Sam68 Promotes Self-Renewal and Glycolytic Metabolism in Mouse Neural Progenitor Cells By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the -
Splicing Regulatory Factors in Breast Cancer Hallmarks and Disease Progression
www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 57), pp: 6021-6037 Review Splicing regulatory factors in breast cancer hallmarks and disease progression Esmee Koedoot1, Liesanne Wolters1, Bob van de Water1 and Sylvia E. Le Dévédec1 1Division of Drug Discovery and Safety, LACDR, Leiden University, Leiden, The Netherlands Correspondence to: Sylvia E. Le Dévédec, email: [email protected] Keywords: hallmarks of cancer; breast cancer; alternative splicing; splice factors; RNA sequencing Received: April 23, 2019 Accepted: August 29, 2019 Published: October 15, 2019 Copyright: Koedoot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. -
University of Groningen BRCA2 Deficiency Instigates Cgas
University of Groningen BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity Heijink, Anne Margriet; Talens, Francien; Jae, Lucas T; van Gijn, Stephanie E; Fehrmann, Rudolf S N; Brummelkamp, Thijn R; van Vugt, Marcel A T M Published in: Nature Communications DOI: 10.1038/s41467-018-07927-y IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Heijink, A. M., Talens, F., Jae, L. T., van Gijn, S. E., Fehrmann, R. S. N., Brummelkamp, T. R., & van Vugt, M. A. T. M. (2019). BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nature Communications, 10(1), [100]. https://doi.org/10.1038/s41467-018-07927-y Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Snotarget Shows That Human Orphan Snorna Targets Locate Close to Alternative Splice Junctions
Available online at www.sciencedirect.com Gene 408 (2008) 172–179 www.elsevier.com/locate/gene snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions Peter S. Bazeley a, Valery Shepelev b, Zohreh Talebizadeh c, Merlin G. Butler c, Larisa Fedorova d, ⁎ Vadim Filatov e, Alexei Fedorov a,d, a Program in Bioinformatics and Proteomics/Genomics, University of Toledo Health Science Campus, Toledo, OH 43614, USA b Department of Bioinformatics, Institute of Molecular Genetics, RAS, Moscow 123182, Russia c Section of Medical Genetics and Molecular Medicine, Children's Mercy Hospitals and Clinics and University of Missouri, Kansas City School of Medicine, Kansas City, MO, USA d Department of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA e Dinom LLC, 8/44 Pedagogicheskaya st., Moscow 115404, Russia Received 31 July 2007; received in revised form 19 October 2007; accepted 24 October 2007 Available online 21 November 2007 Received by Takashi Gojobori Abstract Among thousands of non-protein-coding RNAs which have been found in humans, a significant group represents snoRNA molecules that guide other types of RNAs to specific chemical modifications, cleavages, or proper folding. Yet, hundreds of mammalian snoRNAs have unknown function and are referred to as “orphan” molecules. In 2006, for the first time, it was shown that a particular orphan snoRNA (HBII-52) plays an important role in the regulation of alternative splicing of the serotonin receptor gene in humans and other mammals. In order to facilitate the investigation of possible involvement of snoRNAs in the regulation of pre-mRNA processing, we developed a new computational web resource, snoTARGET, which searches for possible guiding sites for snoRNAs among the entire set of human and rodent exonic and intronic sequences. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Snapshot: the Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J
192 Cell SnapShot: The Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J. Blencowe 133 Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada Expression in mouse , April4, 2008©2008Elsevier Inc. Low High Name Other Names Protein Domains Binding Sites Target Genes/Mouse Phenotypes/Disease Associations Amy Ceb Hip Hyp OB Eye SC BM Bo Ht SM Epd Kd Liv Lu Pan Pla Pro Sto Spl Thy Thd Te Ut Ov E6.5 E8.5 E10.5 SRp20 Sfrs3, X16 RRM, RS GCUCCUCUUC SRp20, CT/CGRP; −/− early embryonic lethal E3.5 9G8 Sfrs7 RRM, RS, C2HC Znf (GAC)n Tau, GnRH, 9G8 ASF/SF2 Sfrs1 RRM, RS RGAAGAAC HipK3, CaMKIIδ, HIV RNAs; −/− embryonic lethal, cond. KO cardiomyopathy SC35 Sfrs2 RRM, RS UGCUGUU AChE; −/− embryonic lethal, cond. KO deficient T-cell maturation, cardiomyopathy; LS SRp30c Sfrs9 RRM, RS CUGGAUU Glucocorticoid receptor SRp38 Fusip1, Nssr RRM, RS ACAAAGACAA CREB, type II and type XI collagens SRp40 Sfrs5, HRS RRM, RS AGGAGAAGGGA HipK3, PKCβ-II, Fibronectin SRp55 Sfrs6 RRM, RS GGCAGCACCUG cTnT, CD44 DOI 10.1016/j.cell.2008.03.010 SRp75 Sfrs4 RRM, RS GAAGGA FN1, E1A, CD45; overexpression enhances chondrogenic differentiation Tra2α Tra2a RRM, RS GAAARGARR GnRH; overexpression promotes RA-induced neural differentiation SR and SR-Related Proteins Tra2β Sfrs10 RRM, RS (GAA)n HipK3, SMN, Tau SRm160 Srrm1 RS, PWI AUGAAGAGGA CD44 SWAP Sfrs8 RS, SWAP ND SWAP, CD45, Tau; possible asthma susceptibility gene hnRNP A1 Hnrnpa1 RRM, RGG UAGGGA/U HipK3, SMN2, c-H-ras; rheumatoid arthritis, systemic lupus -
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues
G C A T T A C G G C A T genes Review RET Gene Fusions in Malignancies of the Thyroid and Other Tissues Massimo Santoro 1,*, Marialuisa Moccia 1, Giorgia Federico 1 and Francesca Carlomagno 1,2 1 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; [email protected] (M.M.); [email protected] (G.F.); [email protected] (F.C.) 2 Institute of Endocrinology and Experimental Oncology of the CNR, 80131 Naples, Italy * Correspondence: [email protected] Received: 10 March 2020; Accepted: 12 April 2020; Published: 15 April 2020 Abstract: Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer. Keywords: kinase; tyrosine kinase inhibitor; targeted therapy; thyroid cancer 1. The RET Receptor RET (REarranged during Transfection) was initially isolated as a rearranged oncoprotein upon the transfection of a human lymphoma DNA [1]. -
Gorilla Results
Results http://cbl-gorilla.cs.technion.ac.il/GOrilla/2l4v7a1a/GOResultsPROCESS... P-value color scale > 10-3 10-3 to 10-5 10-5 to 10-7 10-7 to 10-9 < 10-9 null Description P-value Enrichment (N, B, n, b) Genes [-] Hide genes ATF3 - activating transcription factor 3 JUN - jun proto-oncogene ADM - adrenomedullin NAMPT - nicotinamide phosphoribosyltransferase GO:0008284 positive regulation of cell proliferation 6.46E-6 4.37 (297,17,40,10) C7orf68 - chromosome 7 open reading frame 68 FOSL2 - fos-like antigen 2 TNFAIP3 - tumor necrosis factor, alpha-induced protein 3 VEGFA - vascular endothelial growth factor a SOX9 - sry (sex determining region y)-box 9 EDN2 - endothelin 2 [-] Hide genes JUN - jun proto-oncogene SPRR1B - small proline-rich protein 1b GO:0030855 epithelial cell differentiation 4.33E-5 5.20 (297,10,40,7) SPRR1A - small proline-rich protein 1a PLAUR - plasminogen activator, urokinase receptor VEGFA - vascular endothelial growth factor a TXNIP - thioredoxin interacting protein ELF3 - e74-like factor 3 (ets domain transcription factor, epithelial-specific ) [-] Hide genes JUN - jun proto-oncogene KHDRBS1 - kh domain containing, rna binding, signal transduction associated 1 MAFF - v-maf musculoaponeurotic fibrosarcoma oncogene homolog f (avian) VEGFA - vascular endothelial growth factor a RRAS - related ras viral (r-ras) oncogene homolog SOX9 - sry (sex determining region y)-box 9 SAT1 - spermidine/spermine n1-acetyltransferase 1 GEM - gtp binding protein overexpressed in skeletal muscle GO:0006807 nitrogen compound metabolic process -
Rabbit Anti-RASAL2/FITC Conjugated Antibody-SL21160R-FITC
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RASAL2/FITC Conjugated antibody SL21160R-FITC Product Name: Anti-RASAL2/FITC Chinese Name: FITC标记的RASAL2蛋白抗体 nGAP; NGAP_HUMAN; Ras GTPase-activating protein nGAP; Ras protein activator Alias: like 1; RAS protein activator-like 2; RASAL2. Organism Species: Rabbit Clonality: Polyclonal React Species: Human, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 129kDa Form: Lyophilized or Liquid Concentration: 2mg/1ml immunogen: KLH conjugated synthetic peptide derived from human RASAL2 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Storewww.sunlongbiotech.com at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: This gene encodes a protein that contains the GAP-related domain (GRD), a characteristic domain of GTPase-activating proteins (GAPs). GAPs function as activators of Ras superfamily of small GTPases. The protein encoded by this gene is Product Detail: able to complement the defective RasGAP function in a yeast system. Two alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported. -
Article Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications
Article Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications Aida Barreiro-Alonso 1,†, María Cámara-Quílez 1,†, Martín Salamini-Montemurri 1, Mónica Lamas- Maceiras 1, Ángel Vizoso-Vázquez 1, Esther Rodríguez-Belmonte 1, María Quindós-Varela 2, Olaia Martínez-Iglesias 3, Angélica Figueroa 3 and María-Esperanza Cerdán 1,* Table S1. Association of proteins that interact with Hmgb1 or Hmgb2 to cancer hallmarks. Cancer Hallmark Protein Model Reference MAP1B Colorectal cancers [109] GENOMIC INSTABILITY AND Liver adenocarcinoma (SKHep1) and NOP53 [110] MUTATIONS/ CHANGES IN glioblastoma (T98G) cell lines TELOMERASE ACTIVITY RSF1 Ovarian cells [111] SRSF3 Ovarian cancer [112] C1QBP Breast cancer [54,113] cFOS Bladder cancer [114] cFOS Breast cancer [115] DLAT Gastric Cancer [116] Human melanoma (A7), Prostate cancer FLNA [117] (PC3) cell lines GOLM1 Hepatocellular carcinoma [118] GOLM1 Breast cancer [119] GOLM1 Lung proliferation [120] GOLM1 Prostate cancer [82] SUSTAINING PROLIFERATIVE Hox-A10 Prostate cancer cell line PC-3 [58] SIGNALLING/ CELL Hox-A10 Ovarian cancer cell lines [121,122] PROLIFERATION NOP53 Breast cancer [123] PSMA7 Cervical cancer [124] PTPN2 Epithelial carcinogenesis [125] RASAL2 hepatocellular carcinoma [126] RSF1 Prostate cancer [95] RSF1 Nasopharyngeal carcinoma [127] SPIN1 Glioma [128] TGM3 Esophageal cancer [129] UBE2E3 Retinal pigment epithelial (RPE) [130] Vigilin Hepatocellular carcinomas [131] WNK4 Kidney [100] C1QBP Prostate cancer [48] -
Synaptic Modulators Nrxn1 and Nrxn3 Are Disregulated in a Disc1 Mouse
Letters to the Editor 585 National University of Ireland Galway, Galway, Ireland; 4Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 5Center for Integrated Molecular Brain Imaging, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark and 6Department of Psychiatry, Laureate Institute for Brain Research, University of Oklahoma College of Medicine, Tulsa, OK, USA E-mail: [email protected] 7These senior authors contributed equally to this paper. References 1 Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M et al. Biological Psychiatry 2002; 51: 715–722. 2 Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS et al. Biol Psychiatry 2007; 15: 870–877. 3 Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK et al. Biol Psychiatry 2006; 60: 207–217. 4 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. American Journal of Human Genetics 2007; 81: 559–575. Figure 1 Map of t-values from voxel-wise analysis of 5 Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F et al. Synapse 2003; 48: 184–188. rs6741892, overlaid on a sample axial magnetic resonance 6 Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, imaging slice at the level of the medial thalamus (z = 6 mm). Nielsen FA et al. Neuroimage 2009; 45: 280–285. Bilaterally, T-allele carriers (n = 13) have greater serotonin- 7 Erritzoe D, Holst K, Frokjaer VG, Licht CL, Kalbitzer J, Nielsen FA transporter-binding potential than AA homozygotes (n = 42).