University-Class Satellites: from Marginal Utility to 'Disruptive'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naval Postgraduate School Petite Amateur Navy Satellite
f NAVAL POSTGRADUATE SCHOOL PETITE AMATEUR NAVY SATELLITE (PANSAT) NASA/USRA University Advanced Design Program i Final Design Report i L Summer 1989 Naval Postgraduate School Space Systems Academic Group Monterey, California (NA_A-CR-18_049) PETIT? AMATEUR NAVY N90-I1800 _TFLLIT_: (pANSAT) Find1 _eport (N_v;_i Postgrdduate School) ;1 o CSCL 22B ,i TABLE OF CONTENTS A. BACKGROUND ........................................................................... 2 B. DESIGN SUMMARY .................................................................... 3 1. Communications (COMM) ...................................................... 3 2. Data Processor & Sequencer (DP&S) ...................................... 3 Figure 1. PANSAT DP&S System Concept ................................................... 6 3. Power .................................................................................. 7 4. Structure Subsystem ............................................................... 8 Figure 2. PANSAT Structural Configuration .............................................. 10 5. Experiment Payload ............................................................. l0 ,, C. CONCLUSION ................................................... !........................ 11 [ APPENDIX ...................................................................... , ....................... 12 ! Fig. A1. Processor Main Board ................................................................. 12 Fig. A2. Telemetry Section, (A/D converters) ............................................ -
2015 October
TTSIQ #13 page 1 OCTOBER 2015 www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars Flash! Sept. 28, 2015: www.space.com/30674-flowing-water-on-mars-discovery-pictures.html www.space.com/30673-water-flows-on-mars-discovery.html - “boosting odds for life!” These dark, narrow, 100 meter~yards long streaks called “recurring slope lineae” flowing downhill on Mars are inferred to have been formed by contemporary flowing water www.space.com/30683-mars-liquid-water-astronaut-exploration.html INDEX 2 Co-sponsoring Organizations NEWS SECTION pp. 3-56 3-13 Earth Orbit and Mission to Planet Earth 13-14 Space Tourism 15-20 Cislunar Space and the Moon 20-28 Mars 29-33 Asteroids & Comets 34-47 Other Planets & their moons 48-56 Starbound ARTICLES & ESSAY SECTION pp 56-84 56 Replace "Pluto the Dwarf Planet" with "Pluto-Charon Binary Planet" 61 Kepler Shipyards: an Innovative force that could reshape the future 64 Moon Fans + Mars Fans => Collaboration on Joint Project Areas 65 Editor’s List of Needed Science Missions 66 Skyfields 68 Alan Bean: from “Moonwalker” to Artist 69 Economic Assessment and Systems Analysis of an Evolvable Lunar Architecture that Leverages Commercial Space Capabilities and Public-Private-Partnerships 71 An Evolved Commercialized International Space Station 74 Remembrance of Dr. APJ Abdul Kalam 75 The Problem of Rational Investment of Capital in Sustainable Futures on Earth and in Space 75 Recommendations to Overcome Non-Technical Challenges to Cleaning Up Orbital Debris STUDENTS & TEACHERS pp 85-96 Past TTSIQ issues are online at: www.moonsociety.org/international/ttsiq/ and at: www.nss.org/tothestarsOO TTSIQ #13 page 2 OCTOBER 2015 TTSIQ Sponsor Organizations 1. -
Ssc09-Xii-03
SSC09-XII-03 The Promise of Innovation from University Space Systems: Are We Meeting It? Michael Swartwout St. Louis University 3450 Lindell Boulevard St. Louis, Missouri 63103; (314) 977-8240 [email protected] ABSTRACT A popular notion among universities is that we are innovation-drivers in the staid, risk-adverse spacecraft industry – we are to professional small satellites what small satellites are to the “battlestars”. By contrast, professional industry takes a much different perspective on university-class spacecraft; these programs are good for attracting students to space and providing valuable pre-career training, but the actual flight missions are ancillary, even unimportant. Which opinion is correct? Both are correct. The vast majority of the 111 student-built spacecraft that have flown have made no innovative contributions. That is not to say that they have been without contribution. In addition to the inarguable benefits to education, many have served as radio Amateur communications, science experiments and even technological demonstrations. But “innovative”? Not so much. However, there have been two innovative contributors, whose contributions are large enough to settle the question: the University of Surrey begat SSTL, which helped create the COTS-based small satellite industry. Stanford and Cal Poly begat CubeSats, whose contributions are still being created today. This paper provides an update to our earlier submissions on the history of student-built spacecraft. Major trends identified in previous years will be re-examined with new data -- especially the bifurcation between larger-scale, larger-scope "flagship" programs and small-scale, reduced-mission "independents". In particular, we will demonstrate that the general history of student-built spacecraft has not been one of innovation, nor of development of new space systems -- with those few, extremely noteworthy, exceptions. -
The SUNSAT Micro Satellite Program
The SUNSAT Micro Satellite Program: Technical performance and limits of imaging micro satellites Sias Mostert, Thys Cronje and Francois du Plessis Department of Electrical and Electronic Engineering Stellenbosch University. Private Bag X1, MATIELAND, 7602. South Africa. Fax: +27 21 808 4981. Internet: [email protected]. http:\\sunsat.ee.sun.ac.za ABSTRACT - This paper examines the technical performance of the SUNSAT micro satellite bus, which is supporting the high resolution imager (HRI) payload on the micro satellite which is scheduled for launch in December 1998. A number of existing remote sensing satellites are investigated to determine some key parameters by which a micro satellite remote sensing mission should be evaluated. The SUNSAT 1 HRI instrument is then evaluated in this context and future possible missions suggested which is suitable for micro satellite missions. 1. INTRODUCTION SUNSAT, a professional micro satellite developed by a team of graduate students and engineers at Stellenbosch University in South Africa, is scheduled for launch from Vandenberg Airforce Base on a Delta II rocket, currently manifested for December 1998. The Flight Model hardware is complete and the pre-flight testing is drawing to a close. This paper examines the technical performance and capabilities of SUNSAT 1 micro satellite supporting the high resolution imager (HRI). Laboratory measured performance data are provided for the 15 m resolution 3 color CCD imager of SUNSAT, developed jointly by Stellenbosch University, the Council for Scientific Industrial Research (CSIR) in South Africa and the Korean Advanced Institute of Science and Technology (KAIST). The performance of the Attitude Determination and Control System (ADCS), which is required to support the imager, is described. -
Repeaters, Satellites, EME and Direction Finding 23
Repeaters, Satellites, EME and Direction Finding 23 Repeaters his section was written by Paul M. Danzer, N1II. In the late 1960s two events occurred that changed the way radio amateurs communicated. The T first was the explosive advance in solid state components — transistors and integrated circuits. A number of new “designed for communications” integrated circuits became available, as well as improved high-power transistors for RF power amplifiers. Vacuum tube-based equipment, expensive to maintain and subject to vibration damage, was becoming obsolete. At about the same time, in one of its periodic reviews of spectrum usage, the Federal Communications Commission (FCC) mandated that commercial users of the VHF spectrum reduce the deviation of truck, taxi, police, fire and all other commercial services from 15 kHz to 5 kHz. This meant that thousands of new narrowband FM radios were put into service and an equal number of wideband radios were no longer needed. As the new radios arrived at the front door of the commercial users, the old radios that weren’t modified went out the back door, and hams lined up to take advantage of the newly available “commer- cial surplus.” Not since the end of World War II had so many radios been made available to the ham community at very low or at least acceptable prices. With a little tweaking, the transmitters and receivers were modified for ham use, and the great repeater boom was on. WHAT IS A REPEATER? Trucking companies and police departments learned long ago that they could get much better use from their mobile radios by using an automated relay station called a repeater. -
Issue #1 – 2012 October
TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems. -
Operational Aspects of Orbit Determination with GPS for Small Satellites with SAR Payloads Sergio De Florio, Tino Zehetbauer, Dr
Deutsches Zentrum Microwave and Radar Institute für Luft und Raumfahrt e.V. Department Reconnaissance and Security Operational Aspects of Orbit Determination with GPS for Small Satellites with SAR Payloads Sergio De Florio, Tino Zehetbauer, Dr. Thomas Neff Phone: +498153282357, [email protected] Abstract Requirements Scientific small satellite missions for remote sensing with Synthetic Taylor expansion of the phase Φ of the radar signal as a Aperture Radar (SAR) payloads or high accuracy optical sensors, pose very function of time varying position, velocity and acceleration: strict requirements on the accuracy of the reconstructed satellite positions, velocities and accelerations. Today usual GPS receivers can fulfill the 4π 233 Φ==++++()t Rtap ()()01kk apttaptt ()(-) 02030 ()(-) k aptt ()(-) k ο () t accuracy requirements of this missions in most cases, but for low-cost- λ missions the decision for a appropriate satellite hardware has to take into Typical requirements, for 0.5 to 1.0 m image resolution, on account not only the reachable quality of data but also the costs. An spacecraft position vector x: analysis is carried out in order to assess which on board and ground equipment, which type of GPS data and processing methods are most −−242 appropriate to minimize mission costs and full satisfying mission payload x≤≤⋅≤⋅ 15 mmsms x 1.5 10 / x 6.0 10 / (3σ ) requirements focusing the attention on a SAR payload. These are requirements on the measurements, not on the real motion of the satellite Required Hardware Typical Position -
Quarterly Launch Report
Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters 4th Quarter 1997 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 4TH QUARTER 1997 REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S. -
PANSAT) Was Launched Aboard the STS-95 Discovery Shuttle
777 Dyer Rd., Rm. 125, Code (SP/Sd), Monterey, California 93943 (831) 656-2299; email: [email protected] Abstract. The Petite Amateur Navy Satellite (PANSAT) was launched aboard the STS-95 Discovery Shuttle. The hist flight noted mainly by John Glenn’s return to space also marks the Naval Postgraduate School’s first smal space. PANSAT, which is in a circular, low-Earth orbit (LEO), is the culmination of 50 officer studen theses over approximately a nine-year period. The satellite continues to support the educational mission will soon provide on-orbit capability of store-and-forward digital communications for the amateur radio using direct sequence, spread spectrum modulation. The spacecraft includes the communications payloa power subsystem, digital control subsystem, and structure. This paper describes the overall architecture of th bus, a discussion of the NPS command ground station, and some lessons learned. Introduction Mission Requirements and Object The Space Systems Academic Group at NPS provides Education direction and a focal point for Naval Postgraduate School (NPS) space research and the space curricula: Space The primary objective for PANSAT is to pro Systems Engineering and Space Systems Operations. The on educational opportunities for the officer Petite Amateur Navy Satellite (PANSAT) is the first NPS NPS. The first phase of the program prov satellite in space. Approximately 50 Master’s degree support to the engineering disciplines through theses were published on the satellite. Officer students development, integration, and test. A numb played a vital role in the successful development of the were also related to operations. Now that satellite and gained invaluable experience through their operating in space, the emphasis has shift part in the project. -
The Petite Amateur Navy Satellite (PANSAT) Hitchhiker Ejectable
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 1998 The Petite Amateur Navy Satellite (PANSAT) Hitchhiker Ejectable Sakoda, Daniel Monterey, California: Naval Postgraduate School. http://hdl.handle.net/10945/37436 THE PETITE AMATEUR NAVY SATELLITE (PANSAT) HITCHHIKER EJECTABLE Daniel Sakoda Aerospace Engineer, Naval Postgraduate School ABSTRACT The Petite Amateur Navy Satellite (PANSAT) was successfully launched aboard the STS- 95 Discovery Shuttle as part of the third International Extreme Ultraviolet Hitchhiker (IEH-3), and placed into a circular, low-Earth orbit with 555 km (300 nmi.) altitude and 28.5° inclination. The culmination of approximately 50 graduate student theses, PANSAT provides the amateur radio community with digital, store-and-forward, direct sequence, spread spectrum communications, as well as providing officer students at NPS a space-based instructional laboratory. The spacecraft hardware was built and tested almost entirely at NPS to the component level. Rigorous analysis and testing was performed to ensure compatibility with Shuttle payload requirements. This paper describes the spacecraft design as relates to both compliance with Shuttle safety requirements and ensuring overall mission success. Specifically, PANSAT design requirements for structures, radio frequency emissions, and batteries will be discussed along with some lessons learned in the verification process. INTRODUCTION The Petite Amateur Navy Satellite (PANSAT) is the Naval Postgraduate School's (NPS) first satellite in space. The main objective is to provide a hands-on, educational tool for the officer students at NPS in the Space Systems Engineering and Space Systems Operations curricula. -
Some of the Women of Goddard Involved in the Space Shuttle
Space Shuttle Discovery, March 7, 2011, as photographed from the International Space Station. Space Shuttle: A Key to NASA’s Space Transportation System Following the spectacular successes of the Apollo program, NASA designed the Space Transportation System (STS), including the crew-tended Space Shuttle orbiter, to provide a reusable vehicle for launching heavy payloads, maintaining low Earth orbit, and returning to ground with a runway landing. The Shuttle made its first orbital flight in April 1981 and its last flight in July 2011. The manifests for Space Shuttle Endeavour, making its final landing at Kennedy Space Center, the 135 flights were very diverse, from deploying planetary spacecraft June 1, 2011. and servicing the Hubble Space Telescope to construction of the International Space Station in low Earth orbit. The Shuttle program is centered at NASA’s Johnson Space Center and Kennedy Space Center, but it has important NASA Goddard Space Flight Center contributions. Astronaut Mary Cleave conducting an experiment on Space Shuttle Atlantis in May 1989. A rare event with two Space Shuttle Orbiters (Atlantis and Endeavour) simultaneously being prepared for separate launches at Kennedy Space Center, September 20, 2008. Photo by Jack Pfaller Space Shuttle Atlantis, July 8, 2011, lifting off with its four-member crew on the Shuttle program’s final mission. International Space Station Freedom, a laboratory dedicated to humans living and working in Low Earth Orbit, March 7, 2011, as The edge of the Earth’s atmosphere on photographed from -
Quarterly Launch Report
Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters 1st Quarter 1998 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 1ST QUARTER 1998 REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S.