Coherent Microwave Photon Mediated Coupling Between a Semiconductor and a Superconductor Qubit

Total Page:16

File Type:pdf, Size:1020Kb

Coherent Microwave Photon Mediated Coupling Between a Semiconductor and a Superconductor Qubit Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit P. Scarlino1†∗, D. J. van Woerkom1y, U. C. Mendes2, J. V. Koski1, A. J. Landig1, C. K. Andersen1, S. Gasparinetti1, C. Reichl1, W. Wegscheider1, K. Ensslin1, T. Ihn1, A. Blais2;3 and A. Wallraff1 1Department of Physics, ETH Zurich,¨ CH-8093 Zurich,¨ Switzerland 2Institut quantique and Department´ de Physique, Universite´ de Sherbrooke, Sherbrooke, Quebec´ J1K 2R1, Canada 3Canadian Institute for Advanced Research, Toronto, ON, Canada y These authors contributed equally to this work. gate voltages [22] and by fermionic cavities [23]. An alterna- ∗ To whom correspondence should be addressed. tive approach which allows for long-range qubit-qubit inter- action, inspired by superconducting circuit quantum electro- Semiconductor qubits rely on the control of charge and dynamics (QED) and recently explored also for semiconduc- spin degrees of freedom of electrons or holes confined in tor QDs [24–26], is to use microwave photons confined in quantum dots (QDs). They constitute a promising ap- superconducting resonators to mediate coupling between dis- proach to quantum information processing [1, 2], comple- tant qubits. In this approach, the microwave resonator not mentary to superconducting qubits [3]. Typically, semi- only acts as a quantum bus, but also allows for quantum non- conductor qubit-qubit coupling is short range [1, 2, 4, 5], demolition qubit readout [12–14]. effectively limiting qubit distance to the spatial extent With the well established strong coupling of supercon- of the wavefunction of the confined particle, which rep- ducting qubits to microwave resonators [6] and the recently resents a significant constraint towards scaling to reach achieved strong coupling to charge states in semiconductor dense 1D or 2D arrays of QD qubits. Following the suc- double dot structures [7, 8], it is now possible to create a mi- cess of circuit quantum electrodynamics [6], the strong crowave photon-based interface between superconducting and coupling regime between the charge [7, 8] and spin [9–11] semiconducting qubits mediated by a joint coupling resonator. degrees of freedom of electrons confined in semiconduct- A similar strategy has been explored in hybrid structures in- ing QDs interacting with individual photons stored in a terfacing a transmon qubit with excitations of a spin-ensemble microwave resonator has recently been achieved. In this of NV centers in diamonds [27–29] and of collective spins letter, we demonstrate coherent coupling between a super- (magnons) in ferromagnets [30–32]. Furthermore, direct cou- conducting transmon qubit and a semiconductor double pling between a superconducting flux qubit and an electron quantum dot (DQD) charge qubit mediated by virtual mi- spin ensemble in diamond was investigated [33]. In these crowave photon excitations in a tunable high-impedance works the strong coupling regime was achieved with ensem- SQUID array resonator acting as a quantum bus [12–14]. bles, for which the coupling strength scales with the square The transmon-charge qubit coherent coupling rate ( 21 root of the number of two-level systems interacting with the MHz) exceeds the linewidth of both the transmon ( ∼0:8 resonator mode. MHz) and the DQD charge ( 3 MHz) qubit. By tuning∼ Here, we explore the coupling of the charge degree of free- the qubits into resonance for∼ a controlled amount of time, dom of a single electron confined in a double quantum dot we observe coherent oscillations between the constituents (DQD) to a superconducting transmon qubit in the circuit of this hybrid quantum system. These results enable a new QED architecture [6]. To perform our experiments, we in- class of experiments exploring the use of the two-qubit in- tegrate four different quantum systems into a single device: teractions mediated by microwave photons to create en- a semiconductor DQD charge qubit, a superconducting qubit, tangled states between semiconductor and superconduct- and two superconducting resonators [see Fig. 1(a)]. One res- ing qubits. The methods and techniques presented here onator acts as a quantum bus between the superconducting are transferable to QD devices based on other material and the semiconductor qubits and the other one as a readout arXiv:1806.10039v1 [quant-ph] 26 Jun 2018 systems and can be beneficial for spin-based hybrid sys- resonator for the superconducting qubit. In this way, the func- tems. tionality for qubit readout and coupling is implemented using Single electron spins confined in semiconductor quantum two independent resonators at different frequencies, allowing dots (QDs) can preserve their coherence for hundreds of mi- for more flexibility in the choice of coupling parameters and croseconds in 28Si [15, 16] and have typical relaxation times reducing unwanted dephasing due to residual resonator pho- of seconds [17, 18]. This property can be explored, for ex- ton population [34]. A simplified circuit diagram of the de- ample, to build memories for quantum information proces- vice is shown in Fig. 1(f). The superconducting qubit is of sors in hybrid architectures combining superconducting qubits transmon type and consists of a single superconducting alu- and spin qubits. Strategies to interconnect semiconductor minum (Al) island shunted to ground via a SQUID (orange in qubits include the control of short-range interactions through Fig. 1). The transmon charging and Josephson energies are 0 the direct overlap of electronic wavefunctions [1, 4], the di- Ec=h 243 MHz and E =h 30 GHz, respectively (see ∼ J ∼ rect capacitive coupling between QDs [5], enhanced by float- Methods for more information). The transition frequency !tr ing metallic gates [19], shuttling of electrons between dis- between its ground state g and excited state e is adjusted tant QDs by surface acoustic waves [20, 21], by time-varying by using the magnetic fluxj generatedi in the transmonj i SQUID 2 (a) (b) 500 µm 100 µ m (c) (d) (e) (f) 1 µm 500 5µm nm coil 50 µm Transmon Squid Array 50 Ω Drive line resonator DQD S D FIG. 1. Sample and simplified circuit diagram. (a) False color optical micrograph of the device showing the substrate (dark gray), the Al superconducting structures forming the groud plane (light gray), the DQD Au gate leads (yellow), the SQUID array resonator (red), its microwave feedline (green), the single island transmon (orange), its readout 50 Ω coplanar waveguide resonator (blue) and the flux line (purple). (b) Enlarged view of the sample area enclosed by the blue dashed line in panel (a). (c) Enlarged view of the coupling side of the SQUID array. (d) Electron micrograph of the DQD showing its electrostatic top gates (Al-light gray) and the plunger gate coupled to the SQUID array (red). (e) Electron micrograph of the transmon SQUID. (f) Circuit diagram schematically displaying the DQD [with its source (S) and drain (D) contact], capacitively coupled to the SQUID array resonator, which in turn is coupled to the transmon. The transmon and the SQUID array are respectively capacitively coupled to a 50 Ω CPW resonator and microwave feedline. Their resonance frequencies can be tuned by using a flux line and a coil schematically shown in the circuit diagram. The color code is consistent with the optical micrographs. loop by a flux line (purple in Fig. 1). We read out the state of We characterize the hybrid circuit by measuring the ampli- the transmon qubit with a 50 Ω coplanar waveguide resonator tude and phase change of the reflection coefficient of a coher- (dark blue in Fig. 1) capacitively coupled to the qubit [6, 35]. ent tone at frequency !p reflected from the multiplexed res- The DQD charge qubit [Fig. 1(d)], schematically indi- onators (the microwave setup is presented in Extended Data cated by the 2 light blue dots in Fig. 1(f), is defined by Fig. 1). The response changes with the potentials applied standard depletion gate technology using Al top gates on a to the gate electrodes forming the DQD and the magnetic GaAs/AlGaAs heterostructure that hosts a two-dimensional flux applied to the transmon. By varying the DQD detun- electron gas (2DEG) [7, 24, 36]. The DQD is tuned to the ing δ and the transmon flux Φtr, each qubit is individually few-electron regime and its excitation energy is given by tuned into resonance with the high-impedance resonator. The p 2 2 coupling strengths measured between the SQUID array res- !DQD = 4tc + δ , with the inter-dot tunnel rate tc and the DQD energy detuning δ. onator and the DQD charge qubit and the transmon qubit are 2gDQD,Sq=2π 66 MHz (at !r,Sq=2π = 4:089 GHz) We use a superconducting high-impedance resonator for ∼ and 2gtr,Sq=2π 451 MHz (at !r,Sq=2π = 5:18 GHz), re- mediating interactions between the transmon and the DQD ∼ [7]. The resonator is composed of an array of 35 SQUIDs spectively, for more details see Methods and Extended Data [Fig. 1(b)] and is capacitively coupled to both transmon and Fig. 3. For the same configuration, we extract the linewidth of the qubits spectroscopically [7, 34] and find δ!DQD=2π DQD charge qubits [see Fig. 1(b,f)]. It is grounded at one ∼ 3 MHz and δ!tr=2π 0:8 MHz. Both subsystems individ- end and terminated in a small island at the other end to which ∼ a single coplanar drive line is capacitively coupled [green in ually are in the strong coupling regime (2g > κ/2 + γ2) Fig. 1(b,c)]. A gate line extends from the island and forms one with a SQUID array resonator linewidth of κ/2π = (κext + κint)=2π (3 + 5) MHz. of the plunger gates of the DQD [in red in Fig. 1(d)] [7, 36]. ∼ The high impedance of the resonator increases the strength of To demonstrate the coherent coupling between the trans- the vacuum fluctuations of electric field, enhancing the cou- mon qubit and the DQD charge qubit, we first character- pling strength of the individual qubits to the resonator (see ize the configuration with the three systems interacting res- Methods for more information).
Recommended publications
  • The Future of Quantum Information Processing
    SPECIALSECTION INTRODUCTION The Future of Quantum Information Processing IN A WORLD OVERWHELMED BY INCREASING AMOUNTS OF DATA, FINDING NEW WAYS to store and process information has become a necessity. Conventional silicon- based electronics has experienced rapid and steady growth, thanks to the progres- sive miniaturization of its basic component, the transistor, but that trend cannot continue indefi nitely. Quantum In conventional devices, information is stored and manipulated in binary form: The elementary components of these devices—the so-called bits—have Information two states, each of which encodes the binary 0 or 1. To move beyond the binary system, one can exploit the laws of quantum mechanics. A quantum-mechanical Processing object with two energy levels at its disposal can occupy either of those two levels, but also an arbitrary combination (“superposition”) of the two, much like an CONTENTS electron in a two-slit experiment can go through both slits at once. This results in infi nitely many quantum states that a single quantum bit, or “qubit,” can take; together with another strange property of quantum mechanics—entanglement— Reviews it allows for a much more powerful information platform than is possible with 1164 Scaling the Ion Trap Quantum conventional components. Processor Quantum information processing (QIP) uses qubits as its basic information C. Monroe and J. Kim units. QIP has many facets, from quantum simulation, to cryptography, to quantum 1169 Superconducting Circuits for computation, which is expected to solve problems more complex than those within Quantum Information: An Outlook the capabilities of conventional computers. To be useful for QIP, a qubit needs to be M.
    [Show full text]
  • Fault-Tolerant Interface Between Quantum Memories and Quantum Processors
    ARTICLE DOI: 10.1038/s41467-017-01418-2 OPEN Fault-tolerant interface between quantum memories and quantum processors Hendrik Poulsen Nautrup 1, Nicolai Friis 1,2 & Hans J. Briegel1 Topological error correction codes are promising candidates to protect quantum computa- tions from the deteriorating effects of noise. While some codes provide high noise thresholds suitable for robust quantum memories, others allow straightforward gate implementation 1234567890 needed for data processing. To exploit the particular advantages of different topological codes for fault-tolerant quantum computation, it is necessary to be able to switch between them. Here we propose a practical solution, subsystem lattice surgery, which requires only two-body nearest-neighbor interactions in a fixed layout in addition to the indispensable error correction. This method can be used for the fault-tolerant transfer of quantum information between arbitrary topological subsystem codes in two dimensions and beyond. In particular, it can be employed to create a simple interface, a quantum bus, between noise resilient surface code memories and flexible color code processors. 1 Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria. 2 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria. Correspondence and requests for materials should be addressed to H.P.N. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1321 | DOI: 10.1038/s41467-017-01418-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01418-2 oise and decoherence can be considered as the major encoding k = n − s qubits. We denote the normalizer of S by Nobstacles for large-scale quantum information processing.
    [Show full text]
  • Universal Control and Error Correction in Multi-Qubit Spin Registers in Diamond T
    LETTERS PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NNANO.2014.2 Universal control and error correction in multi-qubit spin registers in diamond T. H. Taminiau 1,J.Cramer1,T.vanderSar1†,V.V.Dobrovitski2 and R. Hanson1* Quantum registers of nuclear spins coupled to electron spins of including one with an additional strongly coupled 13C spin (see individual solid-state defects are a promising platform for Supplementary Information). To demonstrate the generality of quantum information processing1–13. Pioneering experiments our approach to create multi-qubit registers, we realized the initia- selected defects with favourably located nuclear spins with par- lization, control and readout of three weakly coupled 13C spins for ticularly strong hyperfine couplings4–10. To progress towards each NV centre studied (see Supplementary Information). In the large-scale applications, larger and deterministically available following, we consider one of these NV centres in detail and use nuclear registers are highly desirable. Here, we realize univer- two of its weakly coupled 13C spins to form a three-qubit register sal control over multi-qubit spin registers by harnessing abun- for quantum error correction (Fig. 1a). dant weakly coupled nuclear spins. We use the electron spin of Our control method exploits the dependence of the nuclear spin a nitrogen–vacancy centre in diamond to selectively initialize, quantization axis on the electron spin state as a result of the aniso- control and read out carbon-13 spins in the surrounding spin tropic hyperfine interaction (see Methods for hyperfine par- bath and construct high-fidelity single- and two-qubit gates. ameters), so no radiofrequency driving of the nuclear spins is We exploit these new capabilities to implement a three-qubit required7,23–28.
    [Show full text]
  • High Energy Physics Quantum Information Science Awards Abstracts
    High Energy Physics Quantum Information Science Awards Abstracts Towards Directional Detection of WIMP Dark Matter using Spectroscopy of Quantum Defects in Diamond Ronald Walsworth, David Phillips, and Alexander Sushkov Challenges and Opportunities in Noise‐Aware Implementations of Quantum Field Theories on Near‐Term Quantum Computing Hardware Raphael Pooser, Patrick Dreher, and Lex Kemper Quantum Sensors for Wide Band Axion Dark Matter Detection Peter S Barry, Andrew Sonnenschein, Clarence Chang, Jiansong Gao, Steve Kuhlmann, Noah Kurinsky, and Joel Ullom The Dark Matter Radio‐: A Quantum‐Enhanced Dark Matter Search Kent Irwin and Peter Graham Quantum Sensors for Light-field Dark Matter Searches Kent Irwin, Peter Graham, Alexander Sushkov, Dmitry Budke, and Derek Kimball The Geometry and Flow of Quantum Information: From Quantum Gravity to Quantum Technology Raphael Bousso1, Ehud Altman1, Ning Bao1, Patrick Hayden, Christopher Monroe, Yasunori Nomura1, Xiao‐Liang Qi, Monika Schleier‐Smith, Brian Swingle3, Norman Yao1, and Michael Zaletel Algebraic Approach Towards Quantum Information in Quantum Field Theory and Holography Daniel Harlow, Aram Harrow and Hong Liu Interplay of Quantum Information, Thermodynamics, and Gravity in the Early Universe Nishant Agarwal, Adolfo del Campo, Archana Kamal, and Sarah Shandera Quantum Computing for Neutrino‐nucleus Dynamics Joseph Carlson, Rajan Gupta, Andy C.N. Li, Gabriel Perdue, and Alessandro Roggero Quantum‐Enhanced Metrology with Trapped Ions for Fundamental Physics Salman Habib, Kaifeng Cui1,
    [Show full text]
  • Waiting for the Quantum Bus Arxiv:1406.5674V1 [Quant-Ph] 22
    Waiting for the Quantum Bus A.J. Bracken ∗ and G.F. Melloy School of of Mathematics and Physics The University of Queensland Brisbane, Australia 4072 Abstract Forty-five years after the discovery of the peculiar quantum effect known as `probability backflow', and twenty years after the greatest possible size of the effect was characterized, an experiment has been proposed recently to observe the effect in a Bose-Einstein condensate. Here the history is described in non-technical terms. arXiv:1406.5674v1 [quant-ph] 22 Jun 2014 ∗Email: [email protected] 1 Einstein's conviction that \God does not play at dice with the universe" is now generally seen as misguided. The quantum world, unlike our everyday classical world, is inherently probabilitistic in nature. But it may yet surprise the reader to learn that even in regard to probability itself, the quantum and classical worlds do not always behave in the same way. Forty-five years ago, British physicist G R Allcock published three papers [1], since widely-cited, on the so-called `arrival-time' problem in quantum me- chanics. This is the problem of determining the probability distribution over times at which a quantum particle may be observed at a given position. It is converse to a problem that quantum mechanics deals with routinely, namely to predict the probability distribution over positions at which a quantum par- ticle may be observed at a given time. The difference between the two looks so subtle as to be insignificant, but the arrival-time problem is by no means as straightforward as its counterpart, and it has led to continuing argument and research over many years [2, 3, 4].
    [Show full text]
  • Quantum Computing: Progress and Prospects (2018)
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/25196 SHARE Quantum Computing: Progress and Prospects (2018) DETAILS 202 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-47969-1 | DOI 10.17226/25196 CONTRIBUTORS GET THIS BOOK Emily Grumbling and Mark Horowitz, Editors; Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing; Computer Science and Telecommunications Board; Intelligence Community Studies Board; Division on FIND RELATED TITLES Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine SUGGESTED CITATION National Academies of Sciences, Engineering, and Medicine 2018. Quantum Computing: Progress and Prospects. Washington, DC: The National Academies Press. https://doi.org/10.17226/25196. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Quantum Computing: Progress and Prospects PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION Quantum Computing: Progress and Prospects Emily Grumbling and Mark Horowitz, Editors Committee on Technical Assessment of the Feasibility and Implications of Quantum Computing Computer Science and Telecommunications Board Intelligence Community Studies Board Division on Engineering and Physical Sciences A Consensus Study Report of PREPUBLICATION COPY – SUBJECT TO FURTHER EDITORIAL CORRECTION Copyright National Academy of Sciences.
    [Show full text]
  • Synthesis of Quantum-Logic Circuits Vivek V
    1000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 6, 2006 Synthesis of Quantum-Logic Circuits Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov, Senior Member, IEEE Abstract—The pressure of fundamental limits on classical com- I. INTRODUCTION putation and the promise of exponential speedups from quantum effects have recently brought quantum circuits (Proc. R. Soc. S THE ever-shrinking transistor approaches atomic pro- Lond. A, Math. Phys. Sci., vol. 425, p. 73, 1989) to the atten- A portions, Moore’s law must confront the small-scale tion of the electronic design automation community (Proc. 40th granularity of the world: We cannot build wires thinner than ACM/IEEE Design Automation Conf., 2003), (Phys.Rev.A,At.Mol. atoms. Worse still, at atomic dimensions, we must contend with Opt. Phy., vol. 68, p. 012318, 2003), (Proc. 41st Design Automation Conf., 2004), (Proc. 39th Design Automation Conf., 2002), (Proc. the laws of quantum mechanics. For example, suppose 1 bit Design, Automation, and Test Eur., 2004), (Phys. Rev. A, At. Mol. is encoded as the presence or the absence of an electron in a Opt. Phy., vol. 69, p. 062321, 2004), (IEEE Trans. Comput.-Aided small region.1 Since we know very precisely where the electron Des. Integr. Circuits Syst., vol. 22, p. 710, 2003). Efficient quantum– is located, the Heisenberg uncertainty principle dictates that logic circuits that perform two tasks are discussed: 1) implement- we cannot know its momentum with high accuracy. Without ing generic quantum computations, and 2) initializing quantum registers. In contrast to conventional computing, the latter task a reasonable upper bound on the electron’s momentum, there is nontrivial because the state space of an n-qubit register is not is no alternative but to use a large potential to keep it in place, finite and contains exponential superpositions of classical bit- and expend significant energy during logic switching.
    [Show full text]
  • Arxiv:2010.08699V1 [Quant-Ph] 17 Oct 2020 Tum Computation Systems
    Bosonic quantum error correction codes in superconducting quantum circuits 1, 1, 1, 2,† 1,‡ W. Cai, ∗ Y. Ma, ∗ W. Wang, ∗ C.-L. Zou, and L. Sun 1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China 2Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China Quantum information is vulnerable to environmental noise and experimental imperfections, hindering the reliability of practical quantum information processors. Therefore, quantum error correction (QEC) that can protect quantum information against noise is vital for universal and scalable quantum compu- tation. Among many different experimental platforms, superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC. During the last few years, bosonic QEC is demonstrated to reach the break-even point, i.e. the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimen- tal system. Beyond that, universal gate sets and fault-tolerant operations on the bosonic codes are also realized, pushing quantum information processing towards the QEC era. In this article, we review the recent progress of the bosonic codes, including the Gottesman-Kitaev-Preskill codes, cat codes, and bino- mial codes, and discuss the opportunities of bosonic codes in various quantum applications, ranging from fault-tolerant quantum computation to quantum metrology. We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms. I. INTRODUCTION grees of freedom, e.g. spatial, temporal, frequency, polar- ization, or their combinations, and thus are scalable.
    [Show full text]
  • Spin Chain Systems for Quantum Computing and Quantum Information Applications
    Spin Chain Systems for Quantum Computing and Quantum Information Applications MARTA P. ESTARELLAS PHD UNIVERSITY OF YORK Physics April, 2018 3 University of York Abstract York Center for Quantum Technologies Department of Physics Doctor of Philosophy Spin Chain Systems for Quantum Computing and Quantum Information Applications by Marta P. ESTARELLAS One of the most essential processes in classical computation is that related to the information manipulation; each component or register of a computer needs to com- municate to others by exchanging information encoded in bits and transforming it through logical operations. Hence the theoretical study of methods for informa- tion transfer and processing in classical information theory is of fundamental impor- tance for telecommunications and computer science, along with study of errors and robustness of such proposals. When adding the quantum ingredient, there arises a whole new set of paradigms and devices, based on manipulations of qubits, the quantum analogues of conventional data bits. Such systems can show enormous advantage against their classical analogues, but at the same time present a whole new set of technical and conceptual challenges to overcome. The full and detailed understanding of quantum processes and studies of theoretical models and devices therefore provide the first logical steps to the future technological exploitation of these new machines. In this line, this thesis focuses on spin chains as such theoreti- cal models, formed by series of coupled qubits that can be applied to a wide range of physical systems, and its several potential applications as quantum devices. In this work spin chains are presented as reliable devices for quantum communication with high transfer fidelities, entanglement generation and distribution over distant par- ties and protected storage of quantum information.
    [Show full text]
  • PDF, 4MB Herunterladen
    Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 1.2 June 2020 Second update containing new algorithmic developments, details summarized in chapters 1.6.2 and 2.12 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Introduction Introduction This study discusses the current (Fall 2017, update early 2019, second update early 2020 ) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on applications in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Aditi Misra-Spieldenner, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security.
    [Show full text]
  • Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins Patrice Bertet
    Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins Patrice Bertet To cite this version: Patrice Bertet. Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins. Quantum Physics [quant-ph]. Université Pierre-et-Marie-Curie, 2014. tel-01095616 HAL Id: tel-01095616 https://tel.archives-ouvertes.fr/tel-01095616 Submitted on 15 Dec 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universite´ Pierre-et-Marie-Curie Memoire´ d'Habilitation a` Diriger des Recherches Quantum Physics and Quantum Information with Atoms, Photons, Electrical Circuits, and Spins pr´esent´epar: Patrice BERTET (Groupe Quantronique, SPEC, CEA Saclay) soutenu au CEA Saclay le 17 juin 2014 devant le jury compos´ede Pr. Daniel ESTEVE Examinateur Pr. Ronald HANSON Rapporteur Pr. Hans MOOIJ Examinateur Pr. Jean-Michel RAIMOND Examinateur Pr. Andreas WALLRAFF Rapporteur Pr. Wolfgang WERNSDORFER Rapporteur Contents 1 Introduction: From quantum paradoxes to quantum devices 3 1.1 The second quantum revolution . 3 1.2 From cavity to circuit QED . 4 1.3 Circuit QED with Superconducting Qubits . 5 1.4 Hybrid Quantum Circuits . 5 2 From Cavity QED to Circuit QED 7 2.1 Cavity Quantum Electrodynamics with Rydberg atoms .
    [Show full text]
  • Realization of Quantum Information Processing in Quantum Star Network
    Physica A 463 (2016) 427–436 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems Wenlin Li, Chong Li ∗, Heshan Song ∗ School of Physics and Optoelectronic Engineering, Dalian University of Technology, 116024, China h i g h l i g h t s • We extend traditional one-dimensional quantum network to star structure, mainstream QIP schemes can be carried out in parallel in this network. • We realize controllable effective coupling between arbitrary superconducting qubit and bus by only tuning their detuning. • Effective quality factor can be greatly improved although only the bus has a high quality factor. article info a b s t r a c t Article history: In the framework of superconducting hybrid systems, we construct a star quantum Received 24 April 2016 network in which a superconducting transmission line resonator as a quantum bus and Received in revised form 21 May 2016 multiple units constituted by transmission line resonator and superconducting qubits as Available online 25 July 2016 the carriers of quantum information. We further propose and analyze a theoretical scheme to realize quantum information processing in the quantum network. The coupling between Keywords: the bus and any two superconducting qubits can be selectively implemented based on the Quantum network dark state resonances of the highly dissipative transmission line resonators, and it can be Quantum information processing Quantum multi interaction found that quantum information processing between any two units can be completed in one step. As examples, the transmission of unknown quantum states and the preparation of quantum entanglement in this quantum network are investigated.
    [Show full text]