ARTICLE DOI: 10.1038/s41467-017-01418-2 OPEN Fault-tolerant interface between quantum memories and quantum processors Hendrik Poulsen Nautrup 1, Nicolai Friis 1,2 & Hans J. Briegel1 Topological error correction codes are promising candidates to protect quantum computa- tions from the deteriorating effects of noise. While some codes provide high noise thresholds suitable for robust quantum memories, others allow straightforward gate implementation 1234567890 needed for data processing. To exploit the particular advantages of different topological codes for fault-tolerant quantum computation, it is necessary to be able to switch between them. Here we propose a practical solution, subsystem lattice surgery, which requires only two-body nearest-neighbor interactions in a fixed layout in addition to the indispensable error correction. This method can be used for the fault-tolerant transfer of quantum information between arbitrary topological subsystem codes in two dimensions and beyond. In particular, it can be employed to create a simple interface, a quantum bus, between noise resilient surface code memories and flexible color code processors. 1 Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria. 2 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria. Correspondence and requests for materials should be addressed to H.P.N. (email:
[email protected]) NATURE COMMUNICATIONS | 8: 1321 | DOI: 10.1038/s41467-017-01418-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01418-2 oise and decoherence can be considered as the major encoding k = n − s qubits. We denote the normalizer of S by Nobstacles for large-scale quantum information processing.