Prodromus to Class Loculoascomycetes M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opf)P Jsotanp
STUDIES ON FOLIICOLOUS FUNGI ASSOCIATED WITH SOME PLANTS DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF e iHasfter of $I|iIos;opf)p JSotanp (PLANT PATHOLOGY) BY J4thar J^ll ganU DEPARTMENT OF BOTANY ALIGARH MUSLIM UNIVERSITY ALIQARH (INDIA) 2010 s*\ %^ (^/jyr, .ii -^^fffti UnWei* 2 6 OCT k^^ ^ Dedictded To Prof. Mohd, Farooq Azam 91-0571-2700920 Extn-3303 M.Sc, Ph.D. (AUg.), FNSI Ph: 91-0571-2702016(0) 91-0571-2403503 (R) Professor of Botany 09358256574(M) (Plant Nematology) E-mail: [email protected](aHahoo.coin [email protected] Ex-Vice-President, Nematological Society of India. Department of Botany Aligarh Muslim University Aligarh-202002 (U.P.) India Date: z;. t> 2.AI0 Certificate This is to certify that the dissertation entitled """^Studies onfoUicolous fungi associated with some plants** submitted to the Department of Botany, Aligarh Muslim University, Aligarh in the partial fulfillment of the requirements for the award of the degree of Master of Philosophy (Plant pathology), is a bonafide work carried out by Mr. Athar Ali Ganie under my supervision. (Prof. Mohd Farooq Azam) Residence: 4/35, "AL-FAROOQ", Bargad House Connpound, Dodhpur, Civil Lines, Aligarh-202002 (U.P.) INDIA. ACKNOWLEDQEMEKT 'First I Sow in reverence to Jifmigfity JlLL.^Jf tfie omnipresent, whose Blessings provided me a [ot of energy and encouragement in accomplishing the tas^ Wo 600^ is ever written in soCitude and no research endeavour is carried out in solitude, I ma^ use of this precious opportunity to express my heartfelt gratitude andsincerest than^ to my learned teacher and supervisor ^rof. -
Ascomycota, Trypetheliaceae)
A peer-reviewed open-access journal MycoKeys 34: 25–34 (2018)Architrypethelium murisporum (Ascomycota, Trypetheliaceae)... 25 doi: 10.3897/mycokeys.34.23836 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Architrypethelium murisporum (Ascomycota, Trypetheliaceae), a remarkable new lichen species from Thailand challenging ascospore septation as an indicator of phylogenetic relationships Theerapat Luangsuphabool1, H. Thorsten Lumbsch2, Jittra Piapukiew3, Ek Sangvichien1 1 Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand2 Science & Edu- cation, The Field Museum, Chicago, Illinois, USA 3 Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Corresponding author: H. Thorsten Lumbsch ([email protected]) Academic editor: P. Divakar | Received 23 January 2018 | Accepted 21 April 2018 | Published 10 May 2018 Citation: Luangsuphabool T, Lumbsch HT, Piapukiew J, Sangvichien E (2018) Architrypethelium murisporum (Ascomycota, Trypetheliaceae), a remarkable new lichen species from Thailand challenging ascospore septation as an indicator of phylogenetic relationships. MycoKeys 34: 25–34. https://doi.org/10.3897/mycokeys.34.23836 Abstract Architrypethelium murisporum Luangsuphabool, Lumbsch & Sangvichien is described for a crustose lichen occurring in dry evergreen forest in Thailand. It is characterised by a green to yellow-green corticated thal- lus, perithecia fused in black pseudostromata with white rim surrounding the ostiole and small, hyaline and muriform ascospores. Currently, all species in the genus Architrypethelium have transversely septate ascospores, hence the discovery of this new species indicates that ascospore septation is variable within the genus, similar to numerous other groups of lichen-forming ascomycetes. Phylogenetic analyses of two loci (mtSSU and nuLSU) supported the position of the new species within Architrypethelium. -
Patellariaceae Revisited
Mycosphere 6 (3): 290–326(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/7 Patellariaceae revisited Yacharoen S1,2, Tian Q1,2, Chomnunti P1,2, Boonmee S1, Chukeatirote E2, Bhat JD3 and Hyde KD1,2,4,5* 1Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 2School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3Formerly at Department of Botany, Goa University, Goa 403 206, India 4Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 5World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China Yacharoen S, Tian Q, Chomnunti P, Boonmee S, Chukeatirote E, Bhat JD, Hyde KD 2015 – Patellariaceae revisited. Mycosphere 6(3), 290–326, Doi 10.5943/mycosphere/6/3/7 Abstract The Dothideomycetes include several genera whose ascomata can be considered as apothecia and thus would be grouped as discomycetes. Most genera are grouped in the family Patellariaceae, but also Agrynnaceae and other families. The Hysteriales include genera having hysterioid ascomata and can be confused with species in Patellariaceae with discoid apothecia if the opening is wide enough. In this study, genera of the family Patellariaceae were re-examined and characterized based on morphological examination. As a result of this study the genera Baggea, Endotryblidium, Holmiella, Hysteropatella, Lecanidiella, Lirellodisca, Murangium, Patellaria, Poetschia, Rhizodiscina, Schrakia, Stratisporella and Tryblidaria are retained in the family Patellariaceae. The genera Banhegyia, Pseudoparodia and Rhytidhysteron are excluded because of differing morphology and/or molecular data. -
Novosti Sistematiki Nizshikh Rastenii 53(2): 315–332
Новости систематики низших растений — Novosti sistematiki nizshikh rastenii 53(2): 315–332. 2019 Checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Uzbekistan) I. M. Mustafaev, N. Yu. Beshko, M. M. Iminova Institute of Botany of Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan Corresponding author: I. M. Mustafaev, [email protected] Abstract. A checklist of ascomycetous microfungi of the Nuratau Nature Reserve (Nuratau Mountains, Uzbekistan) was compiled for the first time as a result of field research conducted in 2009–2017. In total, 197 species, 3 varieties and 51 forms of micromycetes belonging to 66 genera and 30 families have been identified. Among them 19 species (Asteromella tanaceti, Camarospori- um achilleae, Diplocarpon alpestre, Diplodia celtidis, Hendersonia ephedrae, Mycosphaerella artemi- siae, Neopseudocercosporella capsellae, Phoma hedysari, P. mororum, Phyllosticta prostrata, P. silenes, P. trifolii, Ramularia trifolii, Rhabdospora eremuri, Selenophoma nebulosa, Septoria cyperi, S. dauci, S. ranunculacearum, S. trifolii) and one form (Erysiphe cichoracearum f. tanaceti) were found for the first time for the mycobiota of Uzbekistan. 30 species of microfungi were recorded on 31 new host plants. The most abundant species are representatives of the cosmopolitan genera Ramularia, Sep- toria, Erysiphe, Leveillula, Mycosphaerella, Phoma, Cytospora, Sphaerotheca, Phyllosticta and Mars- sonina. The annotated checklist includes data on host plant, location, date and collection number of every species. Keywords: Ascomycetes, biodiversity, host plants, mycobiota, micromycetes, new records, Nuratau Mountains. чек-лист сумчатых микромицетов нуратинского природного заповедника (узбекистан) и. м. мустафаев, н. Ю. Бешко, м. м. иминова институт ботаники академии наук республики узбекистан, ташкент, узбекистан Автор для переписки: и. м. мустафаев, [email protected] Резюме. -
Based on a Newly-Discovered Species
A peer-reviewed open-access journal MycoKeys 76: 1–16 (2020) doi: 10.3897/mycokeys.76.58628 RESEARCH ARTICLE https://mycokeys.pensoft.net Launched to accelerate biodiversity research The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species Xinhao Li1, Hai-Xia Wu1, Jinchen Li1, Hang Chen1, Wei Wang1 1 International Fungal Research and Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming 650224, China Corresponding author: Hai-Xia Wu ([email protected], [email protected]) Academic editor: N. Wijayawardene | Received 15 September 2020 | Accepted 25 November 2020 | Published 17 December 2020 Citation: Li X, Wu H-X, Li J, Chen H, Wang W (2020) The insights into the evolutionary history of Translucidithyrium: based on a newly-discovered species. MycoKeys 76: 1–16. https://doi.org/10.3897/mycokeys.76.58628 Abstract During the field studies, aTranslucidithyrium -like taxon was collected in Xishuangbanna of Yunnan Province, during an investigation into the diversity of microfungi in the southwest of China. Morpho- logical observations and phylogenetic analysis of combined LSU and ITS sequences revealed that the new taxon is a member of the genus Translucidithyrium and it is distinct from other species. Therefore, Translucidithyrium chinense sp. nov. is introduced here. The Maximum Clade Credibility (MCC) tree from LSU rDNA of Translucidithyrium and related species indicated the divergence time of existing and new species of Translucidithyrium was crown age at 16 (4–33) Mya. Combining the estimated diver- gence time, paleoecology and plate tectonic movements with the corresponding geological time scale, we proposed a hypothesis that the speciation (estimated divergence time) of T. -
Schlechtendalia 37 (2020)
Schlechtendalia 38, 2021 Annotated list of taxonomic novelties published in “Fungi Europaei Exsiccati, Klotzschii Herbarium Vivum Mycologicum Continuato, Editio Nova, Series Secunda” Cent. 1 to 26 issued by G. L. Rabenhorst between 1859 and 1881 (second part – Cent. 11 to 20) Uwe BRAUN & Konstanze BENSCH Abstract: Braun, U. & Bensch, K. 2021: Annotated list of taxonomic novelties published in “Fungi Europaei Exsiccati, Klotzschii Herbarium Vivum Mycologicum Continuato, Editio Nova, Series Secunda” Cent. 1 to 26 issued by G. L. Rabenhorst between 1859 and 1881 (second part – Cent. 11 to 20). Schlechtendalia 38: 191–262. New taxa and new combinations published by G. L. Rabenhorst in “Fungi Europaei Exsiccati, Klotzschii Herbarium Vivum Mycologicum, Editio Nova, Series Secunda” Cent. 1 to 26 in the second half of the 19th century are listed and annotated. References, citations and the synonymy are corrected when necessary. The nomenclature of some taxa is discussed in more detail. The second part of this treatment comprises taxonomic novelties in Cent. 11 to 20. Zusammenfassung: Braun, U. & Bensch, K. 2021: Kommentierte Liste taxonomischer Neuheiten publiziert in „Fungi Europaei Exsiccati, Klotzschii Herbarium Vivum Mycologicum Continuato, Editio Nova, Series Secunda“ Cent. 1 bis 26, herausgegeben von G. L. Rabenhorst zwischen 1859 und 1881 (zweiter Teil, Cent. 11 bis 20). Schlechtendalia 38: 191–262. Neue Taxa und Kombinationen publiziert von G. L. Rabenhorst in “Klotzschii Herbarium Vivum Mycologicum, Editio Nova” Cent. 1 bis 26 in der zweiten Hälfte des 19. Jahrhunderts werden aufgelistet und annotiert. Referenzangaben, Zitate und die Synonymie werden korrigiert falls notwendig. Die Nomenklatur einiger Taxa wird detaillierter besprochen. Der zweite Teil dieser Bearbeitung umfasst Cent. -
Phylogeny and Morphology of Premilcurensis Gen
Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
Research Collection
Research Collection Doctoral Thesis Studies on Venturiaceae on Rosaceous plants Author(s): Menon, Radha Publication Date: 1956 Permanent Link: https://doi.org/10.3929/ethz-a-000092066 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss ETH Prom. Nr. 2585 B Studies on Venturiaceae on Rosaceous Plants THESIS PRESENTED TO THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH FOR THE DEGREE OF DOCTOR OF NATURAL SCIENCES BY RADHA MENON at CITIZEN OF Ser\ INDIA Accepted on the recommendation of Prof. Dr. E. Gaumann and Prof. Dr. A. Frey-Wyssling 19 5 6 Druck von A. W. Hayn's Erben, Berlin SO 36 Veroffentlicht in „Phytopathologische Zcitschrift" Band 27, Heft 2, Seite 117 bis 146 (1956) Verlag Paul Parey, Berlin und Hamburg From the Department of special Botany of the Swiss Federal Institute of Technology in Zurich Director: Prof. Dr. E. Gdumann Studies on Venturiaceae on Rosaceous Plants By Radha Menon With 10 Figures Contents: I. General Introduction. A. Venturiaceae. B. Venturiaceae on Rosaceae: 1) Venturia, 2) Coleroa, 3) Gibbera, 4) Xenomeris, 5) Apiosporina. — II. Experimental Part. A. Cultural Studies. B. Inoculation Experiments: 1) Introduction, 2) Inoculation Studies, 3) Results, 4) Conclusions. — III. Morphological and Cultural Studies. A. Genus Venturia: 1) Venturia inaequalis, 2) Venturia tomentosae, 3) Venturia pirina, 4) Venturia pruni-cerasi, 5) Venturia Mullcri, 6) Venturia potentillae, 7) Venturia palustris, 8) Venturia alchemillae. — Appendix: Fusicladium eriobotryae. — B. Genus Coleroa: Coleroa chac- tomium. — C. Genus Gibbera: Gibbera rosae. -
A Conspectus of the Filamentous Marine Fungi of Sweden
Botanica Marina 2020; 63(2): 141–153 Sanja Tibell*, Leif Tibell, Ka-Lai Pang and E.B. Gareth Jones A conspectus of the filamentous marine fungi of Sweden https://doi.org/10.1515/bot-2018-0114 mostly based on morphological studies, however often the Received 16 December, 2018; accepted 8 May, 2019; online first 2 very small size of these organisms and/or the insufficient July, 2019 morphological distinctive features limit considerably the census of the biodiversity of this component. For marine Abstract: Marine filamentous fungi have been little stud- fungi, the recent application of molecular approaches ied in Sweden, which is remarkable given the depth and offers a useful tool for the census of their biodiversity, width of mycological studies in the country since the time where a wealth of hidden biodiversity is still to be uncov- of Elias Fries. Seventy-four marine fungi are listed for ered. However, there are still different shortcomings and Sweden based on historical records and recent collections, downsides that prevent the extensive use of molecular data of which 16 are new records for the country. New records without the support of classical taxonomic identification. for the country are based on morphological identification Marine wood long remained the main focus for studies of species mainly from marine wood, and most of them of marine filamentous fungi (MFF), however studies by from the Swedish West Coast. In some instances, the iden- Zuccaro et al. (2008), and Suryanarayanan (2012) have tifications have been made by comparisons of sequences shown a rich diversity of these fungi also associated with obtained from cultures with reference sequences in Gen- marine algae (Jones et al. -
H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology -
(US) 38E.85. a 38E SEE", A
USOO957398OB2 (12) United States Patent (10) Patent No.: US 9,573,980 B2 Thompson et al. (45) Date of Patent: Feb. 21, 2017 (54) FUSION PROTEINS AND METHODS FOR 7.919,678 B2 4/2011 Mironov STIMULATING PLANT GROWTH, 88: R: g: Ei. al. 1 PROTECTING PLANTS FROM PATHOGENS, 3:42: ... g3 is et al. A61K 39.00 AND MMOBILIZING BACILLUS SPORES 2003/0228679 A1 12.2003 Smith et al." ON PLANT ROOTS 2004/OO77090 A1 4/2004 Short 2010/0205690 A1 8/2010 Blä sing et al. (71) Applicant: Spogen Biotech Inc., Columbia, MO 2010/0233.124 Al 9, 2010 Stewart et al. (US) 38E.85. A 38E SEE",teWart et aal. (72) Inventors: Brian Thompson, Columbia, MO (US); 5,3542011/0321197 AllA. '55.12/2011 SE",Schön et al.i. Katie Thompson, Columbia, MO (US) 2012fO259101 A1 10, 2012 Tan et al. 2012fO266327 A1 10, 2012 Sanz Molinero et al. (73) Assignee: Spogen Biotech Inc., Columbia, MO 2014/0259225 A1 9, 2014 Frank et al. US (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CA 2146822 A1 10, 1995 patent is extended or adjusted under 35 EP O 792 363 B1 12/2003 U.S.C. 154(b) by 0 days. EP 1590466 B1 9, 2010 EP 2069504 B1 6, 2015 (21) Appl. No.: 14/213,525 WO O2/OO232 A2 1/2002 WO O306684.6 A1 8, 2003 1-1. WO 2005/028654 A1 3/2005 (22) Filed: Mar. 14, 2014 WO 2006/O12366 A2 2/2006 O O WO 2007/078127 A1 7/2007 (65) Prior Publication Data WO 2007/086898 A2 8, 2007 WO 2009037329 A2 3, 2009 US 2014/0274707 A1 Sep.