, USA, [email protected] Introduction: We have completed a new general unified lunar control network and lunar topographic model based on Clementine images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 µm (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. We are now documenting our solution [1] and plan to release the solution results soon [2]. Previous Networks: In recent years there have been two generally accepted lunar control networks. These are the Unified Lunar Control Network (ULCN) and the Clementine Lunar Control Network (CLCN), both derived by M. Davies and T. Colvin at RAND. The original ULCN was described in the last major publication about a lunar control network [3]. Images for this network are from the Apollo, Mariner 10, and Galileo missions, and Earth-based photographs. The CLCN was derived from Clementine images and measurements on Clementine 750-nm images. The purpose of this network was to determine the geometry for the Clementine Base Map [4]. The geometry of that mosaic was used to produce the Clementine UVVIS digital image model [5] and the Near-Infrared Global Multispectral Map of the Moon from Clementine [6].
    [Show full text]
  • Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements
    Modeling and Adjustment of THEMIS IR Line Scanner Camera Image Measurements by Brent Archinal USGS Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001 [email protected] As of 2004 December 9 Version 1.0 Table of Contents 1. Introduction 1.1. General 1.2. Conventions 2. Observations Equations and Their Partials 2.1. Line Scanner Camera Specific Modeling 2.2. Partials for New Parameters 2.2.1. Orientation Partials 2.2.2. Spatial Partials 2.2.3. Partials of the observations with respect to the parameters 2.2.4. Parameter Weighting 3. Adjustment Model 4. Implementation 4.1. Input/Output Changes 4.1.1. Image Measurements 4.1.2. SPICE Data 4.1.3. Program Control (Parameters) Information 4.2. Computational Changes 4.2.1. Generation of A priori Information 4.2.2. Partial derivatives 4.2.3. Solution Output 5. Testing and Near Term Work 6. Future Work Acknowledgements References Useful web sites Appendix I - Partial Transcription of Colvin (1992) Documentation Appendix II - HiRISE Sensor Model Information 1. Introduction 1.1 General The overall problem we’re solving is that we want to be able to set up the relationships between the coordinates of arbitrary physical points in space (e.g. ground points) and their coordinates on line scanner (or “pushbroom”) camera images. We then want to do a least squares solution in order to come up with consistent camera orientation and position information that represents these relationships accurately. For now, supported by funding from the NASA Critical Data Products initiative (for 2003 September to 2005 August), we will concentrate on handling the THEMIS IR camera system (Christensen et al., 2003).
    [Show full text]
  • NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
    Geophysical Research Abstracts Vol. 13, EGU2011-5107-2, 2011 EGU General Assembly 2011 © Author(s) 2011 NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Richard Elphic (1), Gregory Delory (1,2), Anthony Colaprete (1), Mihaly Horanyi (3), Paul Mahaffy (4), Butler Hine (1), Steven McClard (5), Joan Salute (6), Edwin Grayzeck (6), and Don Boroson (7) (1) NASA Ames Research Center, Moffett Field, CA USA ([email protected]), (2) Space Sciences Laboratory, University of California, Berkeley, CA USA, (3) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD USA, (5) LunarQuest Program Office, NASA Marshall Space Flight Center, Huntsville, AL USA, (6) Planetary Science Division, Science Mission Directorate, NASA, Washington, DC USA, (7) Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA USA Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent “Scientific Context for Exploration of the Moon” (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Aerospace Dimensions Leader's Guide
    Leader Guide www.capmembers.com/ae Leader Guide for Aerospace Dimensions 2011 Published by National Headquarters Civil Air Patrol Aerospace Education Maxwell AFB, Alabama 3 LEADER GUIDES for AEROSPACE DIMENSIONS INTRODUCTION A Leader Guide has been provided for every lesson in each of the Aerospace Dimensions’ modules. These guides suggest possible ways of presenting the aerospace material and are for the leader’s use. Whether you are a classroom teacher or an Aerospace Education Officer leading the CAP squadron, how you use these guides is up to you. You may know of different and better methods for presenting the Aerospace Dimensions’ lessons, so please don’t hesitate to teach the lesson in a manner that works best for you. However, please consider covering the lesson outcomes since they represent important knowledge we would like the students and cadets to possess after they have finished the lesson. Aerospace Dimensions encourages hands-on participation, and we have included several hands-on activities with each of the modules. We hope you will consider allowing your students or cadets to participate in some of these educational activities. These activities will reinforce your lessons and help you accomplish your lesson out- comes. Additionally, the activities are fun and will encourage teamwork and participation among the students and cadets. Many of the hands-on activities are inexpensive to use and the materials are easy to acquire. The length of time needed to perform the activities varies from 15 minutes to 60 minutes or more. Depending on how much time you have for an activity, you should be able to find an activity that fits your schedule.
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • New Views of the Moon Enabled by Combined Remotely Sensed and Lunar Sample Data Sets, a Lunar Initiative
    New Views of the Moon Enabled by Combined Remotely Sensed and Lunar Sample Data Sets, A Lunar Initiative Using the hand tool on your Reader, click on the links below to view that particular section of the proposal. Proposal Summary Scientific/Technical/Management Objectives and Expected Significance Background and Impact Approach and Methodology: The Role of Integration in Fundamental Problems of Lunar Geoscience Workshop 2: New Views of the Moon II: Understanding the Moon Through the Integration of Diverse Datasets. Abstract Volume and Subsequent Publications Statement of Relevance Work Plan Potential Workshop (2000): Thermal and Magmatic Evolution of the Moon Potential Workshop (2001): Early Lunar Differentiation, Core Formation, Effects of Early Planetesimal Impacts, and the Origin of the Moon’s Global Asymmetry Potential Workshop (2002): Selection of Sites for Future Sample Return Capstone Publication Timeline for the New Views of the Moon Initiative Personnel: Initiative Management and Proposal Management References Facilities: The LPI Appendix 1. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets. List of presentations Appendix 2. LPSC 30 (1999) special sessions related to the Lunar Initiative. List of presentations (oral and poster) Appendix 3. Lunar Initiative Steering Committee Web Note: This is the text of a proposal submitted on behalf of the Lunar Science Community to support ongoing workshops and activities associated with the CAPTEM Lunar Initiative. It was submitted in May, 1999, in response to the ROSS 99 NRA, which solicits such proposals to be submitted to the relevant research programs. This proposal was submitted jointly to Cosmo- chemistry and Planetary Geology and Geophysics.
    [Show full text]
  • Atlas V Launches LRO/LCROSS Mission Overview
    Atlas V Launches LRO/LCROSS Mission Overview Atlas V 401 Cape Canaveral Air Force Station, FL Space Launch Complex-41 AV-020/LRO/LCROSS United Launch Alliance is proud to be a part of the Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) mission with the National Aeronautics and Space Administration (NASA). The LRO/LCROSS mission marks the sixteenth Atlas V launch and the seventh flight of an Atlas V 401 configuration. LRO/LCROSS is a dual-spacecraft (SC) launch. LRO is a lunar orbiter that will investigate resources, landing sites, and the lunar radiation environment in preparation for future human missions to the Moon. LCROSS will search for the presence of water ice that may exist on the permanently shadowed floors of lunar polar craters. The LCROSS mission will use two Lunar Kinetic Impactors, the inert Centaur upper stage and the LCROSS SC itself, to produce debris plumes that may reveal the presence of water ice under spectroscopic analysis. My thanks to the entire Atlas team for its dedication in bringing LRO/LCROSS to launch, and to NASA for selecting Atlas for this ground-breaking mission. Go Atlas, Go Centaur, Go LRO/LCROSS! Mark Wilkins Vice President, Atlas Product Line Atlas V Launch History Flight Config. Mission Mission Date AV-001 401 Eutelsat Hotbird 6 21 Aug 2002 AV-002 401 HellasSat 13 May 2003 AV-003 521 Rainbow 1 17 Jul 2003 AV-005 521 AMC-16 17 Dec 2004 AV-004 431 Inmarsat 4-F1 11 Mar 2005 AV-007 401 Mars Reconnaissance Orbiter 12 Aug 2005 AV-010 551 Pluto New Horizons 19 Jan 2006 AV-008 411 Astra 1KR 20 Apr 2006 AV-013 401 STP-1 08 Mar 2007 AV-009 401 NROL-30 15 Jun 2007 AV-011 421 WGS SV-1 10 Oct 2007 AV-015 401 NROL-24 10 Dec 2007 AV-006 411 NROL-28 13 Mar 2008 AV-014 421 ICO G1 14 Apr 2008 AV-016 421 WGS-2 03 Apr 2009 Payload Fairing Number of Solid Atlas V Size (meters) Rocket Boosters Flight/Configuration Key AV-XXX ### Number of Centaur Engines 3-digit Tail Number 3-digit Configuration Number LRO Overview LRO is the first mission in NASA’s planned return to the Moon.
    [Show full text]
  • Protons in the Near Lunar Wake Observed by the SARA Instrument on Board Chandrayaan-1
    FUTAANA ET AL. PROTONS IN DEEP WAKE NEAR MOON 1 Protons in the Near Lunar Wake Observed by the SARA 2 Instrument on Board Chandrayaan-1 3 Y. Futaana, 1 S. Barabash, 1 M. Wieser, 1 M. Holmström, 1 A. Bhardwaj, 2 M. B. Dhanya, 2 R. 4 Sridharan, 2 P. Wurz, 3 A. Schaufelberger, 3 K. Asamura 4 5 --- 6 Y. Futaana, Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden. 7 ([email protected]) 8 9 10 1 Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden 11 2 Space Physics Laboratory, Vikram Sarabhai Space Center, Trivandrum 695 022, India 12 3 Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland 13 4 Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Japan 14 Index Terms 15 6250 Moon 16 5421 Interactions with particles and fields 17 2780 Magnetospheric Physics: Solar wind interactions with unmagnetized bodies 18 7807 Space Plasma Physics: Charged particle motion and acceleration 19 Abstract 20 Significant proton fluxes were detected in the near wake region of the Moon by an ion mass 21 spectrometer on board Chandrayaan-1. The energy of these nightside protons is slightly higher than 22 the energy of the solar wind protons. The protons are detected close to the lunar equatorial plane at 23 a 140˚ solar zenith angle, i.e., ~50˚ behind the terminator at a height of 100 km. The protons come 24 from just above the local horizon, and move along the magnetic field in the solar wind reference 25 frame.
    [Show full text]
  • Conceptual Human-System Interface Design for a Lunar Access Vehicle
    Conceptual Human-System Interface Design for a Lunar Access Vehicle Mary Cummings Enlie Wang Cristin Smith Jessica Marquez Mark Duppen Stephane Essama Massachusetts Institute of Technology* Prepared For Draper Labs Award #: SC001-018 PI: Dava Newman HAL2005-04 September, 2005 http://halab.mit.edu e-mail: [email protected] *MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139 TABLE OF CONTENTS 1 INTRODUCTION..................................................................................................... 1 1.1 THE GENERAL FRAMEWORK................................................................................ 1 1.2 ORGANIZATION.................................................................................................... 2 2 H-SI BACKGROUND AND MOTIVATION ........................................................ 3 2.1 APOLLO VS. LAV H-SI........................................................................................ 3 2.2 APOLLO VS. LUNAR ACCESS REQUIREMENTS ...................................................... 4 3 THE LAV CONCEPTUAL PROTOTYPE............................................................ 5 3.1 HS-I DESIGN ASSUMPTIONS ................................................................................ 5 3.2 THE CONCEPTUAL PROTOTYPE ............................................................................ 6 3.3 LANDING ZONE (LZ) DISPLAY............................................................................. 8 3.3.1 LZ Display Introduction.................................................................................
    [Show full text]