Fracture Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Fracture Mechanics Fracture Mechanics Introduction to Fracture Introduction to Fracture Presented by Calvin M. Stewart, PhD MECH 5390-6390 Fall 2020 Outline • Definition • Failure of Structures • Fracture Mechanics Approach to Design • Significance • Review of Approaches • Energy Approach, Stress Intensity Factor Approach, Crack Tip Plasticity, Fracture Toughness, The J Integral, Classification, Fatigue • Methods • Analytical, Experimental, Computational Definition of Fracture Mechanics • Fracture – field of study focused on characterizing the behavior of crack in cracked structures. • Notes: • Understanding how crack behaves equips engineers with the tools needed to design against the initiation and propagation of cracks • Fracture behavior is dependent on material, load/displacement, and geometric factors Failure of Structures Fracture Mechanics Approach to Design Significance In the nineteenth century, it was realized that pre-existing flaws could initiate cracking and fracture. It was discovered that brittle fracture in steels was promoted by low temperatures. Significance There was considerable development of new high strength alloys. In the 1950’s, it was recognized that although these materials are not intrinsically brittle, the energy required for fracture is comparatively low. The possibility, and indeed occurrence, of this low energy fracture in high strength materials stimulated the modern development of fracture mechanics. Significance Consider a structure containing pre-existing flaws and/or in which crack initiate in service. The crack may growth with time owing to various causes (fatigue, stress corrosion, creep, etc.) and will generally grow progressively faster. The residual strength of the structure, which is the failure strength as a function of crack size, decreases with increasing crack size. After a time, the residual strength becomes so low that the structure may failure in service. Significance • Fracture Mechanics should attempt to provide quantitative answers to the following questions: 1. What is the residual strength as a function of crack size? 2. What crack size can be tolerated under service loading, i.e. what is the maximum permissible crack size? 3. How long does it take for a crack to grow from a certain initial size, for example the minimum detectable crack size, to the maximum permissible crack size? 4. What is the service life of a structure when a crack-like flaw (e.g. a manufacturing defect) with a certain size is assumed to exist? 5. During the period available for crack detection how often should the structure be inspected for cracks? Review of Approaches Energy Approach, Stress Intensity Factor Approach, Crack Tip Plasticity, Fracture Toughness, The J Integral, Classification, Fatigue Linear Elastic Fracture Mechanics LEFM • Assumes that the material is isotropic and linear elastic • Stress field near the crack tip is calculated using the theory of elasticity • Valid only when the plastic deformation is “small” compared to the length scale of the crack (i.e., small-scale yielding) • Key Concepts: Elastic energy release rate, G, Stress Intensity Factor, K. The Energy Approach • For Linear Elastic Materials, • The energy approach, developed by Griffith 1920 and improved by Irwin 1950, states that crack extension (i.e., fracture) occurs when the energy available for crack growth is sufficient to overcome the resistance of the material. 2a GGR= = E c • Energy release rate, G – energy per unit of new crack area • applied stress, σ • Crack length, a • Young’s modulus, E Through-thickness crack in an infinite plate subject to a • Critical value of energy release rate, Gc - material property remote tensile stress. In practical terms, “infinite ” • Crack resistance, R means that the width of the plate is >>2a. The Stress-Intensity Approach • In the 1950’s, owing to the practical difficulties of calculating the energy approach, Irwin developed the stress intensity approach, where Linear Elastic theory shows that the stresses in the vicinity of a crack tip take the form K = f ( ) ij2 r ij • where r and θ are the radius and angle with respect to the crack tip. The Stress-Intensity Approach • Example for an infinite width plate with central crack. • The elastic stress field equations are dependent on loading and geometry. • Notice the term K. The Stress-Intensity Approach • The Stress Intensity Factor, K completely characterizes the crack tip conditions in a Linear Elastic material. • If one assumes that the material fails locally at some critical combination of stress and strain, then it follows that fracture must occur at a critical value of stress intensity, Kc. K= a Kc • Stress Intensity Factor, K • applied stress, σ • Crack length, a • Critical value of SIF, Kc The Stress-Intensity Approach • Comparing the Energy Release Rate and Stress Intensity Factor we find a relationship exists between them. The same relationship exists for the critical values. K 2 K 2 G = G = c E c E • The critical values can be determined experimentally by measuring the fracture stress, σf of a component with a known crack length, ac. 2a G = fc c E Kac= f c Crack Tip Plasticity • The elastic stress distribution in the vicinity of a crack tip, shows that as r tends to zero the stresses become infinite, i.e. there is a stress singularity at the crack tip. • Since structural materials deform plastically above the yield stress, there will in reality be a plastic zone surrounding the crack tip. • Thus the elastic solution is not unconditionally applicable. Crack Tip Plasticity • Irwin considered a circular plastic zone exists at the crack tip under tensile loading. He showed for plane stress, the zone size is 2 1 K r = c y 2ys • and for plane strain, 2 1 K r = c y 2C ys • Yield strength, σys • Correction factor, C usually 1.7 Fracture Toughness Plane Stress Transitional Plane Strain • The value of Kc at a particular temperature depends on the specimen thickness. • It is customary to write the asymptotic value of Kc as the Plane Strain fracture toughness as KIc. Asymptote is Kic • Critical stress intensity factor, Kc • report with the thickness. • Plane Strain Fracture Toughness, KIc • insensitive to thickness. Elastic-Plastic Fracture Mechanics EPFM • Assumes that the material is isotropic and elastic-plastic • Method is appropriate for structures with relatively large plastic zones • Strain energy fields or crack tip opening displacements (CTOD) are used to predict crack behavior • Key Concepts: Strain Energy Release Rate, J-integral, Crack Opening Displacement (COD), Crack Tip Opening Displacement (CTOD) Elastic-Plastic Fracture Mechanics • The LEFM approach only deals with limited crack tip plasticity. • Due to its complexity, the concepts of EPFM are not so well developed as LEFM, a fact that is reflected in the approximate nature of the eventual solutions. • In 1961, Wells introduced the crack opening displacement (COD) approach. This approach focuses on the strain in the crack tip instead of the stresses. Elastic-Plastic Fracture Mechanics • In the presence of plasticity a crack tip will blunt when it is loaded in tension. • Wells proposed to use the crack flank displacement at the tip of the blunt crack, the so- called crack tip opening displacement (CTOD) as a fracture parameter. • It was shown to be difficult to determine the required CTOD for a given load and geometry or alternatively to calculate the critical crack lengths or loads. Elastic-Plastic Fracture Mechanics • In 1968, Rice considered the potential energy changes involved in crack growth in non-linear elastic material. • Rice derived a fracture parameter called J, a contour integral that can be evaluated along any arbitrary path enclosing the crack tip. • He showed J to be equal to the energy release rate for a crack in non- linear elastic material, analogous to G for linear elastic material. Elastic-Plastic Fracture Mechanics Elastic-Plastic Fracture Mechanics • For simple geometries and load cases the J integral can be evaluated analytically. However, in practice finite element calculations are often required. • In spite of this, J has found widespread application as a parameter to predict the onset of crack growth in elastic-plastic problems. • Later it was found that J could also be used to describe a limited amount of stable crack growth. Time-Dependent Fracture Mechanics TDFM • Assumes that the load-displacement behavior of the material is time- dependent due to dynamic loading or due to creep, stress relaxation, and other dynamic effects • Crack tip stress fields vary with time • Key Concept: C*-integral, Ct-parameter Time-Dependent Fracture Mechanics • The J Integral can be written as du J=− Wdy Ti ds i dx • In 1980’s, Ashok Saxena proposed the C(t) integral that encapsulates the time- dependent behavior at the crack tip as follows du C t=− Wdy Ti ds ( ) i dx lim r→ Classification Classification For low toughness materials, brittle fracture is the governing failure mechanism, and critical stress varies linearly with KIc. At very high toughness values, LEFM is no longer valid, and failure is governed by the flow properties of the material. At intermediate toughness levels, there is a transition between brittle fracture under linear elastic conditions and ductile overload. Classification Fatigue • Fatigue is the cyclic application of loads which can contribute to crack growth. • Crack growth increases the stress intensity factor, K at the crack tip, which eventually leads to fracture. • The fatigue crack growth rate, da/dN is defined as the crack extension over a small number of cycles. da = f( G, K , J , C *, ) dN Fatigue • At high stress, the crack grows quicker and the critical crack length, 2ac is shorter when compared to low stress. • The da/dN versus ΔK data, is virtual indentical. • Threshold, ΔKth • Critical, Kc Methods Analytical, Experimental, Computational Methods • Analytical • Applying of theories of elasticity, plasticity, or viscoplasticity • Develop math expression for specific loading and geometry • Experimental • Subjecting small samples to mechanical test conditions simulating the service environment. Measure the crack resistance, R, Gc, Kc, Jc, C*c, etc.
Recommended publications
  • V- 3 31 Finite Element Implementation of State Variable-Based
    https://ntrs.nasa.gov/search.jsp?R=19910023209 2020-03-17T14:54:26+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server ,,/v-_3 31 / NASA Contractor Report 187212 Finite Element Implementation of State Variable-Based Viscoplasticity Models (UA_A-CR-I_7212) FINITE ELEMENT N91-32523 IMPLEMENTATIL3N OF STATE VA&IABLF-_ASED VISCOPLA_TICITY MnOELS Final Report (Akron Univ.) 41 p CSCL 2OK G3/39 I. Iskovitz, T.Y.P. Chang, and A.F. Saleeb University of Akron Akron, Ohio September 1991 Prepared for Lewis Research Center Under Grant NAG3-901 National Aeronautics and Space Administration Finite Element Implementation of State Variable-Based Viscoplasticity Models I. Iskovitz, T.Y.P. Chang and A.F. Saleeb Department of Civil Engineering University of Akron Akron, Ohio 44325 Abstract Implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural appli- cations of metals deformed at elevated temperature. Two consti- tutive models, i.e. Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integra- tion algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.
    [Show full text]
  • Constitutive Behavior of Granitic Rock at the Brittle-Ductile Transition
    CONSTITUTIVE BEHAVIOR OF GRANITIC ROCK AT THE BRITTLE-DUCTILE TRANSITION Josie Nevitt, David Pollard, and Jessica Warren Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 e-mail: [email protected] fracture to ductile flow with increasing depth in the Abstract earth’s crust. This so-called “brittle-ductile transition” has important implications for a variety of geological Although significant geological and geophysical and geophysical phenomena, including the mechanics processes, including earthquake nucleation and of earthquake rupture nucleation and propagation propagation, occur in the brittle-ductile transition, (Hobbs et al., 1986; Li and Rice, 1987; Scholz, 1988; earth scientists struggle to identify appropriate Tse and Rice, 1986). Despite the importance of constitutive laws for brittle-ductile deformation. This deformation within this lithospheric interval, significant paper investigates outcrops from the Bear Creek field gaps exist in our ability to accurately characterize area that record deformation at approximately 4-15 km brittle-ductile deformation. Such gaps are strongly depth and 400-500ºC. We focus on the Seven Gables related to the uncertainty in choosing the constitutive outcrop, which contains a ~10cm thick aplite dike that law(s) that govern(s) the rheology of the brittle-ductile is displaced ~45 cm through a contractional step transition. between two sub-parallel left-lateral faults. Stretching Rheology describes the response of a material to an and rotation of the aplite dike, in addition to local applied force and is defined through a set of foliation development in the granodiorite, provides an constitutive equations. In addition to continuum excellent measure of the strain within the step.
    [Show full text]
  • An Anisotropic Viscoplasticity Model for Shale Based on Layered Microstructure Homogenization
    An anisotropic viscoplasticity model for shale based on layered microstructure homogenization Jinhyun Chooa,∗, Shabnam J. Semnanib, Joshua A. Whitec aDepartment of Civil Engineering, The University of Hong Kong, Hong Kong bDepartment of Structural Engineering, University of California, San Diego, United States cAtmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, United States Abstract Viscoplastic deformation of shale is frequently observed in many subsurface applications. Many studies have sug- gested that this viscoplastic behavior is anisotropic—specifically, transversely isotropic—and closely linked to the layered composite structure at the microscale. In this work, we develop a two-scale constitutive model for shale in which anisotropic viscoplastic behavior naturally emerges from semi-analytical homogenization of a bi-layer mi- crostructure. The microstructure is modeled as a composite of soft layers, representing a ductile matrix formed by clay and organics, and hard layers, corresponding to a brittle matrix composed of stiff minerals. This layered microstructure renders the macroscopic behavior anisotropic, even when the individual layers are modeled with isotropic constitutive laws. Using a common correlation between clay and organic content and magnitude of creep, we apply a viscoplastic Modified Cam-Clay plasticity model to the soft layers, while treating the hard layers as a linear elastic material to minimize the number of calibration parameters. We then describe the implementation of the proposed model in a standard material update subroutine. The model is validated with laboratory creep data on samples from three gas shale formations. We also demonstrate the computational behavior of the proposed model through simulation of time-dependent borehole closure in a shale formation with different bedding plane directions.
    [Show full text]
  • A Variational Framework for Nonlinear Viscoelastic and Viscoplastic Models in Finite Deformation Regime Laurent Stainier, E
    A variational framework for nonlinear viscoelastic and viscoplastic models in finite deformation regime Laurent Stainier, E. Fancello, Jean-Philippe Ponthot To cite this version: Laurent Stainier, E. Fancello, Jean-Philippe Ponthot. A variational framework for nonlinear viscoelas- tic and viscoplastic models in finite deformation regime. Proc. of MECOM VIII, Argentinian Congress on Computational Mechanics, 2005, Buenos Aires, Argentina. hal-01007825 HAL Id: hal-01007825 https://hal.archives-ouvertes.fr/hal-01007825 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A VARIATIONAL FRAMEWORK FOR NONLINEAR VISCOELASTIC AND VISCOPLASTIC MODELS IN FINITE DEFORMATION REGIME Laurent Stainier∗, Eduardo A. Fancello†, and Jean-Philippe Ponthot∗ ∗Departement´ AeroSpatiale,´ Mecanique´ et mAteriaux´ Universite´ de Liege,` LTAS-MCT, 1 chemin des chevreuils, B-4000 Liege,` Belgium email: [email protected], web page: http://www.asma.ulg.ac.be †Departmento de Engenharia Mecanicaˆ Universidade Federal de Santa Catarina, Caixa Postal 476, Campus Universitario,´ Trindade, 88040-900 Florianopolis,´ SC, Brazil email: [email protected], web page: http://www.emc.ufsc.br Key Words: Constitutive Updates, Finite Viscoelasticity, Finite Viscoplasticity, Variational Formulation. Abstract. The goal of this work is to provide a general framework for constitutive viscoelastic and viscoplastic models based on the theoretical background proposed in Ortiz and Stainier, Comput.
    [Show full text]
  • Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables
    Computers and Structures 74 (2000) 601±628 www.elsevier.com/locate/compstruc Robust integration schemes for generalized viscoplasticity with internal-state variables A.F. Saleeb*, T.E. Wilt, W. Li Department of Civil Engineering, The University of Akron, Akron, OH 44325, USA Received 11 July 1998; accepted 31 August 1998 Abstract This paper is concerned with the development of a general framework for the implicit time-stepping integrators for the ¯ow and evolution equations in complex viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its ®nite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, we use the unconditionally stable, backward Euler dierence scheme. Its mathematical structure is of sucient generality to allow a uni®ed treatment of dierent classes of viscoplastic models with internal variables. Two speci®c models of this type, which are representatives of the present state-of-the-art in metal viscoplasticity, are considered in the applications reported here; i.e., generalized viscoplasticity with complete potential structure fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in three-dimensions as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to eciency and robustness are emphasized in developing the (local) iterative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiness arrays are given explicitly for the GVIPS model, with the maximum matrix sizes `optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters).
    [Show full text]
  • Bounding Surface Elasto-Viscoplasticity: a General Constitutive Framework for Rate-Dependent Geomaterials
    Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) Department of Civil and Environmental Engineering McCormick School of Engineering and Applied Science Evanston, Illinois 60208, USA Bounding Surface Elasto-Viscoplasticity: A General Constitutive Framework for Rate-Dependent Geomaterials Z. Shi, J. P. Hambleton and G. Buscarnera SEGIM INTERNAL REPORT No. 18-5/766B Submitted to Journal of Engineering Mechanics May 2018 1 Bounding Surface Elasto-Viscoplasticity: A General Constitutive 2 Framework for Rate-Dependent Geomaterials 1 2 3 Zhenhao Shi, Ph.D. A.M. ASCE , James P. Hambleton, Ph.D. A.M. ASCE , and Giuseppe 3 4 Buscarnera, Ph.D. M. ASCE 1 5 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 6 60208, USA, with corresponding author email. Email: [email protected] 2 7 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 8 60208, USA 2 9 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 10 60208, USA 11 ABSTRACT 12 A general framework is proposed to incorporate rate and time effects into bounding surface (BS) 13 plasticity models. For this purpose, the elasto-viscoplasticity (EVP) overstress theory is combined 14 with bounding surface modeling techniques. The resulting constitutive framework simply requires 15 the definition of an overstress function through which BS models can be augmented without 16 additional constitutive hypotheses. The new formulation differs from existing rate-dependent 17 bounding surface frameworks in that the strain rate is additively decomposed into elastic and 18 viscoplastic parts, much like classical viscoplasticity. Accordingly, the proposed bounding surface 19 elasto-viscoplasticity (BS-EVP) framework is characterized by two attractive features: (1) the rate- 20 independent limit is naturally recovered at low strain rates; (2) the inelastic strain rate depends 21 exclusively on the current state.
    [Show full text]
  • Parameter Identification in Viscoplasticity Using Transitional
    Parameter Identification in Viscoplasticity using Transitional Markov Chain Monte Carlo Method Ehsan Adeli and Hermann G. Matthies Institute of Scientific Computing Technische Universitat¨ Braunschweig Braunschweig, Germany [email protected] June 2019 Abstract To evaluate the cyclic behavior under different loading conditions using the kinematic and isotropic hardening theory of steel, a Chaboche viscoplas- tic material model is employed. The parameters of a constitutive model are usually identified by minimization of the difference between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article, the Choboche model is used and a stochastic simulation technique is ap- plied to generate artificial data which exhibit the same stochastic behavior as experimental data. Then the model parameters are identified by apply- ing an estimation using Bayes’s theorem. The Transitional Markov Chain Monte Carlo method (TMCMC) is introduced and employed to estimate the model parameters in the Bayesian setting. The uniform distributions of the arXiv:1906.10647v1 [cs.CE] 21 Jun 2019 parameters representing their priors are considered which literally means no knowledge of the parameters is available. Identified parameters are com- pared with the true parameters in the simulation, and the efficiency of the identification method is discussed. In fact, the main purpose of this study is to observe the possibility of identifying the model and hardening parameters of a viscoplastic model as a very high non-linear model with only a surface displacement measurement vector in the Bayesian setting using TMCMC and evaluate the number of measurements needed for a very acceptable es- timation of the uncertain parameters of the model.
    [Show full text]
  • Chapter 11. Elastic and Viscoplastic Properties
    NEA/NSC/R(2015)5 Chapter 11. Elastic and viscoplastic properties R.A. Lebensohn Los Alamos National Laboratory, US Abstract In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. Introduction Mean-field theories linking microstructure and properties of heterogeneous materials can be used for the development of efficient algorithms for the prediction of the elastic and plastic response of polycrystals. In this chapter, we will review crystal elasticity and crystal plasticity-based self-consistent theories, and show applications of these formulations to the prediction of microstructure-property relations of polycrystalline aggregates. The self-consistent (SC) approximation, one of the most commonly used homogenisation methods to estimate the mechanical response behaviour of polycrystals, was originally proposed by A.V. Hershey [3] for linear elastic materials. For nonlinear aggregates (as those formed by grains deforming in the viscoplastic regime), the several SC approximations that were subsequently proposed differ in the procedure used to linearise the local non-linear mechanical behaviour, but eventually all of them end up making use of the original linear SC theory. In general, SC estimates of the effective behaviour of heterogeneous materials are between the iso-strain upper-bound (i.e., Voigt and Taylor approximations in the elastic and viscoplastic regimes, respectively) and the iso-stress lower-bound (Reuss and Sachs approximations in the elastic and viscoplastic regimes, respectively).
    [Show full text]
  • Development and Implementation of a Composite Material Shell-Element Model
    16th International LS-DYNA® Users Conference Composites Development and Implementation of a Composite Material Shell-Element Model Tobias Achstetter, Paul Du Bois, Kelly Carney, Cing-Dao Kan George Mason University Allen Sheldon Honda R&D Americas Sheng Dong The Ohio State University Gunther Blankenhorn Livermore Software Technology Corporation Abstract While the response to loading of traditional engineering materials, such as plastics and steel, is well understood and can be simulated accurately, designers of composite structures still rely heavily on physical testing of components to ensure the requirements of load bearing capabilities are met. The majority of composite material models that have been developed rely on non-physical material parameters that have to be calibrated in extensive simulations. A predictive model, based on physically meaningful input, is currently not available. The developed orthotropic material model includes the ability to define tabulated hardening curves for different loading directions with strain-rate and temperature dependency. Strain-rate dependency was achieved by coupling the theories of viscoelasticity and viscoplasticity to allow for rate dependency in both the elastic and plastic regions of the material deformation. A damage model was implemented, where a reduction of stiffness and stress degradation in the individual material directions can be tracked precisely. Modeling of failure and Finite Element erosion was achieved by implementing a new strain-based generalized tabulated failure criterion, where failure strains can be precisely defined for specific states of stresses. Composite materials are generally used in a layup of plies with different fiber directions. These individual plies are very thin, which leads to impractically small mesh sizes when modeled with three dimensional solid elements.
    [Show full text]
  • Microstructural Constitutive Model for Polycrystal Viscoplasticity in Cold and Warm Regimes Based on Continuum Dislocation Dynamics
    Microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes based on continuum dislocation dynamics S. Amir H. Motaman*, Ulrich Prahl Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr. 1, D-52072 Aachen, Germany ARTICLE INFO ABSTRACT Manuscript history: Viscoplastic flow of polycrystalline metallic materials is the result of motion Revised and interaction of dislocations, line defects of the crystalline structure. In the microstructural (physics-based) constitutive model presented in this paper, the main underlying microstructural processes influencing viscoplastic deformation and mechanical properties of metals in cold and warm regimes Keywords: are statistically described by the introduced sets of postulates/axioms for continuum dislocation continuum dislocation dynamics (CDD). Three microstructural (internal) dynamics; state variables (MSVs) are used for statistical quantifications of different microstructural types/species of dislocations by the notion of dislocation density. Considering constitutive modeling; the mobility property of dislocations, they are categorized to mobile and dislocation density; (relatively) immobile dislocations. Mobile dislocations carry the plastic strain thermo-micro-mechanical (rate), while immobile dislocations contribute to plastic hardening. Moreover, modeling; with respect to their arrangement, dislocations are classified to cell and wall polycrystal viscoplasticity; dislocations. Cell dislocations are those that exist inside cells/subgrains, and nonlocal
    [Show full text]
  • Yielding Behaviour of Viscoplastic Materials
    J. Ind. Eng. Chem., Vol. 12, No. 5, (2006) 653-662 REVIEW Yielding Behaviour of Viscoplastic Materials C. Tiu†, J. Guo, and P. H. T. Uhlherr Department of Chemical Engineering, Monash University, Clayton 3800, Australia Received September 4, 2006 Abstract: Complex fluids exhibiting a yield stress have extremely variable shear properties ranging from elasto-plastic behaviour below the yield stress to viscous behaviour beyond that. The progressive elastic to plastic transition of viscoplastic materials can be explored by a number of rheological techniques including stress sweep, stress ramp, creep and strain recovery. The non-linear behaviour of such materials under different loading conditions can be investigated using a large amplitude oscillatory shear flow (LAOS) combined with Fourier-Transform (FT) harmonic analysis. Results from these rheological measurements provide a char- acteristic “rheological fingerprint” for complex materials exhibiting yield stress. Keywords: yield stress, viscoplasticity, creep, recovery strain, large amplitude oscillatory shear Introduction responding to the transition between plastic deformation 1) and purely viscous flow [4-6]. Although the yielding Many industrial materials, such as filled polymers, response is conventionally interpreted in terms of a polymer gels, thickeners, foodstuffs, cosmetics, concen- “critical stress”, measurements with highly-filled suspen- trated mineral suspensions, electro-rheological and mag- sions such as ER fluids have shown that it is equally neto-rheological fluids behave rheologically in a manner possible to consider the existence of a critical strain at that varies between elastic solid and viscous liquid any level of stress [7,8]. A fundamental interpretation of depending upon the processing conditions. The exis- this transition with respect to processing conditions is of tence of a “yield stress” is traditionally recognised to be great importance to industrial applications.
    [Show full text]
  • A Viscoplastic Model Including Damage for Argillaceous Rocks Mountaka Souley, K
    A viscoplastic model including damage for argillaceous rocks Mountaka Souley, K. Su, Gilles Armand, Mehdi Ghoreychi To cite this version: Mountaka Souley, K. Su, Gilles Armand, Mehdi Ghoreychi. A viscoplastic model including damage for argillaceous rocks. 1. International Symposium on computational geomechanics (COMGEO 2009), Apr 2009, Juan-les-Pins, France. pp.146-157. ineris-00973339 HAL Id: ineris-00973339 https://hal-ineris.archives-ouvertes.fr/ineris-00973339 Submitted on 4 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A VISCOPLASTIC MODEL INCLUDING DAMAGE FOR ARGILLACEOUS ROCKS M. Souley Institut national de l’environnement industriel et des risques, Nancy, France K. Su Agence nationale de gestion des déchets radioactifs, France. Currently at Total, Pau, France G. Armand Agence nationale de gestion des déchets radioactifs, Bure, France M. Ghoreychi Institut national de l’environnement industriel et des risques, Verneuil, France ABSTRACT: Based on numerous studies of laboratory tests and in-situ observations, a macroscopic viscoplastic
    [Show full text]