PDF, 4MB Herunterladen

Total Page:16

File Type:pdf, Size:1020Kb

PDF, 4MB Herunterladen Status of quantum computer development Entwicklungsstand Quantencomputer Document history Version Date Editor Description 1.0 May 2018 Document status after main phase of project 1.1 July 2019 First update containing both new material and improved readability, details summarized in chapters 1.6 and 2.11 1.2 June 2020 Second update containing new algorithmic developments, details summarized in chapters 1.6.2 and 2.12 Federal Office for Information Security Post Box 20 03 63 D-53133 Bonn Phone: +49 22899 9582-0 E-Mail: [email protected] Internet: https://www.bsi.bund.de © Federal Office for Information Security 2020 Introduction Introduction This study discusses the current (Fall 2017, update early 2019, second update early 2020 ) state of affairs in the physical implementation of quantum computing as well as algorithms to be run on them, focused on applications in cryptanalysis. It is supposed to be an orientation to scientists with a connection to one of the fields involved—mathematicians, computer scientists. These will find the treatment of their own field slightly superficial but benefit from the discussion in the other sections. The executive summary as well as the introduction and conclusions to each chapter provide actionable information to decision makers. The text is separated into multiple parts that are related (but not identical) to previous work packages of this project. Authors Frank K. Wilhelm, Saarland University Rainer Steinwandt, Florida Atlantic University, USA Brandon Langenberg, Florida Atlantic University, USA Per J. Liebermann, Saarland University Anette Messinger, Saarland University Peter K. Schuhmacher, Saarland University Aditi Misra-Spieldenner, Saarland University Copyright The study including all its parts are copyrighted by the BSI–Federal Office for Information Security. Any use outside the limits defined by the copyright law without approval by the BSI is not permitted and punishable. This covers reproduction, translation, micro filming, and storing and processing in electronic systems. BSI-Reference BSI Title: Entwicklungsstand Quantencomputer BSI Project Number: 283 Federal Office for Information Security 3 Table of Contents Table of Contents Document history.............................................................................................................................................................................. 2 Introduction......................................................................................................................................................................................... 3 Authors............................................................................................................................................................................................. 3 Copyright......................................................................................................................................................................................... 3 BSI-Reference................................................................................................................................................................................ 3 Index of Figures................................................................................................................................................................................... 9 Index of Tables.................................................................................................................................................................................. 13 1 Deutsche Zusammenfassung..................................................................................................................................................... 15 1.1 Was ist ein Quantencomputer?.......................................................................................................................................... 15 1.2 Die Relevanz von Quantencomputern für die Kryptoanalyse............................................................................15 1.3 Hardware für Quantencomputer......................................................................................................................................16 1.4 Aktuelle Entwicklungen........................................................................................................................................................ 19 1.5 Extrapolation.............................................................................................................................................................................. 19 1.6 Aktualisierungen....................................................................................................................................................................... 20 2 Synopsis................................................................................................................................................................................................ 23 2.1 Basic idea....................................................................................................................................................................................... 23 2.2 Hardware platforms................................................................................................................................................................. 23 2.3 Algorithmic goals...................................................................................................................................................................... 24 2.4 Computational Models........................................................................................................................................................... 24 2.5 Evaluation along computational models.......................................................................................................................26 2.6 Evaluation of platforms......................................................................................................................................................... 27 2.7 Extrapolation.............................................................................................................................................................................. 31 2.8 Alternative platforms.............................................................................................................................................................. 33 2.9 Global activities and potential for development........................................................................................................33 2.10 Risks................................................................................................................................................................................................. 33 2.11 Update Spring 2019.................................................................................................................................................................. 34 2.12 Update Spring 2020.................................................................................................................................................................. 34 Part I: Evaluating and benchmarking quantum computing hardware.................................................................36 3 Introduction to computational models and their requirements..............................................................................37 3.1 Structure and requirements of an evaluation system.............................................................................................37 3.2 Basic principles and notions of evaluating fault tolerant gate-based quantum computing.................38 4 Are recent quantum supremacy proposals relevant for cryptanalysis?................................................................41 4.1 Fault tolerance vs. near-term quantum supremacy.................................................................................................41 4.2 Algorithmic perspective......................................................................................................................................................... 41 5 Low-level analysis of qubit systems........................................................................................................................................ 44 5.1 Initial remarks............................................................................................................................................................................ 44 5.2 The DiVincenzo criteria reviewed..................................................................................................................................... 44 5.3 Coherence time scales............................................................................................................................................................. 46 5.4 Qubit definition indicators................................................................................................................................................... 49 Federal Office for Information Security 5 Table of Contents 5.5 Qubit initialization indicators............................................................................................................................................. 50 5.6 Readout indicators.................................................................................................................................................................... 50
Recommended publications
  • Information Scrambling in Computationally Complex Quantum Circuits
    Information Scrambling in Computationally Complex Quantum Circuits Xiao Mi,1, ∗ Pedram Roushan,1, ∗ Chris Quintana,1, ∗ Salvatore Mandr`a,2, 3 Jeffrey Marshall,2, 4 Charles Neill,1 Frank Arute,1 Kunal Arya,1 Juan Atalaya,1 Ryan Babbush,1 Joseph C. Bardin,1, 5 Rami Barends,1 Andreas Bengtsson,1 Sergio Boixo,1 Alexandre Bourassa,1, 6 Michael Broughton,1 Bob B. Buckley,1 David A. Buell,1 Brian Burkett,1 Nicholas Bushnell,1 Zijun Chen,1 Benjamin Chiaro,1 Roberto Collins,1 William Courtney,1 Sean Demura,1 Alan R. Derk,1 Andrew Dunsworth,1 Daniel Eppens,1 Catherine Erickson,1 Edward Farhi,1 Austin G. Fowler,1 Brooks Foxen,1 Craig Gidney,1 Marissa Giustina,1 Jonathan A. Gross,1 Matthew P. Harrigan,1 Sean D. Harrington,1 Jeremy Hilton,1 Alan Ho,1 Sabrina Hong,1 Trent Huang,1 William J. Huggins,1 L. B. Ioffe,1 Sergei V. Isakov,1 Evan Jeffrey,1 Zhang Jiang,1 Cody Jones,1 Dvir Kafri,1 Julian Kelly,1 Seon Kim,1 Alexei Kitaev,1, 7 Paul V. Klimov,1 Alexander N. Korotkov,1, 8 Fedor Kostritsa,1 David Landhuis,1 Pavel Laptev,1 Erik Lucero,1 Orion Martin,1 Jarrod R. McClean,1 Trevor McCourt,1 Matt McEwen,1, 9 Anthony Megrant,1 Kevin C. Miao,1 Masoud Mohseni,1 Wojciech Mruczkiewicz,1 Josh Mutus,1 Ofer Naaman,1 Matthew Neeley,1 Michael Newman,1 Murphy Yuezhen Niu,1 Thomas E. O'Brien,1 Alex Opremcak,1 Eric Ostby,1 Balint Pato,1 Andre Petukhov,1 Nicholas Redd,1 Nicholas C.
    [Show full text]
  • Quantum Permutation Synchronization
    (I) QUBO Preparation (II) Quantum Annealing (III) Global Synchronization Quantum Permutation Synchronization 1;? 2;? 2 1 Tolga Birdal Vladislav Golyanik Christian Theobalt Leonidas Guibas Unembedding 1Stanford University 2Max Planck Institute for Informatics, SIC QUBO Problem Logical Abstract Formulation We present QuantumSync, the first quantum algorithm for solving a synchronization problem in the context of com- puter vision. In particular, we focus on permutation syn- Embedding chronization which involves solving a non-convex optimiza- Quantum Annealing tion problem in discrete variables. We start by formulating Solution synchronization into a quadratic unconstrained binary opti- mization problem (QUBO). While such formulation respects Unembedding the binary nature of the problem, ensuring that the result is a set of permutations requires extra care. Hence, we: (i) Figure 1. Overview of QuantumSync. QuantumSync formulates show how to insert permutation constraints into a QUBO permutation synchronization as a QUBO and embeds its logical instance on a quantum computer. After running multiple anneals, problem and (ii) solve the constrained QUBO problem on it selects the lowest energy solution as the global optimum. the current generation of the adiabatic quantum computers D-Wave. Thanks to the quantum annealing, we guarantee reconstruction and multi-shape analysis pipelines [86, 23, global optimality with high probability while sampling the 25] because it heavy-lifts the global constraint satisfaction energy landscape to yield confidence estimates. Our proof- while respecting the geometry of the parameters. In fact, of-concepts realization on the adiabatic D-Wave computer most of the multiview-consistent inference problems can be demonstrates that quantum machines offer a promising way expressed as some form of a synchronization [108, 15].
    [Show full text]
  • The Future of Quantum Information Processing
    SPECIALSECTION INTRODUCTION The Future of Quantum Information Processing IN A WORLD OVERWHELMED BY INCREASING AMOUNTS OF DATA, FINDING NEW WAYS to store and process information has become a necessity. Conventional silicon- based electronics has experienced rapid and steady growth, thanks to the progres- sive miniaturization of its basic component, the transistor, but that trend cannot continue indefi nitely. Quantum In conventional devices, information is stored and manipulated in binary form: The elementary components of these devices—the so-called bits—have Information two states, each of which encodes the binary 0 or 1. To move beyond the binary system, one can exploit the laws of quantum mechanics. A quantum-mechanical Processing object with two energy levels at its disposal can occupy either of those two levels, but also an arbitrary combination (“superposition”) of the two, much like an CONTENTS electron in a two-slit experiment can go through both slits at once. This results in infi nitely many quantum states that a single quantum bit, or “qubit,” can take; together with another strange property of quantum mechanics—entanglement— Reviews it allows for a much more powerful information platform than is possible with 1164 Scaling the Ion Trap Quantum conventional components. Processor Quantum information processing (QIP) uses qubits as its basic information C. Monroe and J. Kim units. QIP has many facets, from quantum simulation, to cryptography, to quantum 1169 Superconducting Circuits for computation, which is expected to solve problems more complex than those within Quantum Information: An Outlook the capabilities of conventional computers. To be useful for QIP, a qubit needs to be M.
    [Show full text]
  • Arxiv:1908.04480V2 [Quant-Ph] 23 Oct 2020
    Quantum adiabatic machine learning with zooming Alexander Zlokapa,1 Alex Mott,2 Joshua Job,3 Jean-Roch Vlimant,1 Daniel Lidar,4 and Maria Spiropulu1 1Division of Physics, Mathematics & Astronomy, Alliance for Quantum Technologies, California Institute of Technology, Pasadena, CA 91125, USA 2DeepMind Technologies, London, UK 3Lockheed Martin Advanced Technology Center, Sunnyvale, CA 94089, USA 4Departments of Electrical and Computer Engineering, Chemistry, and Physics & Astronomy, and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA 90089, USA Recent work has shown that quantum annealing for machine learning, referred to as QAML, can perform comparably to state-of-the-art machine learning methods with a specific application to Higgs boson classification. We propose QAML-Z, a novel algorithm that iteratively zooms in on a region of the energy surface by mapping the problem to a continuous space and sequentially applying quantum annealing to an augmented set of weak classifiers. Results on a programmable quantum annealer show that QAML-Z matches classical deep neural network performance at small training set sizes and reduces the performance margin between QAML and classical deep neural networks by almost 50% at large training set sizes, as measured by area under the ROC curve. The significant improvement of quantum annealing algorithms for machine learning and the use of a discrete quantum algorithm on a continuous optimization problem both opens a new class of problems that can be solved by quantum annealers and suggests the approach in performance of near-term quantum machine learning towards classical benchmarks. I. INTRODUCTION lem Hamiltonian, ensuring that the system remains in the ground state if the system is perturbed slowly enough, as given by the energy gap between the ground state and Machine learning has gained an increasingly impor- the first excited state [36{38].
    [Show full text]
  • Fault-Tolerant Interface Between Quantum Memories and Quantum Processors
    ARTICLE DOI: 10.1038/s41467-017-01418-2 OPEN Fault-tolerant interface between quantum memories and quantum processors Hendrik Poulsen Nautrup 1, Nicolai Friis 1,2 & Hans J. Briegel1 Topological error correction codes are promising candidates to protect quantum computa- tions from the deteriorating effects of noise. While some codes provide high noise thresholds suitable for robust quantum memories, others allow straightforward gate implementation 1234567890 needed for data processing. To exploit the particular advantages of different topological codes for fault-tolerant quantum computation, it is necessary to be able to switch between them. Here we propose a practical solution, subsystem lattice surgery, which requires only two-body nearest-neighbor interactions in a fixed layout in addition to the indispensable error correction. This method can be used for the fault-tolerant transfer of quantum information between arbitrary topological subsystem codes in two dimensions and beyond. In particular, it can be employed to create a simple interface, a quantum bus, between noise resilient surface code memories and flexible color code processors. 1 Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria. 2 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria. Correspondence and requests for materials should be addressed to H.P.N. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1321 | DOI: 10.1038/s41467-017-01418-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01418-2 oise and decoherence can be considered as the major encoding k = n − s qubits. We denote the normalizer of S by Nobstacles for large-scale quantum information processing.
    [Show full text]
  • Quantum Dots
    NMR Silicon quantum computing Quantum dots Practical realization of Quantum Computation QC implementation proposals Bulk spin Optical Atoms Solid state Resonance (NMR) Linear optics Cavity QED Trapped ions Optical lattices Electrons on He Semiconductors Superconductors Nuclear spin Electron spin Orbital state Flux Charge qubits qubits qubits qubits qubits http://courses.washington.edu/bbbteach/576/ 1 What is NMR (Nuclear magnetic resonance) ? NMR: study of the transitions between the Zeeman levels of an atomic nucleus in a magnetic field. • If put a system of nuclei with non-zero spin in E static magnetic field, there 2 E will be different energy RF 0 levels. 0 E2 E1 • If radio frequency wave with is applied, RF 0 E1 transitions will occur. Nuclear Energy Levels 2 Nuclear magnetic resonance NMR is one of the most important spectroscopic techniques available in molecular sciences since the frequencies of the NMR signal allow study of molecular structure. Basic idea: use nuclear spins of molecules as qubits Liquid NMR: rapid molecular motion in fluids greatly simplifies the NMR Hamiltonian as anisotropic interactions can be replaced by their isotropic averages, often zero. The signals are often narrow (high-resolution NMR). It is impossible to pick individual molecule. The combined signal from all molecules is detected (“bulk” NMR). Liquid Solution NMR Billions of molecules are used, each one a separate quantum computer. Most advanced experimental demonstrations to date, but poor scalability as molecule design gets difficult. Qubits are stored in nuclear spin of molecules and controlled by different frequencies of magnetic pulses. Vandersypen, 2000 Used to factor 15 experimentally.
    [Show full text]
  • A Radix-4 Chrestenson Gate for Optical Quantum Computation
    A Radix-4 Chrestenson Gate for Optical Quantum Computation Kaitlin N. Smith, Tim P. LaFave Jr., Duncan L. MacFarlane, and Mitchell A. Thornton Quantum Informatics Research Group Southern Methodist University Dallas, TX, USA fknsmith, tlafave, dmacfarlane, mitchg @smu.edu Abstract—A recently developed four-port directional coupler is described in Section III followed by the realization of the used in optical signal processing applications is shown to be coupler with optical elements including its fabrication and equivalent to a radix-4 Chrestenson operator, or gate, in quantum characterization in Section IV. Demonstration of the four-port information processing (QIP) applications. The radix-4 qudit is implemented as a location-encoded photon incident on one of coupler as a radix-4 Chrestenson gate is presented in Section V the four ports of the coupler. The quantum informatics transfer and a summary with conclusions is found in Section VI. matrix is derived for the device based upon the conservation of energy equations when the coupler is employed in a classical II. QUANTUM THEORY BACKGROUND sense in an optical communications environment. The resulting transfer matrix is the radix-4 Chrestenson transform. This result A. The Qubit vs. Qudit indicates that a new practical device is available for use in the The quantum bit, or qubit, is the standard unit of information implementation of radix-4 QIP applications or in the construction for radix-2, or base-2, quantum computing. The qubit models of a radix-4 quantum computer. Index Terms—quantum information processing; quantum pho- information as a linear combination of two orthonormal basis tonics; qudit; states such as the states j0i and j1i.
    [Show full text]
  • Universal Control and Error Correction in Multi-Qubit Spin Registers in Diamond T
    LETTERS PUBLISHED ONLINE: 2 FEBRUARY 2014 | DOI: 10.1038/NNANO.2014.2 Universal control and error correction in multi-qubit spin registers in diamond T. H. Taminiau 1,J.Cramer1,T.vanderSar1†,V.V.Dobrovitski2 and R. Hanson1* Quantum registers of nuclear spins coupled to electron spins of including one with an additional strongly coupled 13C spin (see individual solid-state defects are a promising platform for Supplementary Information). To demonstrate the generality of quantum information processing1–13. Pioneering experiments our approach to create multi-qubit registers, we realized the initia- selected defects with favourably located nuclear spins with par- lization, control and readout of three weakly coupled 13C spins for ticularly strong hyperfine couplings4–10. To progress towards each NV centre studied (see Supplementary Information). In the large-scale applications, larger and deterministically available following, we consider one of these NV centres in detail and use nuclear registers are highly desirable. Here, we realize univer- two of its weakly coupled 13C spins to form a three-qubit register sal control over multi-qubit spin registers by harnessing abun- for quantum error correction (Fig. 1a). dant weakly coupled nuclear spins. We use the electron spin of Our control method exploits the dependence of the nuclear spin a nitrogen–vacancy centre in diamond to selectively initialize, quantization axis on the electron spin state as a result of the aniso- control and read out carbon-13 spins in the surrounding spin tropic hyperfine interaction (see Methods for hyperfine par- bath and construct high-fidelity single- and two-qubit gates. ameters), so no radiofrequency driving of the nuclear spins is We exploit these new capabilities to implement a three-qubit required7,23–28.
    [Show full text]
  • Explorations in Quantum Neural Networks with Intermediate Measurements
    ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/. Explorations in Quantum Neural Networks with Intermediate Measurements Lukas Franken and Bogdan Georgiev ∗Fraunhofer IAIS - Research Center for ML and ML2R Schloss Birlinghoven - 53757 Sankt Augustin Abstract. In this short note we explore a few quantum circuits with the particular goal of basic image recognition. The models we study are inspired by recent progress in Quantum Convolution Neural Networks (QCNN) [12]. We present a few experimental results, where we attempt to learn basic image patterns motivated by scaling down the MNIST dataset. 1 Introduction The recent demonstration of Quantum Supremacy [1] heralds the advent of the Noisy Intermediate-Scale Quantum (NISQ) [2] technology, where signs of supe- riority of quantum over classical machines in particular tasks may be expected. However, one should keep in mind the limitations of NISQ-devices when study- ing and developing quantum-algorithmic solutions - among other things, these include limits on the number of gates and qubits. At the same time the interaction of quantum computing and machine learn- ing is growing, with a vast amount of literature and new results. To name a few applications, the well-known HHL algorithm [3], quantum phase estimation [5] and inner products speed-up techniques lead to further advances in Support Vector Machines [4] and Principal Component Analysis [6, 7]. Intensive progress and ongoing research has also been made towards quantum analogues of Neural Networks (QNN) [8, 9, 10].
    [Show full text]
  • Electrical Characterisation of Ion Implantation Induced Defects in Silicon Based Devices for Quantum Applications
    Electrical Characterisation of Ion Implantation Induced Defects in Silicon Based Devices for Quantum Applications Aochen Duan Supervised by Professor Jeffrey C. McCallum and Doctor Brett C. Johnson School of Physics The University of Melbourne Australia 1 Abstract Quantum devices that leverage the manufacturing techniques of silicon-based classical computers make them strong candidates for future quantum computers. However, the demands on device quality are much more stringent given that quantum states can de- cohere via interactions with their environment. In this thesis, a detailed investigation of ion implantation induced defects generated during device fabrication in a regime relevant to quantum device fabrication is presented. We identify different types of defects in Si using various advanced electrical characterisation techniques. The first experimental technique, electrical conductance, was used for the investigation of the interface state density of both n- and p-type MOS capacitors after ion implantation of various species followed by a rapid thermal anneal. As precise atomic placement is critical for building Si based quantum computers, implantation through the oxide in fully fabricated devices is necessary for some applications. However, implanting through the oxide might affect the quality of the Si/SiO2 interface which is in close proximity to the region in which manipulation of the qubits take place. Implanting ions in MOS capacitors through the oxide is a model for the damage that might be observed in other fabricated devices. It will be shown that the interface state density only changes significantly after a fluence of 1013 ions/cm2 except for Bi in p-type silicon, where significant increase in interface state density was observed after a fluence of 1011 Bi/cm2.
    [Show full text]
  • Technology-Dependent Quantum Logic Synthesis and Compilation
    Southern Methodist University SMU Scholar Electrical Engineering Theses and Dissertations Electrical Engineering Fall 12-21-2019 Technology-dependent Quantum Logic Synthesis and Compilation Kaitlin Smith Southern Methodist University, [email protected] Follow this and additional works at: https://scholar.smu.edu/engineering_electrical_etds Part of the Other Electrical and Computer Engineering Commons Recommended Citation Smith, Kaitlin, "Technology-dependent Quantum Logic Synthesis and Compilation" (2019). Electrical Engineering Theses and Dissertations. 30. https://scholar.smu.edu/engineering_electrical_etds/30 This Dissertation is brought to you for free and open access by the Electrical Engineering at SMU Scholar. It has been accepted for inclusion in Electrical Engineering Theses and Dissertations by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. TECHNOLOGY-DEPENDENT QUANTUM LOGIC SYNTHESIS AND COMPILATION Approved by: Dr. Mitchell Thornton - Committee Chairman Dr. Jennifer Dworak Dr. Gary Evans Dr. Duncan MacFarlane Dr. Theodore Manikas Dr. Ronald Rohrer TECHNOLOGY-DEPENDENT QUANTUM LOGIC SYNTHESIS AND COMPILATION A Dissertation Presented to the Graduate Faculty of the Lyle School of Engineering Southern Methodist University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy with a Major in Electrical Engineering by Kaitlin N. Smith (B.S., EE, Southern Methodist University, 2014) (B.S., Mathematics, Southern Methodist University, 2014) (M.S., EE, Southern Methodist University, 2015) December 21, 2019 ACKNOWLEDGMENTS I am grateful for the many people in my life who made the completion of this dissertation possible. First, I would like to thank Dr. Mitch Thornton for introducing me to the field of quantum computation and for directing me during my graduate studies.
    [Show full text]
  • Arxiv:Quant-Ph/0512071 V1 9 Dec 2005 Contents I.Ipoeet Ntekmprotocol KLM the on Improvements III
    Linear optical quantum computing Pieter Kok,1,2, ∗ W.J. Munro,2 Kae Nemoto,3 T.C. Ralph,4 Jonathan P. Dowling,5,6 and G.J. Milburn4 1Department of Materials, Oxford University, Oxford OX1 3PH, UK 2Hewlett-Packard Laboratories, Filton Road Stoke Gifford, Bristol BS34 8QZ, UK 3National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan 4Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland 4072, Australia 5Hearne Institute for Theoretical Physics, Dept. of Physics and Astronomy, LSU, Baton Rouge, Louisiana 6Institute for Quantum Studies, Department of Physics, Texas A&M University (Dated: December 9, 2005) Linear optics with photo-detection is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme and Milburn [Nature 409, 46 (2001)] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projec- tive measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. We review the original proposal and its improvements, and we give a few examples of experimental two-qubit gates. We discuss the use of realistic components, the errors they induce in the computation, and how they can be corrected. PACS numbers: 03.67.Hk, 03.65.Ta, 03.65.Ud Contents References 36 I. Quantum computing with light 1 A. Linear quantum optics 2 B. N-port interferometers and optical circuits 3 C. Qubits in linear optics 4 I. QUANTUM COMPUTING WITH LIGHT D. Early optical quantum computers and nonlinearities 5 Quantum computing has attracted much attention over II.
    [Show full text]