Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology Aaron Hankin

Total Page:16

File Type:pdf, Size:1020Kb

Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology Aaron Hankin University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations 1-28-2015 Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology Aaron Hankin Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Recommended Citation Hankin, Aaron. "Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology." (2015). https://digitalrepository.unm.edu/phyc_etds/23 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Aaron Hankin Candidate Physics and Astronomy Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Ivan Deutsch , Chairperson Carlton Caves Keith Lidke Grant Biedermann Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology by Aaron Michael Hankin B.A., Physics, North Central College, 2007 M.S., Physics, Central Michigan Univeristy, 2009 DISSERATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Physics The University of New Mexico Albuquerque, New Mexico December 2014 iii c 2014, Aaron Michael Hankin iv Dedication To Maiko and our unborn daughter. \There are wonders enough out there without our inventing any." { Carl Sagan v Acknowledgments The experiment detailed in this manuscript evolved rapidly from an empty lab nearly four years ago to its current state. Needless to say, this is not something a graduate student could have accomplished so quickly by him or herself. The success of this experiment and its swift progression are largely a product of the intuition, experience, and hard of work of several staff scientists at Sandia. First and foremost, I would like to thank my advisor, Grant Biedermann, for all the guidance he gave on the experiment. His leadership and quick thinking were critical for rapidly addressing issues with the experiment as they arose, and his exceptional skills in laser cooling and workmanship with all-glass vacuum cell assemblies were critical to the successes of this project. Paul Parazzoli came onto the project as a postdoc shortly after I started at Sandia, and he drove much of the early success in the lab, including our first demonstration of single-atom trapping as well as the single-atom interferometer. I thank Paul for his contributions and invaluable advice in the lab, and for being an excellent mentor with respect to my professional career. I thank James Chou for his integral contributions to the experiment, which include the construction of the ultraviolet laser system and the development of the FPGA-computer interface for high-data rate single-atom reuse. In addition to a fresh perspective and far-reaching technical expertise, James brought with him an energy to the lab that motivated and challenged me to approach single- atom trapping with a new mindset. Yuan-Yu Jau provided a theoretical expertise in atomic physics that was a constant source of direction and essential to the success of the experiment. I thank him for these contributions and for his willingness to advise me on my own meager efforts to develop a theoretical understanding of the physics relevant to this experiment. Finally, I thank Peter Schwindt, George Burns, Amber Young, John Sterk, Cort Johnson, Anthony Colombo, Todd Barrick, Susan Clark, Hayden Mcguiness, Michael Mangan, Francisco Benito, Kevin Fortier, Peter Maunz, Darrell Armstrong, and many others for their contributions to the experiment and/or their support during my time at Sandia. The collaboration between Sandia and the CQUIC group at UNM, through Ivan Deutsch and Carl Caves, provided the opportunity for me to work on this research project. Carl aided me in getting an initial foot in the door at Sandia and took on a helpful role in ensuring that I remain on track for the completion of my dissertation. Our project at Sandia collaborated with Ivan Deutsch, my official academic advisor, on several theoretical aspects of the experiment. It was through engaging conversations with Ivan and his student, Bob Keating, and postdoc, Rob Cook, that I was able to develop a working simulation for the controlled-phase gate discussed near the end of this work. As fellow UNM graduate students working in the same lab, Akash Rakholia and Andrew Ferdinand were always available for engaging conversation regarding our vi respective experiments. Akash in particular was alwasy ready to offer his own engaging perspective on nearly any topic. Additionally, I would like to thank Shashank Pandey, Munik Shrestha, Jonas Anderson, Matthias Lang, Chris Cesare, and many other fellow UNM graduate students for great conversations, in both academic and personal contexts. Finally, I thank masters thesis advisor, Andrzej Sieradzan, for introducing me to atomic physics in a research setting and for providing me with time to tinker with cold atoms for the first time. I am forever in debt to my parents, Sue and Don, and my siblings, Sean, Shanon, and Adam, for their continuing support throughout the duration of my academic career. I would not have reached this point in my life without the sacrifices and encouragement of my family. Finally, I thank my wife, Maiko, for her limitless support and patience with me when I spent long days and late nights working on the experiment. This project was funded internally at Sandia through the Laboratory Directed Research and Development program. I thank this program for its funding, without which this work could not have happened. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. vii Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology by Aaron Michael Hankin B.A., Physics, North Central College, 2007 M.S., Physics, Central Michigan Univeristy, 2009 Ph.D., Physics, University of New Mexico, 2014 Abstract With the advent of laser cooling and trapping, neutral atoms have become a founda- tional source of accuracy for applications in metrology and are showing great potential for their use as qubits in quantum information. In metrology, neutral atoms provide the most accurate references for the measurement of time and acceleration. The unsurpassed stability provided by these systems make neutral atoms an attractive avenue to explore applications in quantum information and computing. However, to fully investigate the field of quantum information, we require a method to generate entangling interactions between neutral-atom qubits. Recent progress in the use of highly-excited Rydberg states for strong dipolar interactions has shown great promise for controlled entanglement using the Rydberg blockade phenomenon. I report the use of singly-trapped 133Cs atoms as qubits for applications in metrology and quantum information. Each atom provides a physical basis for a single qubit by encoding the required information into the ground-state hyperfine viii structure of 133Cs. Through the manipulation of these qubits with microwave and optical frequency sources, we demonstrate the capacity for arbitrary single-qubit control by driving qubit rotations in three orthogonal directions on the Bloch sphere. With this control, we develop an atom interferometer that far surpasses the force sensitivity of other approaches by applying the well-established technique of light- pulsed atom-matterwave interferometry to single atoms. Following this, we focus on two-qubit interactions using highly-excited Rydberg states. Through the development of a unique single-photon approach to Rydberg excitation using an ultraviolet laser at 319 nm, we observe the Rydberg blockade interaction between atoms separated by 6.6(3) µm. Motivated by the observation of Rydberg blockade, we study the application of Rydberg-dressed states for a quantum controlled-phase gate. Using a realistic simulation of the dressed-state dynamics, we calculate a controlled-phase gate fidelity of 94% that is primarily limited by Doppler frequency shifts. Finally, we employ our single-photon excitation laser to measure the Rydberg-dressed interaction, thus demonstrating the viability of this approach. ix Contents List of Figures xiii List of Tables xvii Glossary xix 1 Introduction1 1.1 Single-atom 133Cs qubits.........................4 1.2 Overview of the experiment.......................5 1.3 Organizational overview.........................7 2 Single-Atom Control 10 2.1 Laser cooling and trapping techniques.................. 11 2.1.1 Dynamic polarizability calculation................ 13 2.1.2 Optical dipole trap........................ 16 2.1.3 Magneto-optical trap....................... 21 2.2 Loading single atoms in micron-sized dipole traps........... 25 Contents x 2.2.1 Single-atom trapping apparatus................. 28 2.2.2 Optimization of single-atom imaging.............. 30 2.2.3 Detecting atom presence and internal state........... 31 2.2.4 Arbitrary dipole trap arrays with two-dimensional holography............................ 36 2.3 Single qubit control............................ 38 2.3.1 Single-qubitσ ^x andσ ^y control.................
Recommended publications
  • The Balmer Series
    The Balmer Series Introduction Historically, the spectral lines of hydrogen have been categorized as six distinct series. The visible portion of the hydrogen spectrum is contained in the Balmer series, named after Johann Balmer who discovered an empirical relationship for calculating its wave- lengths [2]. In 1885 Balmer discovered that by labeling the four visible lines of the hydorgen spectrum with integers n, (n = 3, 4, 5, 6) (See Table 1 and Figure 1) each wavelength λ could be calculated from the relationship n2 λ = B , (1) n2 − 4 where B = 364.56 nm. Johannes Rydberg generalized Balmer’s result to include all of the wavelengths of the hydrogen spectrum. The Balmer formula is more commonly re–expressed in the form of the Rydberg formula 1 1 1 = RH − , (2) λ 22 n2 where n =3, 4, 5 . and the Rydberg constant RH =4/B. The purpose of this experiment is to determine the wavelengths of the visible spec- tral lines of hydrogen using a spectrometer and to calculate the Balmer constant B. Procedure The spectrometer used in this experiment is shown in Fig. 1. Adjust the diffraction grating so that the normal to its plane makes a small angle α to the incident beam of light. This is shown schematically in Fig. 2. Since α u 0, the angles between the first and zeroth order intensity maxima on either side, θ and θ0 respectively, are related to the wavelength λ of the incident light according to [1] λ = d sin(φ) , (3) accurate to first order in α. Here, d is the separation between the slits of the grating, and θ0 + θ φ = (4) 2 1 Color Wavelength [nm] Integer [n] Violet2 410.2 6 Violet1 434.0 5 blue 486.1 4 red 656.3 3 Table 1: The wavelengths and integer associations of the visible spectral lines of hy- drogen shown in Fig.
    [Show full text]
  • Lecture #2: August 25, 2020 Goal Is to Define Electrons in Atoms
    Lecture #2: August 25, 2020 Goal is to define electrons in atoms • Bohr Atom and Principal Energy Levels from “orbits”; Balance of electrostatic attraction and centripetal force: classical mechanics • Inability to account for emission lines => particle/wave description of atom and application of wave mechanics • Solutions of Schrodinger’s equation, Hψ = Eψ Required boundaries => quantum numbers (and the Pauli Exclusion Principle) • Electron configurations. C: 1s2 2s2 2p2 or [He]2s2 2p2 Na: 1s2 2s2 2p6 3s1 or [Ne] 3s1 => Na+: [Ne] Cl: 1s2 2s2 2p6 3s23p5 or [Ne]3s23p5 => Cl-: [Ne]3s23p6 or [Ar] What you already know: Quantum Numbers: n, l, ml , ms n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to ∞(infinity) (Bohr’s discrete orbits) l (angular momentum) orbital 0s l is the angular momentum quantum number, 1p represents the shape of the orbital, has integer values of (n – 1) to 0 2d 3f ml is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l Other terms: electron configuration, noble gas configuration, valence shell ms is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom (Every electron has a unique set.) Hund’s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin.
    [Show full text]
  • Rydberg Constant and Emission Spectra of Gases
    Page 1 of 10 Rydberg constant and emission spectra of gases ONE WEIGHT RECOMMENDED READINGS 1. R. Harris. Modern Physics, 2nd Ed. (2008). Sections 4.6, 7.3, 8.9. 2. Atomic Spectra line database https://physics.nist.gov/PhysRefData/ASD/lines_form.html OBJECTIVE - Calibrating a prism spectrometer to convert the scale readings in wavelengths of the emission spectral lines. - Identifying an "unknown" gas by measuring its spectral lines wavelengths. - Calculating the Rydberg constant RH. - Finding a separation of spectral lines in the yellow doublet of the sodium lamp spectrum. INSTRUCTOR’S EXPECTATIONS In the lab report it is expected to find the following parts: - Brief overview of the Bohr’s theory of hydrogen atom and main restrictions on its application. - Description of the setup including its main parts and their functions. - Description of the experiment procedure. - Table with readings of the vernier scale of the spectrometer and corresponding wavelengths of spectral lines of hydrogen and helium. - Calibration line for the function “wavelength vs reading” with explanation of the fitting procedure and values of the parameters of the fit with their uncertainties. - Calculated Rydberg constant with its uncertainty. - Description of the procedure of identification of the unknown gas and statement about the gas. - Calculating resolution of the spectrometer with the yellow doublet of sodium spectrum. INTRODUCTION In this experiment, linear emission spectra of discharge tubes are studied. The discharge tube is an evacuated glass tube filled with a gas or a vapor. There are two conductors – anode and cathode - soldered in the ends of the tube and connected to a high-voltage power source outside the tube.
    [Show full text]
  • Polarization Squeezing of Light by Single Passage Through an Atomic Vapor
    PHYSICAL REVIEW A 84, 033851 (2011) Polarization squeezing of light by single passage through an atomic vapor S. Barreiro, P. Valente, H. Failache, and A. Lezama* Instituto de F´ısica, Facultad de Ingenier´ıa, Universidad de la Republica,´ J. Herrera y Reissig 565, 11300 Montevideo, Uruguay (Received 8 June 2011; published 28 September 2011) We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87Rb vapor cell. Significant polarization squeezing at the threshold level (−3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications. DOI: 10.1103/PhysRevA.84.033851 PACS number(s): 42.50.Ct, 42.50.Dv, 32.80.Qk, 42.50.Lc In recent years, significant attention has been given to vapor cell results in squeezing of the polarization orthogonal to the use of continuous variables for quantum information that of the pump (vacuum squeezing) [14–17] as a consequence processing. A foreseen goal is the distribution of entanglement of the nonlinear optical mechanism known as polarization self- between distant nodes. For this, quantum correlated light rotation (PSR) [18–20]. Vacuum squeezing via PSR has been 87 beams are to interact with separate atomic systems in order observed for the D1 [15–17] and D2 [14] transitions using Rb to build quantum mechanical correlations between them [1,2]. vapor. As noted in [9], the existence of polarization squeezing A particular kind of quantum correlation between two light can be inferred from these results.
    [Show full text]
  • Multichannel Cavity Optomechanics for All-Optical Amplification of Radio Frequency Signals
    ARTICLE Received 6 Jul 2012 | Accepted 30 Aug 2012 | Published 2 Oct 2012 DOI: 10.1038/ncomms2103 Multichannel cavity optomechanics for all-optical amplification of radio frequency signals Huan Li1, Yu Chen1, Jong Noh1, Semere Tadesse1 & Mo Li1 Optomechanical phenomena in photonic devices provide a new means of light–light interaction mediated by optical force actuated mechanical motion. In cavity optomechanics, this interaction can be enhanced significantly to achieve strong interaction between optical signals in chip-scale systems, enabling all-optical signal processing without resorting to electro-optical conversion or nonlinear materials. However, current implementation of cavity optomechanics achieves both excitation and detection only in a narrow band at the cavity resonance. This bandwidth limitation would hinder the prospect of integrating cavity optomechanical devices in broadband photonic systems. Here we demonstrate a new configuration of cavity optomechanics that includes two separate optical channels and allows broadband readout of optomechanical effects. The optomechanical interaction achieved in this device can induce strong but controllable nonlinear effects, which can completely dominate the device’s intrinsic mechanical properties. Utilizing the device’s strong optomechanical interaction and its multichannel configuration, we further demonstrate all-optical, wavelength- multiplexed amplification of radio-frequency signals. 1 Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
    [Show full text]
  • Travis Dissertation
    Experimental Generation and Manipulation of Quantum Squeezed Vacuum via Polarization Self-Rotation in Rb Vapor Travis Scott Horrom Scaggsville, MD Master of Science, College of William and Mary, 2010 Bachelor of Arts, St. Mary’s College of Maryland, 2008 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Physics The College of William and Mary May 2013 c 2013 Travis Scott Horrom All rights reserved. APPROVAL PAGE This Dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Travis Scott Horrom Approved by the Committee, March, 2013 Committee Chair Research Assistant Professor Eugeniy E. Mikhailov, Physics The College of William and Mary Associate Professor Irina Novikova, Physics The College of William and Mary Assistant Professor Seth Aubin, Physics The College of William and Mary Professor John B. Delos, Physics The College of William and Mary Professor and Eminent Scholar Mark D. Havey, Physics Old Dominion University ABSTRACT Nonclassical states of light are of increasing interest due to their applications in the emerging field of quantum information processing and communication. Squeezed light is such a state of the electromagnetic field in which the quantum noise properties are altered compared with those of coherent light. Squeezed light and squeezed vacuum states are potentially useful for quantum information protocols as well as optical measurements, where sensitivities can be limited by quantum noise. We experimentally study a source of squeezed vacuum resulting from the interaction of near-resonant light with both cold and hot Rb atoms via the nonlinear polarization self-rotation effect (PSR).
    [Show full text]
  • 23-Chapt-6-Quantum2
    The Nature of Energy • For atoms and molecules, one does not observe a continuous spectrum, as one gets from a ? white light source. • Only a line spectrum of discrete wavelengths is Electronic Structure observed. of Atoms © 2012 Pearson Education, Inc. The Players Erwin Schrodinger Werner Heisenberg Louis Victor De Broglie Neils Bohr Albert Einstein Max Planck James Clerk Maxwell Neils Bohr Explained the emission spectrum of the hydrogen atom on basis of quantization of electron energy. Neils Bohr Explained the emission spectrum of the hydrogen atom on basis of quantization of electron energy. Emission spectrum Emitted light is separated into component frequencies when passed through a prism. 397 410 434 486 656 wavelenth in nm Hydrogen, the simplest atom, produces the simplest emission spectrum. In the late 19th century a mathematical relationship was found between the visible spectral lines of hydrogen the group of hydrogen lines in the visible range is called the Balmer series 1 1 1 = R – λ ( 22 n2 ) Rydberg 1.0968 x 107m–1 Constant Johannes Rydberg Bohr Solution the electron circles nucleus in a circular orbit imposed quantum condition on electron energy only certain “orbits” allowed energy emitted is when electron moves from higher energy state (excited state) to lower energy state the lowest electron energy state is ground state ground state of hydrogen atom n = 5 n = 4 n = 3 n = 2 n = 1 e- excited state of hydrogen atom n = 5 n = 4 n = 3 e- n = 2 n = 1 hν excited state of hydrogen atom n = 5 n = 4 n = 3 n = 2 e- n = 1 hν excited state of hydrogen atom n = 5 n = 4 n = 3 e- n = 2 n = 1 hν Emission spectrum Emitted light is separated into component frequencies when passed through a prism.
    [Show full text]
  • Optical Binding with Cold Atoms
    Optical binding with cold atoms C. E. M´aximo,1 R. Bachelard,1 and R. Kaiser2 1Instituto de F´ısica de S~aoCarlos, Universidade de S~aoPaulo, 13560-970 S~aoCarlos, SP, Brazil 2Universit´eC^oted'Azur, CNRS, INPHYNI, 06560 Valbonne, France (Dated: November 16, 2017) Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such phenomenon has been studied mainly in the context of equilibrium stability of dielectric spheres arrays which move amid dissipative media. In this letter, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of non-radiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilisation with infinite range scaling. The interaction of light with atoms, from the micro- pairs and discuss the increased range of such a dynami- scopic to the macroscopic scale, is one of the most fun- cally stabilized pair of atoms. damental mechanisms in nature. After the advent of the laser, new techniques were developed to manipulate pre- cisely objects of very different sizes with light, ranging from individual atoms [1] to macrosopic objects in opti- cal tweezers [2]. It is convenient to distinguish two kinds of optical forces which are of fundamental importance: the radiation pressure force, which pushes the particles in the direction of the light propagation, and the dipole force, which tends to trap them into intensity extrema, as for example in optical lattices.
    [Show full text]
  • Phase Steps and Resonator Detuning Measurements in Microresonator Frequency Combs
    ARTICLE Received 23 May 2014 | Accepted 27 Oct 2014 | Published 7 Jan 2015 DOI: 10.1038/ncomms6668 Phase steps and resonator detuning measurements in microresonator frequency combs Pascal Del’Haye1, Aure´lien Coillet1, William Loh1, Katja Beha1, Scott B. Papp1 & Scott A. Diddams1 Experiments and theoretical modelling yielded significant progress toward understanding of Kerr-effect induced optical frequency comb generation in microresonators. However, the simultaneous Kerr-mediated interaction of hundreds or thousands of optical comb frequencies with the same number of resonator modes leads to complicated nonlinear dynamics that are far from fully understood. An important prerequisite for modelling the comb formation process is the knowledge of phase and amplitude of the comb modes as well as the detuning from their respective microresonator modes. Here, we present comprehensive measurements that fully characterize optical microcomb states. We introduce a way of measuring resonator dispersion and detuning of comb modes in a hot resonator while generating an optical frequency comb. The presented phase measurements show unpredicted comb states with discrete p and p/2 steps in the comb phases that are not observed in conventional optical frequency combs. 1 National Institute of Standards and Technology (NIST), Boulder, Colorado 80305, USA. Correspondence and requests for materials should be addressedto P.D. (email: [email protected]). NATURE COMMUNICATIONS | 6:5668 | DOI: 10.1038/ncomms6668 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6668 ptical frequency combs have proven to be powerful a liquid crystal array-based waveshaper that allows independent metrology tools for a variety of applications, as well as for control of both the phase and amplitude of each comb mode.
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, Günther- Scharowsky-Straÿe 1/Bau 24, 91058 Erlangen, Germany 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a eld at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This eld deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many dierent setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert's lectures) and cold atom experiments. The eld has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specic implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris. Right now (2011), the rst experiments have reported laser-cooling down to near the quantum ground state of a nanomechanical resonator.
    [Show full text]
  • Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective
    Wolfgang Pauli 1900 to 1930: His Early Physics in Jungian Perspective A Dissertation Submitted to the Faculty of the Graduate School of the University of Minnesota by John Richard Gustafson In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Advisor: Roger H. Stuewer Minneapolis, Minnesota July 2004 i © John Richard Gustafson 2004 ii To my father and mother Rudy and Aune Gustafson iii Abstract Wolfgang Pauli's philosophy and physics were intertwined. His philosophy was a variety of Platonism, in which Pauli’s affiliation with Carl Jung formed an integral part, but Pauli’s philosophical explorations in physics appeared before he met Jung. Jung validated Pauli’s psycho-philosophical perspective. Thus, the roots of Pauli’s physics and philosophy are important in the history of modern physics. In his early physics, Pauli attempted to ground his theoretical physics in positivism. He then began instead to trust his intuitive visualizations of entities that formed an underlying reality to the sensible physical world. These visualizations included holistic kernels of mathematical-physical entities that later became for him synonymous with Jung’s mandalas. I have connected Pauli’s visualization patterns in physics during the period 1900 to 1930 to the psychological philosophy of Jung and displayed some examples of Pauli’s creativity in the development of quantum mechanics. By looking at Pauli's early physics and philosophy, we gain insight into Pauli’s contributions to quantum mechanics. His exclusion principle, his influence on Werner Heisenberg in the formulation of matrix mechanics, his emphasis on firm logical and empirical foundations, his creativity in formulating electron spinors, his neutrino hypothesis, and his dialogues with other quantum physicists, all point to Pauli being the dominant genius in the development of quantum theory.
    [Show full text]
  • A Tunable Doppler-Free Dichroic Lock for Laser Frequency Stabilization
    my journal manuscript No. (will be inserted by the editor) A tunable Doppler-free dichroic lock for laser frequency stabilization Vivek Singh, V. B. Tiwari, S. R. Mishra and H. S. Rawat Laser Physics Applications Section, Raja Ramanna Center for Advanced Technology, Indore-452013, India. Received: date / Revised version: date Abstract We propose and demonstrate a laser fre- resolution spectroscopy [2], precision measurements [3] quency stabilization scheme which generates a dispersion- etc. A setup for laser cooling and trapping of atoms re- like tunable Doppler-free dichroic lock (TDFDL) signal. quires several lasers which are actively frequency sta- This signal offers a wide tuning range for lock point bilized and locked at few line-widths detuned from the (i.e. zero-crossing) without compromising on the slope peak of atomic absorption. In the laser cooling experi- of the locking signal. The method involves measurement ments, the active frequency stabilization is achieved by of magnetically induced dichroism in an atomic vapour generating a reference signal which is based on absorp- for a weak probe laser beam in presence of a counter tion profile of atom around the resonance. The refer- propagating strong pump laser beam. A simple model is ence locking signal can be either Doppler-broadened with presented to explain the basic principles of this method wide tuning range or Doppler-free with comparatively to generate the TDFDL signal. The spectral shift in the much steeper slope but with limited tuning range. The locking signal is achieved by tuning the frequency of the most commonly used technique for frequency locking pump beam.
    [Show full text]