Center for Sustainable Engineering of Geological and Infrastructure Materials (SEGIM) Department of Civil and Environmental Engineering McCormick School of Engineering and Applied Science Evanston, Illinois 60208, USA Bounding Surface Elasto-Viscoplasticity: A General Constitutive Framework for Rate-Dependent Geomaterials Z. Shi, J. P. Hambleton and G. Buscarnera SEGIM INTERNAL REPORT No. 18-5/766B Submitted to Journal of Engineering Mechanics May 2018 1 Bounding Surface Elasto-Viscoplasticity: A General Constitutive 2 Framework for Rate-Dependent Geomaterials 1 2 3 Zhenhao Shi, Ph.D. A.M. ASCE , James P. Hambleton, Ph.D. A.M. ASCE , and Giuseppe 3 4 Buscarnera, Ph.D. M. ASCE 1 5 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 6 60208, USA, with corresponding author email. Email:
[email protected] 2 7 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 8 60208, USA 2 9 Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 10 60208, USA 11 ABSTRACT 12 A general framework is proposed to incorporate rate and time effects into bounding surface (BS) 13 plasticity models. For this purpose, the elasto-viscoplasticity (EVP) overstress theory is combined 14 with bounding surface modeling techniques. The resulting constitutive framework simply requires 15 the definition of an overstress function through which BS models can be augmented without 16 additional constitutive hypotheses. The new formulation differs from existing rate-dependent 17 bounding surface frameworks in that the strain rate is additively decomposed into elastic and 18 viscoplastic parts, much like classical viscoplasticity. Accordingly, the proposed bounding surface 19 elasto-viscoplasticity (BS-EVP) framework is characterized by two attractive features: (1) the rate- 20 independent limit is naturally recovered at low strain rates; (2) the inelastic strain rate depends 21 exclusively on the current state.