Rydberg Constant from Balmer Series Jordan Brown 4/20/11

Total Page:16

File Type:pdf, Size:1020Kb

Rydberg Constant from Balmer Series Jordan Brown 4/20/11 Rydberg Constant from Balmer Series Jordan Brown 4/20/11 “The most accurately measured fundamental physical constant.” [2] Background ● 1885: Johann Balmer experimentally determined 4 spectral lines of hydrogen in the visible spectrum. ● 1888: Johannes Rydberg determined a formula to predict the position of spectral lines in hydrogen-like atoms. ● Rydberg's formula is a modification of the Balmer formula with a constant Rm. ● 1913: Niels Bohr went on to present an updated model of the atom. He also empirically determined Rm from more fundamental constants. [1] Method ● Calibrate the apparatus ● Went on to measure alpha, beta, and gamma spectral ● Use Hg to determine lines. diffraction width. ● Determined Rm from these spectral lines. Apparatus Calibration ● We observed spectral lines of Hg to determine diffraction width with known wavelength of 546.074 nm. ● Determined diffraction slit width d of 3.276 +/- .005 um ● This value of slit width was determined from the diffracted angle theta which could only be determined within about 5 arc-minutes. ● Width d was determined from the slope of the next graph which has the relation d=(1/a) in this case, a is m_2=.00030416 => d=3276 nm. Hg Calibration Results ● We determined diffraction grating width d=3276 nm. ● For each data set, the value of the angles between the +/- n-values differed at most by about 0.4° but usually around 0.1° ● With d, we calculated wavelength of the alpha line to be 654.0 +/- 0.8 nm where the accepted value is 656.3 nm. Chi2- 18.4, Chi2/dof- 3.07, p-value of .006 ● Determined wavelength of Beta line to be 484.4+/- 0.8 nm. Accepted value is 486.1 nm Chi2- 4.04, Chi2/dof- .673, p-value of .67 ● Determined wavelength of Gamma line to be 433.4+/- 0.9 nm. Accepted value is 434.1 nm Chi2- 5.68, Chi2/dof- .947, p-value of .43 ● From these values of wavelengths, we plotted and found the value of Rm to be (1.097+/- 0.003) *10^7 (1/m). Accepted value: 1.0967* 10^7 (1/m). Chi2-1.60, Chi2/dof- 0.80. for 2 dof, p-value was .45 [3] Alpha Beta Gamma Rm Discussion ● We determined a good value for Rm that was only 0.02% off, achieving the 0.05% goal. ● Took a look at the values for the wavelengths for alpha, beta, and gamma and noticed a trend that they were all lower than the accepted value by about 2nm ● We suspected some sort of systematic error for this discrepancy; most likely to be the original calibration with Hg. ● To investigate the discrepancy, we considered altering the number of n-values to include in the fit for Hg. Unfortunately, this brought Rm down further. Conclusion ● We may have had a bit of error in original calibration of Hg. ● Given percent probability of 45 for Rm, it's a good model and the data supports the linear fit ● We calculated Rm of 1.097+/-0.003*10^7 (1/m). which is close to the accepted value of 1.0967*10^7 (1/m). References [1] Bohr, N. (1985). “Rydberg’s discovery of the spectral laws”. In Kalckar, J.. Collected works. 10. Amsterdam: North-Holland Publ. Cy.. pp.373/200/223379. [2] Mohr, P. J.; taylor, B. N.; Newell, D. B. (2008). “CODATA recommended values of the fundamental physical constants: 2006”. Reviews of Modern Physics 80: 633/200/223730. doi:10.1103/RevModPhys.80.633. [3] J.R. Taylor, An Introduction to Error Analysis, 2nd Ed. University Science Books, Suasalito CA (1997). .
Recommended publications
  • Quantum Theory of the Hydrogen Atom
    Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, .
    [Show full text]
  • The Balmer Series
    The Balmer Series Introduction Historically, the spectral lines of hydrogen have been categorized as six distinct series. The visible portion of the hydrogen spectrum is contained in the Balmer series, named after Johann Balmer who discovered an empirical relationship for calculating its wave- lengths [2]. In 1885 Balmer discovered that by labeling the four visible lines of the hydorgen spectrum with integers n, (n = 3, 4, 5, 6) (See Table 1 and Figure 1) each wavelength λ could be calculated from the relationship n2 λ = B , (1) n2 − 4 where B = 364.56 nm. Johannes Rydberg generalized Balmer’s result to include all of the wavelengths of the hydrogen spectrum. The Balmer formula is more commonly re–expressed in the form of the Rydberg formula 1 1 1 = RH − , (2) λ 22 n2 where n =3, 4, 5 . and the Rydberg constant RH =4/B. The purpose of this experiment is to determine the wavelengths of the visible spec- tral lines of hydrogen using a spectrometer and to calculate the Balmer constant B. Procedure The spectrometer used in this experiment is shown in Fig. 1. Adjust the diffraction grating so that the normal to its plane makes a small angle α to the incident beam of light. This is shown schematically in Fig. 2. Since α u 0, the angles between the first and zeroth order intensity maxima on either side, θ and θ0 respectively, are related to the wavelength λ of the incident light according to [1] λ = d sin(φ) , (3) accurate to first order in α. Here, d is the separation between the slits of the grating, and θ0 + θ φ = (4) 2 1 Color Wavelength [nm] Integer [n] Violet2 410.2 6 Violet1 434.0 5 blue 486.1 4 red 656.3 3 Table 1: The wavelengths and integer associations of the visible spectral lines of hy- drogen shown in Fig.
    [Show full text]
  • Lecture #2: August 25, 2020 Goal Is to Define Electrons in Atoms
    Lecture #2: August 25, 2020 Goal is to define electrons in atoms • Bohr Atom and Principal Energy Levels from “orbits”; Balance of electrostatic attraction and centripetal force: classical mechanics • Inability to account for emission lines => particle/wave description of atom and application of wave mechanics • Solutions of Schrodinger’s equation, Hψ = Eψ Required boundaries => quantum numbers (and the Pauli Exclusion Principle) • Electron configurations. C: 1s2 2s2 2p2 or [He]2s2 2p2 Na: 1s2 2s2 2p6 3s1 or [Ne] 3s1 => Na+: [Ne] Cl: 1s2 2s2 2p6 3s23p5 or [Ne]3s23p5 => Cl-: [Ne]3s23p6 or [Ar] What you already know: Quantum Numbers: n, l, ml , ms n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to ∞(infinity) (Bohr’s discrete orbits) l (angular momentum) orbital 0s l is the angular momentum quantum number, 1p represents the shape of the orbital, has integer values of (n – 1) to 0 2d 3f ml is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l Other terms: electron configuration, noble gas configuration, valence shell ms is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom (Every electron has a unique set.) Hund’s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin.
    [Show full text]
  • Rydberg Constant and Emission Spectra of Gases
    Page 1 of 10 Rydberg constant and emission spectra of gases ONE WEIGHT RECOMMENDED READINGS 1. R. Harris. Modern Physics, 2nd Ed. (2008). Sections 4.6, 7.3, 8.9. 2. Atomic Spectra line database https://physics.nist.gov/PhysRefData/ASD/lines_form.html OBJECTIVE - Calibrating a prism spectrometer to convert the scale readings in wavelengths of the emission spectral lines. - Identifying an "unknown" gas by measuring its spectral lines wavelengths. - Calculating the Rydberg constant RH. - Finding a separation of spectral lines in the yellow doublet of the sodium lamp spectrum. INSTRUCTOR’S EXPECTATIONS In the lab report it is expected to find the following parts: - Brief overview of the Bohr’s theory of hydrogen atom and main restrictions on its application. - Description of the setup including its main parts and their functions. - Description of the experiment procedure. - Table with readings of the vernier scale of the spectrometer and corresponding wavelengths of spectral lines of hydrogen and helium. - Calibration line for the function “wavelength vs reading” with explanation of the fitting procedure and values of the parameters of the fit with their uncertainties. - Calculated Rydberg constant with its uncertainty. - Description of the procedure of identification of the unknown gas and statement about the gas. - Calculating resolution of the spectrometer with the yellow doublet of sodium spectrum. INTRODUCTION In this experiment, linear emission spectra of discharge tubes are studied. The discharge tube is an evacuated glass tube filled with a gas or a vapor. There are two conductors – anode and cathode - soldered in the ends of the tube and connected to a high-voltage power source outside the tube.
    [Show full text]
  • Toward Quantum Simulation with Rydberg Atoms Thanh Long Nguyen
    Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms Thanh Long Nguyen To cite this version: Thanh Long Nguyen. Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066695. tel-01609840 HAL Id: tel-01609840 https://tel.archives-ouvertes.fr/tel-01609840 Submitted on 4 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DÉPARTEMENT DE PHYSIQUE DE L’ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : PHYSIQUE QUANTIQUE Study of dipole-dipole interaction between Rydberg atoms Toward quantum simulation with Rydberg atoms présentée par Thanh Long NGUYEN pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Soutenue le 18/11/2016 devant le jury composé de : Dr. Michel BRUNE Directeur de thèse Dr. Thierry LAHAYE Rapporteur Pr. Shannon WHITLOCK Rapporteur Dr. Bruno LABURTHE-TOLRA Examinateur Pr. Jonathan HOME Examinateur Pr. Agnès MAITRE Examinateur To my parents and my brother To my wife and my daughter ii Acknowledgement “Voici mon secret.
    [Show full text]
  • Improving the Accuracy of the Numerical Values of the Estimates Some Fundamental Physical Constants
    Improving the accuracy of the numerical values of the estimates some fundamental physical constants. Valery Timkov, Serg Timkov, Vladimir Zhukov, Konstantin Afanasiev To cite this version: Valery Timkov, Serg Timkov, Vladimir Zhukov, Konstantin Afanasiev. Improving the accuracy of the numerical values of the estimates some fundamental physical constants.. Digital Technologies, Odessa National Academy of Telecommunications, 2019, 25, pp.23 - 39. hal-02117148 HAL Id: hal-02117148 https://hal.archives-ouvertes.fr/hal-02117148 Submitted on 2 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving the accuracy of the numerical values of the estimates some fundamental physical constants. Valery F. Timkov1*, Serg V. Timkov2, Vladimir A. Zhukov2, Konstantin E. Afanasiev2 1Institute of Telecommunications and Global Geoinformation Space of the National Academy of Sciences of Ukraine, Senior Researcher, Ukraine. 2Research and Production Enterprise «TZHK», Researcher, Ukraine. *Email: [email protected] The list of designations in the text: l
    [Show full text]
  • The Hydrogen Atom (Finite Difference Equation/Discrete Wave Vectors/Bohr-Rydberg Formula) FREDERICK T
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5753-5755, August 1986 Chemistry Discrete wave mechanics: The hydrogen atom (finite difference equation/discrete wave vectors/Bohr-Rydberg formula) FREDERICK T. WALL Department of Chemistry, B-017, University of California at San Diego, La Jolla, CA 92093 Contributed by Frederick T. Wall, March 31, 1986 ABSTRACT The quantum mechanical problem of the hy- its wave vector energy counterpart.* If V is small compared drogen atom is treated by use of a finite difference equation in to mc2, then V and l9 are substantially the same, but for large place of Schrodinger's differential equation. The exact solu- negative values of V, the two can be significantly different. tion leads to a wave vector energy expression that is readily The next question to be answered is how the potential en- converted to the Bohr-Rydberg formula. (The calculations ergy is introduced into the finite difference equation. In our here reported are limited to spherically symmetric states.) The problem, we shall write that wave vectors reduce to the familiar solutions of Schrodinger's equation as c -- w. The internal consistency and limiting be- O(r - A) - 2(X + V/mc2)4(r) + /(r + A) = 0, [2] havior provide support for the view that the equations em- ployed could well constitute an approach to a relativistic for- with mulation of wave mechanics. X = = (1 - 26/E)"2 [3] In an earlier paper (1), I set forth a simple difference equa- EI/E tion for the wave mechanical description of a free particle. This was accompanied by a postulatory basis for interpreting where & is the wave vector energy, and certain parameters related to the energy, thus appearing to provide a possible connection to relativity.
    [Show full text]
  • Note to 8.13 Students
    Note to 8.13 students: Feel free to look at this paper for some suggestions about the lab, but please reference/acknowledge me as if you had read my report or spoken to me in person. Also note that this is only one way to do the lab and data analysis, and there are nearly an infinite number of other things to do that would be better. I made some mistakes doing this lab. Here are a couple I found (and some more tips): Use a smaller step and get more precise data than what we had. Then fit • a curve, don’t just pick out a peak. The Hg calibration is actually something like a sin wave instead of a cubic. • Also don’t follow the old version of Melissionos word for word. They use an optical system with a prism oppose to a diffraction grating. We took data strategically so we could use unweighted fits • The mystery tube was actually N, whoops my bad. We later found a • drawer full of tubes and compared the colors. It was obviously N. Again whoops, it was our first experiment okay?! 1 Optical Spectroscopy Rachel Bowens-Rubin∗ MIT Department of Physics (Dated: July 12, 2010) The spectra of mercury, hydrogen, deuterium, sodium, and an unidentified mystery tube were measured using a monochromator to determine diffrent properties of their spectra. The spectrum of mercury was used to calibrate for error due to optics in the monochronomator. The measurements of the Balmer series lines were used to determine the Rydberg constants for hydrogen and deuterium, 7 7 1 7 7 1 Rh =1.0966 10 0.0002 10 m− and Rd=1.0970 10 0.0003 10 m− .
    [Show full text]
  • Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology Aaron Hankin
    University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations 1-28-2015 Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology Aaron Hankin Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Recommended Citation Hankin, Aaron. "Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology." (2015). https://digitalrepository.unm.edu/phyc_etds/23 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Aaron Hankin Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Ivan Deutsch , Chairperson Carlton Caves Keith Lidke Grant Biedermann Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology by Aaron Michael Hankin B.A., Physics, North Central College, 2007 M.S., Physics, Central Michigan Univeristy, 2009 DISSERATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico December 2014 iii c 2014, Aaron Michael Hankin iv Dedication To Maiko and our unborn daughter. \There are wonders enough out there without our inventing any." { Carl Sagan v Acknowledgments The experiment detailed in this manuscript evolved rapidly from an empty lab nearly four years ago to its current state. Needless to say, this is not something a graduate student could have accomplished so quickly by him or herself.
    [Show full text]
  • Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi
    OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners with applications to quantum communication and quantum computing M. Suhail Zubairy Texas A&M University 1 OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © M. Suhail Zubairy 2020 The moral rights of the author have been asserted First Edition published in 2020 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing
    [Show full text]
  • 23-Chapt-6-Quantum2
    The Nature of Energy • For atoms and molecules, one does not observe a continuous spectrum, as one gets from a ? white light source. • Only a line spectrum of discrete wavelengths is Electronic Structure observed. of Atoms © 2012 Pearson Education, Inc. The Players Erwin Schrodinger Werner Heisenberg Louis Victor De Broglie Neils Bohr Albert Einstein Max Planck James Clerk Maxwell Neils Bohr Explained the emission spectrum of the hydrogen atom on basis of quantization of electron energy. Neils Bohr Explained the emission spectrum of the hydrogen atom on basis of quantization of electron energy. Emission spectrum Emitted light is separated into component frequencies when passed through a prism. 397 410 434 486 656 wavelenth in nm Hydrogen, the simplest atom, produces the simplest emission spectrum. In the late 19th century a mathematical relationship was found between the visible spectral lines of hydrogen the group of hydrogen lines in the visible range is called the Balmer series 1 1 1 = R – λ ( 22 n2 ) Rydberg 1.0968 x 107m–1 Constant Johannes Rydberg Bohr Solution the electron circles nucleus in a circular orbit imposed quantum condition on electron energy only certain “orbits” allowed energy emitted is when electron moves from higher energy state (excited state) to lower energy state the lowest electron energy state is ground state ground state of hydrogen atom n = 5 n = 4 n = 3 n = 2 n = 1 e- excited state of hydrogen atom n = 5 n = 4 n = 3 e- n = 2 n = 1 hν excited state of hydrogen atom n = 5 n = 4 n = 3 n = 2 e- n = 1 hν excited state of hydrogen atom n = 5 n = 4 n = 3 e- n = 2 n = 1 hν Emission spectrum Emitted light is separated into component frequencies when passed through a prism.
    [Show full text]
  • Quantum Mechanics
    Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction ..................................
    [Show full text]