Structure of a Viscoplastic Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
V- 3 31 Finite Element Implementation of State Variable-Based
https://ntrs.nasa.gov/search.jsp?R=19910023209 2020-03-17T14:54:26+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server ,,/v-_3 31 / NASA Contractor Report 187212 Finite Element Implementation of State Variable-Based Viscoplasticity Models (UA_A-CR-I_7212) FINITE ELEMENT N91-32523 IMPLEMENTATIL3N OF STATE VA&IABLF-_ASED VISCOPLA_TICITY MnOELS Final Report (Akron Univ.) 41 p CSCL 2OK G3/39 I. Iskovitz, T.Y.P. Chang, and A.F. Saleeb University of Akron Akron, Ohio September 1991 Prepared for Lewis Research Center Under Grant NAG3-901 National Aeronautics and Space Administration Finite Element Implementation of State Variable-Based Viscoplasticity Models I. Iskovitz, T.Y.P. Chang and A.F. Saleeb Department of Civil Engineering University of Akron Akron, Ohio 44325 Abstract Implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural appli- cations of metals deformed at elevated temperature. Two consti- tutive models, i.e. Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integra- tion algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested. -
Review on Different Hardening Models for Computation of Deep
S¯adhan¯a Vol. xx, No.x, xx xxxx, pp.xx–x c Indian Academy of Sciences DOI 12.3456/s78910-011-012-3 Review on Different Hardening Models for Computation of Deep Drawing Process Simulation A C S REDDY 1, C BHASKAR REDDY 2 and D V PALESWAR1 1 Department of Mechanical Engineering, Sreyas Institute of Engineering and Technology 2 Department of Mechanical Engineering, Srikalahsthi Institute of Engineering and Technology Abstract. we address herein various hardening models and their suitability in computational modelling of deep drawing process wherein magnesium alloy AZ31 as blank material. insight on all basic and advanced hardening models. The basic models as well as advanced models were illustrated in usefulness of them in metal forming. It is purely depends on the researcher to select the appropriate hardening model for extracting the real computational behavior resembling the true hardening property. MS received xxxx; revised xxxx; accepted xxxx Keywords. Strain hardening, Isotropic hardening, kinematic hardening, mixed hardening, deep drawing. 1 Introduction is of complex task in computational simulation of deep draw- ing and other processes had successfully implemented in the In practice, different metal forming processes such as deep last couple of decades. The finite Element Methods (FEM) is drawing, stamping, or bending operations are required in man- quite successful to simulate metal forming processes, but ac- ufacture of automotive parts, beverage or food cans, pan- curacy of the drawn parts depends upon the constitutive laws els of aerospace etc. In the last few decades the design of and their parameters identification. The development of ma- sheet metal manufacturing processes such as deep drawing terial models and their use in computational plasticity is of had been significantly influenced by modern tools, e.g. -
Work Hardening and Annealing of Copper
Work Hardening and Annealing of Copper Thomas Stoebe University of Washington Seattle, WA [email protected] Copyright Edmonds Community College 2007; Permission granted for use and reproduction for educational purposes only. Abstract: This experiment demonstrates the process of work hardening in a copper, that is, hardening the metal by deformation. If an appropriate furnace is available, it also demonstrates the softening process of annealing. Copper wire or tubing is quite soft in its initial state, allowing for a variety of uses where the tubing needs to be bent to a desired shape. Upon bending, the copper hardens due to work hardening (also called strain hardening). Enough bending will make it impossible to return it to its original shape. However, annealing at a high enough temperature causes new, strain-free material to form and the copper will return to its original soft condition. Objectives: Students will be able to Experience the process of work hardening Explain the effects of work hardening in metals Experience property changes affected by annealing MatEd core competencies addressed (most important in bold): 4A Demonstrate effective work with teams 7A Illustrate the general nature of metals 8B Apply mechanical testing processes to solid materials 16A Distinguish effects of processing on materials properties Key words: copper, work hardening, annealing, properties Type of Module: Demonstration with class participation or lab experiment Time required: 5 to 10 minutes for deformation and discussion 30 min. for annealing, 10 min for cooling 5 to 10 minutes for deformation of the annealed specimens Target Grade Levels: Grades 4 and up will appreciate the experiment as a demonstration. -
Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds
materials Article Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds Sidharth Rajan 1,2,* , Priti Wanjara 1 , Javad Gholipour 1 and Abu Syed Kabir 2 1 National Research Council Canada (NRC), Aerospace Research Center, 2107 Chemin de la Polytechnique, Campus de l’Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] (P.W.); [email protected] (J.G.) 2 Mechanical and Aerospace Department, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] * Correspondence: [email protected] Abstract: The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β α β to equilibrated levels of + phases and recovering the hardness. -
Constitutive Behavior of Granitic Rock at the Brittle-Ductile Transition
CONSTITUTIVE BEHAVIOR OF GRANITIC ROCK AT THE BRITTLE-DUCTILE TRANSITION Josie Nevitt, David Pollard, and Jessica Warren Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 e-mail: [email protected] fracture to ductile flow with increasing depth in the Abstract earth’s crust. This so-called “brittle-ductile transition” has important implications for a variety of geological Although significant geological and geophysical and geophysical phenomena, including the mechanics processes, including earthquake nucleation and of earthquake rupture nucleation and propagation propagation, occur in the brittle-ductile transition, (Hobbs et al., 1986; Li and Rice, 1987; Scholz, 1988; earth scientists struggle to identify appropriate Tse and Rice, 1986). Despite the importance of constitutive laws for brittle-ductile deformation. This deformation within this lithospheric interval, significant paper investigates outcrops from the Bear Creek field gaps exist in our ability to accurately characterize area that record deformation at approximately 4-15 km brittle-ductile deformation. Such gaps are strongly depth and 400-500ºC. We focus on the Seven Gables related to the uncertainty in choosing the constitutive outcrop, which contains a ~10cm thick aplite dike that law(s) that govern(s) the rheology of the brittle-ductile is displaced ~45 cm through a contractional step transition. between two sub-parallel left-lateral faults. Stretching Rheology describes the response of a material to an and rotation of the aplite dike, in addition to local applied force and is defined through a set of foliation development in the granodiorite, provides an constitutive equations. In addition to continuum excellent measure of the strain within the step. -
Fracture Mechanics
Fracture Mechanics Introduction to Fracture Introduction to Fracture Presented by Calvin M. Stewart, PhD MECH 5390-6390 Fall 2020 Outline • Definition • Failure of Structures • Fracture Mechanics Approach to Design • Significance • Review of Approaches • Energy Approach, Stress Intensity Factor Approach, Crack Tip Plasticity, Fracture Toughness, The J Integral, Classification, Fatigue • Methods • Analytical, Experimental, Computational Definition of Fracture Mechanics • Fracture – field of study focused on characterizing the behavior of crack in cracked structures. • Notes: • Understanding how crack behaves equips engineers with the tools needed to design against the initiation and propagation of cracks • Fracture behavior is dependent on material, load/displacement, and geometric factors Failure of Structures Fracture Mechanics Approach to Design Significance In the nineteenth century, it was realized that pre-existing flaws could initiate cracking and fracture. It was discovered that brittle fracture in steels was promoted by low temperatures. Significance There was considerable development of new high strength alloys. In the 1950’s, it was recognized that although these materials are not intrinsically brittle, the energy required for fracture is comparatively low. The possibility, and indeed occurrence, of this low energy fracture in high strength materials stimulated the modern development of fracture mechanics. Significance Consider a structure containing pre-existing flaws and/or in which crack initiate in service. The crack may growth with time owing to various causes (fatigue, stress corrosion, creep, etc.) and will generally grow progressively faster. The residual strength of the structure, which is the failure strength as a function of crack size, decreases with increasing crack size. After a time, the residual strength becomes so low that the structure may failure in service. -
An Anisotropic Viscoplasticity Model for Shale Based on Layered Microstructure Homogenization
An anisotropic viscoplasticity model for shale based on layered microstructure homogenization Jinhyun Chooa,∗, Shabnam J. Semnanib, Joshua A. Whitec aDepartment of Civil Engineering, The University of Hong Kong, Hong Kong bDepartment of Structural Engineering, University of California, San Diego, United States cAtmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, United States Abstract Viscoplastic deformation of shale is frequently observed in many subsurface applications. Many studies have sug- gested that this viscoplastic behavior is anisotropic—specifically, transversely isotropic—and closely linked to the layered composite structure at the microscale. In this work, we develop a two-scale constitutive model for shale in which anisotropic viscoplastic behavior naturally emerges from semi-analytical homogenization of a bi-layer mi- crostructure. The microstructure is modeled as a composite of soft layers, representing a ductile matrix formed by clay and organics, and hard layers, corresponding to a brittle matrix composed of stiff minerals. This layered microstructure renders the macroscopic behavior anisotropic, even when the individual layers are modeled with isotropic constitutive laws. Using a common correlation between clay and organic content and magnitude of creep, we apply a viscoplastic Modified Cam-Clay plasticity model to the soft layers, while treating the hard layers as a linear elastic material to minimize the number of calibration parameters. We then describe the implementation of the proposed model in a standard material update subroutine. The model is validated with laboratory creep data on samples from three gas shale formations. We also demonstrate the computational behavior of the proposed model through simulation of time-dependent borehole closure in a shale formation with different bedding plane directions. -
Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming
Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- (2000) - 15th International Specialty Conference Formed Steel Structures on Cold-Formed Steel Structures Oct 19th, 12:00 AM Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming P. A. Sloof R. M. Schuster Follow this and additional works at: https://scholarsmine.mst.edu/isccss Part of the Structural Engineering Commons Recommended Citation Sloof, P. A. and Schuster, R. M., "Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming" (2000). International Specialty Conference on Cold-Formed Steel Structures. 4. https://scholarsmine.mst.edu/isccss/15iccfss/15iccfss-session9/4 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Fifteenth International Specialty Conference on Cold-Formed Steel Structures St. Louis, Missouri U.S.A., October 19-20, 2000 Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming P. A. Sioor, P.Eng. and R.M. Schuster2, P.Eng. Abstract The design approach for predicting the increase in yield strength due to cold work of fonning in the AISI 1996 Specification for the Design of Cold-Fonned Steel Structural members is different from the approach used by the CSA Standard, CSA SI36-94, Cold Fonned Steel Structural Members. -
Joining of Refractory Metals and Its Application B. Tabernig, N. Reheis
Tabernig and Reheis 17th Plansee Seminar 2009, Vol. 4 GT 12/1 Joining of Refractory Metals and its Application B. Tabernig, N. Reheis PLANSEE SE, Reutte, Austria Abstract In this work fusion and solide state welding techniques for joining PM refractory metals are adressed. The weldability is discussed and evaluated by electron beam and friction welding experiments. EB welding experiments were performed on rolled sheets made of different Mo-based materials. While a significant decrease in the mechanical properties was found for the weldments of unalloyed molybedenum and the alloy TZM, good weldability is given for Mo41Re. A welding procedure was established and used for the manufacturing of thin walled tubes. Rotary friction welding experiments were carried out on rod material of the Mo-alloys TZM and MHC. Suitable process parameter were determined and successfully transferred for the joining of tubular TZM parts. Keywords Refractory metals, molybdenum, joining, EB-welding, friction welding Introduction Refractory metals such as Mo and W are used in components of several high tech industries due to their high temperature and / or physical properties. One challenge for the industrial application of these specialty materials is the development of dedicated joining technologies. Joining can be achieved by conventional mechanical methods e.g. riveting and fastening as well as by advanced brazing and welding techniques for temperature resistant, strong and tight joints. This study is focused on the joining of refractory metals produced by powder metallurgy (PM) and adresses fusion welding as well as solide state welding techniques. Refractory metals generally exhibit limited weldability. Issues for fusion welding are the embrittlement of the weldment due to impurities and the grain growth in the heat affected zone. -
A Variational Framework for Nonlinear Viscoelastic and Viscoplastic Models in Finite Deformation Regime Laurent Stainier, E
A variational framework for nonlinear viscoelastic and viscoplastic models in finite deformation regime Laurent Stainier, E. Fancello, Jean-Philippe Ponthot To cite this version: Laurent Stainier, E. Fancello, Jean-Philippe Ponthot. A variational framework for nonlinear viscoelas- tic and viscoplastic models in finite deformation regime. Proc. of MECOM VIII, Argentinian Congress on Computational Mechanics, 2005, Buenos Aires, Argentina. hal-01007825 HAL Id: hal-01007825 https://hal.archives-ouvertes.fr/hal-01007825 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A VARIATIONAL FRAMEWORK FOR NONLINEAR VISCOELASTIC AND VISCOPLASTIC MODELS IN FINITE DEFORMATION REGIME Laurent Stainier∗, Eduardo A. Fancello†, and Jean-Philippe Ponthot∗ ∗Departement´ AeroSpatiale,´ Mecanique´ et mAteriaux´ Universite´ de Liege,` LTAS-MCT, 1 chemin des chevreuils, B-4000 Liege,` Belgium email: [email protected], web page: http://www.asma.ulg.ac.be †Departmento de Engenharia Mecanicaˆ Universidade Federal de Santa Catarina, Caixa Postal 476, Campus Universitario,´ Trindade, 88040-900 Florianopolis,´ SC, Brazil email: [email protected], web page: http://www.emc.ufsc.br Key Words: Constitutive Updates, Finite Viscoelasticity, Finite Viscoplasticity, Variational Formulation. Abstract. The goal of this work is to provide a general framework for constitutive viscoelastic and viscoplastic models based on the theoretical background proposed in Ortiz and Stainier, Comput. -
Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables
Computers and Structures 74 (2000) 601±628 www.elsevier.com/locate/compstruc Robust integration schemes for generalized viscoplasticity with internal-state variables A.F. Saleeb*, T.E. Wilt, W. Li Department of Civil Engineering, The University of Akron, Akron, OH 44325, USA Received 11 July 1998; accepted 31 August 1998 Abstract This paper is concerned with the development of a general framework for the implicit time-stepping integrators for the ¯ow and evolution equations in complex viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its ®nite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, we use the unconditionally stable, backward Euler dierence scheme. Its mathematical structure is of sucient generality to allow a uni®ed treatment of dierent classes of viscoplastic models with internal variables. Two speci®c models of this type, which are representatives of the present state-of-the-art in metal viscoplasticity, are considered in the applications reported here; i.e., generalized viscoplasticity with complete potential structure fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in three-dimensions as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to eciency and robustness are emphasized in developing the (local) iterative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiness arrays are given explicitly for the GVIPS model, with the maximum matrix sizes `optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). -
Bounding Surface Elasto-Viscoplasticity: a General Constitutive Framework for Rate-Dependent Geomaterials
Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) Department of Civil and Environmental Engineering McCormick School of Engineering and Applied Science Evanston, Illinois 60208, USA Bounding Surface Elasto-Viscoplasticity: A General Constitutive Framework for Rate-Dependent Geomaterials Z. Shi, J. P. Hambleton and G. Buscarnera SEGIM INTERNAL REPORT No. 18-5/766B Submitted to Journal of Engineering Mechanics May 2018 1 Bounding Surface Elasto-Viscoplasticity: A General Constitutive 2 Framework for Rate-Dependent Geomaterials 1 2 3 Zhenhao Shi, Ph.D. A.M. ASCE , James P. Hambleton, Ph.D. A.M. ASCE , and Giuseppe 3 4 Buscarnera, Ph.D. M. ASCE 1 5 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 6 60208, USA, with corresponding author email. Email: [email protected] 2 7 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 8 60208, USA 2 9 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 10 60208, USA 11 ABSTRACT 12 A general framework is proposed to incorporate rate and time effects into bounding surface (BS) 13 plasticity models. For this purpose, the elasto-viscoplasticity (EVP) overstress theory is combined 14 with bounding surface modeling techniques. The resulting constitutive framework simply requires 15 the definition of an overstress function through which BS models can be augmented without 16 additional constitutive hypotheses. The new formulation differs from existing rate-dependent 17 bounding surface frameworks in that the strain rate is additively decomposed into elastic and 18 viscoplastic parts, much like classical viscoplasticity. Accordingly, the proposed bounding surface 19 elasto-viscoplasticity (BS-EVP) framework is characterized by two attractive features: (1) the rate- 20 independent limit is naturally recovered at low strain rates; (2) the inelastic strain rate depends 21 exclusively on the current state.