<<

Filomat 31:19 (2017), 6071–6086 Published by Faculty of Sciences and , https://doi.org/10.2298/FIL1719071X University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Identities for the Shifted Harmonic Numbers and Binomial Coefficients

Ce Xua

aSchool of Mathematical Sciences, Xiamen University, Xiamen 361005, P.R. China

Abstract. We develop new closed form representations of sums of (n+α)th shifted harmonic numbers and reciprocal binomial coefficients through αth shifted harmonic numbers and with positive arguments. Some interesting new consequences and illustrative examples are considered.

1. Introduction

Let N := 1, 2, 3,... and N− := 1, 2,... be the set of natural numbers and negative , { } {− − } respectively, and N0 := N 0 . In this paper we will develop identities, closed form representations of shifted harmonic numbers and∪ { } reciprocal binomial coefficients of the form:

l (m ) l1 (mq) q X∞ 1 (l1, ,lq)   (Hn+α ) (Hn+α) W ··· p; m1, , mq; α := ··· ! , (r, k N0, α < N−), (1.1) k,r ··· n + k + r ∈ n=1 np k

(m) for mi, li N (i = 1, 2, , q and q N), p 0, 1 with p + k 2, where Hα stands for the α-th generalized shifted harmonic∈ number··· defined∈ by [24, 26]∈ { } ≥

m 1 (m) ( 1) −  (m 1) (m 1)  H := − ψ − (α + 1) ψ − (1) , 2 m N, (1.2) α (m 1)! − ≤ ∈ − (1) Hα = Hα := ψ (α + 1) + γ, (1.3) here ψ (z) is (or called Psi function ) defined by d Γ (z) ψ (z) := (ln Γ (z)) = 0 dz Γ (z) and ψ (z) satisfy the following relations in the forms

X∞  1 1  ψ (z) = γ + , z < N− := 0, 1, 2 ... , − n + 1 − n + z 0 { − − } n=0

2010 Mathematics Subject Classification. Primary 05A10; 05A19; 11B65; 11B83; 11M06; Secondary 33B15; 33D60; 33C20. Keywords. Harmonic numbers; function; binomial coefficients; representations; combinatorial identities; formulas. Received: 05 April 2017; Accepted: 24 August 2017 Communicated by Hari M. Srivastava Email address: [email protected] (Ce Xu) C. Xu / Filomat 31:19 (2017), 6071–6086 6072

X∞ ψ(n) (z) = ( 1)n+1n! 1/(z + k)n+1, n N, − ∈ k=0 1 1 1 ψ (x + n) = + + + + ψ (x) , n = 1, 2, 3,.... x x + 1 ··· x + n 1 − From the definitions of Riemann zeta function and , we know that

ψ(n) (1) = ( 1)n+1n!ζ (n + 1) , ψ(n) (z) = ( 1)n+1n!ζ (n + 1, z) . − − The Riemann zeta function and Hurwitz zeta function are defined by

X∞ 1 ζ(s):= , (s) > 1, (1.4) ns < n=1 and

X∞ 1  ζ (s, α + 1) := , (s) > 1, α < N− . (1.5) (n + α)s n=1 <

Therefore, in the case of non integer values we may write the generalized shifted harmonic numbers in terms of zeta functions

(m) H = ζ (m) ζ (m, α + 1) , α < N−, 2 m N, (1.6) α − ≤ ∈ and for m = 1,

X∞ 1 1  H H(1) = . (1.7) α ≡ α k − k + α k=1

R∞ t z 1 Here Γ (z) := e− t − dt, (z) > 0 is called gamma function, and γ denotes the Euler-Mascheroni constant 0 < defined by

 n  X 1  γ := lim  ln n = ψ (1) 0.577215664901532860606512.... n  k −  − ≈ →∞ k=1

(n) p The evaluation of the ψ ( q ) at rational values of the argument can be explicitly done via a formula as given by K¨olbig[15], or Choi and Cvijovi´c[11] in terms of the Polylogarithmic or other . Some specific values are listed in the books [1, 20, 28]. For example, George E. Andrews, Richard Askey and Ranjan Roy [1], or H.M. Srivastava and J. Choi [28] gave the following Gauss’s formula

! [(q 1)/2] ! ! p X− 2kpπ kπ  π pπ  ψ =2 cos ln 2 sin + rq p γ cot ln q, 0 < p < q; p, q N , (1.8) q q q − − 2 q − ∈ k=1

 p  where [x] denotes the greatest integer x, and if q is even, rq p = ( 1) ln 2; if q is odd, rq p = 0. For details and historical introductions, please≤ see [1, 3, 4, 11, 15, 20, 28] and− references therein. From (1.2), (1.3) and (1.8), we can obtain some specific values of shifted harmonic numbers:

8 40 46 H = 2 2 ln 2, H = 2 ln 2, H(2) = 4 2ζ (2) , H(2) = 2ζ (2) , H = 2 ln 2. 1/2 − 3/2 3 − 1/2 − 3/2 9 − 5/2 15 − C. Xu / Filomat 31:19 (2017), 6071–6086 6073

Letting α approach n (n is a positive integer) in (1.6) and (1.7), then the shifted harmonic numbers are reducible to classical harmonic numbers defined by

n n (1) X 1 (m) X 1 Hn H := , H := , n, m N. (1.9) ≡ n j n jm ∈ j=1 j=1 The sum defined in (1.1) is also called Euler type sum, which can be seen as an extension of classical Euler sums. The Euler sums are defined by

(s ) (s ) (s ) X∞ H 1 H 2 H r S := n n ··· n . S,q nq n=1

Here S := (s , s ,..., sr)(r, si N, i = 1, 2,..., r) with s s ... sr and q 2. The quantity 1 2 ∈ 1 ≤ 2 ≤ ≤ ≥ w := s1 + + sr + q is called the weight and the quantity r is called the degree of the sum. Some related results for··· Euler sums may be seen in the works of [10, 12, 14, 16–18, 29–31, 33–35]. For details and historical introductions of Euler sums, please see [2, 5–9, 13]. While there are many results for sums of harmonic numbers (or shifted harmonic numbers) with positive terms, for example we know that [22, 25] ! X∞ H2 k 2 n H(2) k N ! = ζ (2) k 1 + 2 , 2 , n + k k 1 − − (k 1) ≤ ∈ n=1 − k −

(2) X∞ Hn+1/4 140 128 64 69 ! = 152 G ln 2 π ζ (2) , n + 4 − 3 − 3 − 9 − 2 n=1 n 4 where G is Catalans constant, defined by

n 1 X∞ ( 1) − G = − 0.915965.... (2n 1)2 ≈ n=1 − Further work in the summation of harmonic numbers and binomial coefficients has also been done by Sofo [20, 21, 23, 27] and Xu et al. [19, 32]. The motivation for this paper arises from results of Sofo’s papers [26] and [24] with Srivastava. Sofo and Srivastava studied the summation of the product shifted harmonic sums of order p (p = 1, 2) and reciprocal binomial coefficients, of the form, (p) X∞ Hn 1/q − ! n + k n=1 n k and its finite counterpart. In this paper, we develop an approach to evaluate some sums of (1.1). The approach is based on computations. By the approach we prove that the five sums

(1)  (2)  (3)  Wk,r p; m; α , Wk,r p; 1; α , Wk,r p; 1; α and (1,1)  (2,1)  Wk,r p; 1, 2; α , Wk,r p; 1, 2; α can be expressed as a rational linear combination of products of zeta values and shifted harmonic numbers. Next, we give two lemmas. The following lemmas will be useful in the development of the main theorems. C. Xu / Filomat 31:19 (2017), 6071–6086 6074

Lemma 1.1. For integers k, r 0 and α < N−, then we have ≥ X∞ f (n, α) k α X∞ f (n, α) α r X∞ f (n, α) = − + − , (1.10) (n + r)(n + k) k r (n + k)(n + α) k r (n + r)(n + α) n=1 − n=1 − n=1 where the function f (n, α) satisfy the following relation

lim nβ f (n, α) = c, β > 1, n →∞ − here c is a constant.

Proof. This lemma is almost obvious. 

Lemma 1.2. For integer p > 0 and α , 0, 1, 2,..., we have − −

1 p 1 Z X− i 1 α 1 ( 1) −  p Hα x − Lip (x) dx = − ζ p + 1 i ( 1) , (1.11) αi − − − αp i 0 =1 where Lip (x) is polylogarithm function defined for x 1 by | | ≤

X∞ xn Lip (x) := , (p) > 1. (1.12) np < n=1

Proof. It is obvious that we can rewrite the integral on the left hand side of (1.11) as

Z1 X∞ α 1 1 x − Li (x) dx = . (1.13) p np (n + α) n 0 =1

By using the partial fraction decomposition

p 1 i 1 1 X− ( 1) − 1 1  1 1  = − ( 1)p , (1.14) np (n + α) αi · np+1 i − − αp n − n + α i=1 − and combining (1.7) with (1.13), we deduce the desired result. This completes the proof of Lemma 1.2. 

2. Shifted Harmonic Number Identities

In this section, we will establish some explicit relationships that involve shifted harmonic numbers and the following type sums

(m) X∞ Hn+α  , r, k N , r , k, α < N−, m N . (n + r)(n + k) ∈ 0 ∈ n=1

We now prove the following theorems.

Theorem 2.1. For integers m, k 1 and (α) > 0, then we have the following ≥ < m 1 ! m i X− m 1 ( 1) − I (α, m, k) = − (m i 1)! − I (α, i, k) i − − αm i i=0 − C. Xu / Filomat 31:19 (2017), 6071–6086 6075

Xk 1 ! − k m+k j  (m+k j)  + ( 1) − m + k j 1 !H − I α, 0, j j − − − α j=0 Xk 1 ! − k m+k j    ( 1) − m + k j 1 !ζ m + k j I α, 0, j − j − − − − j=0 Xm 1 Xk 1 ! ! − − m 1 k m+k i j  (m+k i j)  + − ( 1) − − m + k i j 1 !H − − I α, i, j i j − − − − α i=1 j=0 Xm 1 Xk 1 ! ! − − m 1 k m+k i j    − ( 1) − − m + k i j 1 !ζ m + k i j I α, i, j . (2.1) − i j − − − − − − i=1 j=0 where I (α, m, k) is defined by the integral

Z1 α 1 m k I (α, m, k) := x − ln xln (1 x)dx. (2.2) − 0 with 1 1 I (α, 0, 0) = , I (α, i, 0) = ( 1)ii! . α − αi+1  Proof. Applying the definition of Beta function B α, β , we can find that

1 Z m+k  ∂ B α, β I ( m k) xα 1 mx k ( x)dx α, , := − ln ln 1 = m k , (2.3) − ∂α ∂β β=1 0 where the Beta function is defined by

Z1   α 1 β 1 Γ (α) Γ β  B α, β := x − (1 x) − dx =  , (α) > 0, β > 0. (2.4) − Γ α + β < < 0 By using (2.4) and the definition of ψ(x), it is obvious that  ∂B α, β    = B α, β ψ (α) ψ α + β . ∂α − Therefore, differentiating m 1 times this equality, we can deduce that − m  m 1 ! i  X− ∂ B α, β m 1 ∂ B α, β h (m i 1) (m i 1) i = − ψ − − (α) ψ − − α + β . (2.5) ∂αm i ∂αi · − i=0 Since B(α, β) = B(β, α), then we also have

m  m 1 ! i  X− ∂ B α, β m 1 ∂ B α, β h (m i 1)  (m i 1) i = − ψ − − β ψ − − β + α . (2.6) ∂βm i ∂βi · − i=0 Putting β = 1 in (2.6) and combining (1.2), (2.3), we arrive at the conclusion that

m 1 ! X− m i m 1 (m i) I (α, 0, m) = ( 1) − (m i 1)! − I (α, 0, i)H − . (2.7) − − − i α i=0 C. Xu / Filomat 31:19 (2017), 6071–6086 6076

Furthermore, by using (2.5), the following identity is easily derived  ! ∂m+kB α, β ∂k ∂mB α, β = ∂αm∂βk ∂βk ∂αm m 1 ! i k  X− + m 1 ∂ B α, β h (m i 1) (m i 1) i = − ψ − − (α) ψ − − α + β i ∂αi∂βk · − i=0 k 1 ! j  X− B k ∂ α, β (m+k j 1)  ψ − − α + β − j ∂βj j=0

m 1 k 1 ! ! i j  X− X− + B m 1 k ∂ α, β (m+k i j 1)  − ψ − − − α + β . (2.8) − i j ∂αi∂βj i=1 j=0

From (1.2) and (1.5), we know that if β = 1, then we have

(m i 1) (m i 1) m i 1 − m i ψ − − (α) ψ − − (α + 1) = ( 1) ( 1)! m i , (2.9) − − − − α −   (m+k j 1) m+k j   (m+k j) ψ − − (α + 1) = ( 1) − m + k j 1 ! ζ m + k j H − . (2.10) − − − − − α Hence, taking β = 1 in (2.8), then substituting (2.9) and (2.10) into (2.8) respectively, we can obtain (2.1). The proof of Theorem 2.1 is finished.  From (2.1) and (2.7), we can get the following identities: for α > 0,

Z1 α 1 Hα I (α, 0, 1) = x − ln (1 x) dx = , (2.11) − − α 0 1 Z 2 (2) α 1 2 Hα + Hα I (α, 0, 2) = x − ln (1 x) dx = , (2.12) − α 0 1 Z (2) α 1 Hα ζ (2) Hα I (α, 1, 1) = x − ln x ln (1 x) dx = − , (2.13) − α2 − α 0 1 Z 3 (2) (3) α 1 3 Hα + 3HαHα + 2Hα I (α, 0, 3) = x − ln (1 x) dx = , (2.14) − − α 0 1 Z 2 (2) (3) (2) α 1 2 Hα + Hα ζ (3) Hα ζ (2) Hα I (α, 1, 2) = x − ln xln (1 x) dx = + 2 − + 2 − H . (2.15) − − α2 α α α 0

Theorem 2.2. For integers r, k N0 (r , k) and α > max k, r , we have ∈ { }    2 (2) k  X∞ H + H X H  Hn+α k α  α k α k α+j k  = −  − − −  (n + r)(n + k) k r  α k − j α + j k  n=1 −  − j=1 −     2 (2) Xr H  α r Hα r + Hα r α+j r  + −  − − −  . (2.16) k r  α r − j α + j r  −  − j=1 −  C. Xu / Filomat 31:19 (2017), 6071–6086 6077

1 Proof. Replacing α by n + α in (2.11), then multiplying it by (n + k)− and summing with respect to n, we conclude that Z1 X∞ X∞ Hn+α 1 n+α 1 = x − ln (1 x)dx (n + k)(n + α) − n + k − n n =1 =1 0 1 1 Xk Z Z 1 α+j k 1 α k 1 2 = x − − ln (1 x) dx + x − − ln (1 x) dx. (2.17) j − − j =1 0 0 The relations (2.11), (2.12) and (2.17) yield the following result

2 (2) k X∞ Hn+α Hα k + Hα k X Hα+j k = − − −  (α > k) . (2.18) (n + k)(n + α) α k − j α + j k n=1 − j=1 −

Putting f (n, α) = Hn+α in (1.10), and combining (2.18), we may easily deduce the desired result.  Corollary 2.3. For integers r, k, m N with r , k and real α > max k, r , we have ∈ { }      2 (2) k   (2) r  X∞ H + H X H   2 X H  Hn+α m k α  α k α k α+j k  α r Hα r + Hα r α+j r  − = −  − − −  + −  − − −  (n + r)(n + k) k r  α k − j α + j k  k r  α r − j α + j r  n=1 −  − j=1 −  −  − j=1 −  m ( ) 1 X Hj+α m Hr Hj+α m Hk − − − − , (2.19) − k r j + α m r − j + α m k − j=1 − − − −  where α , m + r j and m + k j j = 1, 2, , m with α m < N−. − − ··· − Proof. By the definition of Hn+α, we can find the following relation

m X 1 Hn+α Hn+α m = . − − j + n + α m j=1 − Hence, using the above identity, we can rewrite the series on the left hand side of (2.19) as

m X∞ Hn+α m X∞ Hn+α X X∞ 1 − =  . (2.20) (n + r)(n + k) (n + r)(n + k) − n + j + α m (n + r)(n + k) n=1 n=1 j=1 n=1 − By a direct calculation, we obtain

X∞ 1  n + j + α m (n + r)(n + k) n=1 −     1 X∞ 1 X∞ 1  =     k r  n + j + α m (n + r) − n + j + α m (n + k) − n=1 − n=1 − Hj+α m Hr Hj+α m Hk = − −  − − . (2.21) (k r) j + α m r − (k r) j + α m k − − − − − − Substituting (2.16) and (2.21) into (2.20), we can prove (2.19). The proof of Corollary 2.3 is thus completed. From (2.16) and (2.19), we have the following special cases:

X∞ Hn 1/2 2 1 X∞ Hn+1/2 − = + ln 2, = 3 ln 2 1, (n + 1)(n + 2) 3 3 (n + 1)(n + 2) − n=1 n=1 C. Xu / Filomat 31:19 (2017), 6071–6086 6078

X∞ Hn+3/2 14 X∞ Hn+5/2 131 7 = 5 ln 2, = ln 2. (n + 1)(n + 2) 3 − (n + 1)(n + 2) 45 − 3 n=1 n=1

Next, we evaluate the summation of the shifted harmonic sums of order two of the form,

(2) X∞ Hn+α , α > max k, r , k, r N0 , k , r. (n + r)(n + k) { } ∈ n=1

(2) First, we need to obtain the integral representation of Hα . Setting p = 2 in (1.11) gives

Z1 α 1 ζ (2) Hα x − Li (x) dx = . (2.22) 2 α − α2 0

With the help of (2.13), we get

1 1 (2) Z Z Hα α 1 α 1 = x − ln x ln (1 x)dx + x − Li (x) dx, α > 0. (2.23) α − 2 0 0

1 Replacing α by n + α in (2.23), then multiplying it by (n + k)− and summing with respect to n, the result is

1 1 (2) Z Z X∞ X∞ X∞ Hn+α 1 n+α 1 1 n+α 1 = x − ln x ln (1 x)dx + x − Li (x) dx (n + k)(n + α) n + k − n + k 2 n n n =1 =1 0 =1 0 1 1 Z Xk Z α k 1 2 1 α+j k 1 = x − − ln xln (1 x) dx x − − ln x ln (1 x)dx − − − j − j 0 =1 0 1 1 Z Xk Z α k 1 1 α+j k 1 x − − ln (1 x) Li (x) dx x − − Li (x)dx. (2.24) − − 2 − j 2 j 0 =1 0

We note that by using (2.11), the following identities ar easily derived

Z1 X∞ α 1 Hn+α x − ln (1 x) Li (x) dx = − 2 − n2 (n + α) n 0 =1 1 X∞ H 1 X∞ H = n+α n+α . (2.25) α n (n + α) − α n2 n=1 n=1

On the other hand, from (2.18), setting k = 0, we have

2 (2) X∞ Hn+α Hα + Hα = , α < N− 0 . (2.26) n (n + α) α ∪ { } n=1

Hence, combining (2.13), (2.15), (2.22) and (2.24)-(2.26), we obtain

(2) (3) X∞ Hn+α 1 X∞ Hn+α k ζ (3) Hα k = − 2 − − (n + k)(n + α) α k n2 − α k n=1 − n=1 − C. Xu / Filomat 31:19 (2017), 6071–6086 6079

(2) k H(2) ζ (2) Hα k X α+j k 2 − − Hα k − , (α > k). (2.27) − α k − − j α + j k − j=1 − (2) Letting f (n, α) = Hn+α in (1.10), then substituting (2.27) into (1.10), we get the following Theorem. Theorem 2.4. For integers r, k 0 and real α > k > r, then we have ≥  r H(2) k H(2)   P α+j r P α+j k   (r α) − (k α) −   j(α+j r) j(α+j k)  (2)  − j=1 − − − j=1 −  X∞   Hn+α 1  k r  = P Hα+j k (3) (2) . (2.28)  − −  (n + r)(n + k) k r  2 + 2Hα r + Hα kζ (2) + 2Hα rHα r  n=1 −  − j=1 (α+j k) − − − −   −   (3) (2)  2Hα k Hα rζ (2) 2Hα kHα k − − − − − − − Proof. From (1.10) and (2.27), we arrive at the conclusion that

(2) r H(2) k H(2) X∞ Hn+α 1 X∞ Hn+α r Hn+α k r α X α+j r k α X α+j k = − − − + − −  − −  (n + r)(n + k) k r n2 k r j α + j r − k r j α + j k n=1 − n=1 − j=1 − − j=1 − ( (3) (2) ) 2 Hα r + Hα kζ (2) + Hα rHα r + − − . (2.29) k r −(3) −(2) Hα k Hα rζ (2) Hα kHα k − − − − − − − − By the definition of shifted harmonic number, and using (1.14), we conclude that

k r (m) (m) X− 1 Hα r Hα k = m , − − − j + α k j=1 − and for 2 p N, 0 r < k N, ≤ ∈ ≤ ∈ k r X∞ Hn+α r Hn+α k X− X∞ 1 − − − =  np np n + j + α k n=1 j=1 n=1 − k r p 1 k r X X− i 1 X − ( 1) −  p 1 − Hj+α k = ζ p + 1 i + ( 1) − − − i p j + α k − − j + α k j=1 i=1 − j=1 − p 1 k r X− X i 1   (i) (i)  p 1 − Hj+α k − − − = ( 1) ζ p + 1 i Hα r Hα k + ( 1) p . (2.30) − − − − − − j + α k i=1 j=1 − Taking p = 2 in (2.30) and substituting it into (2.29), by a simple calculation, we obtain the desired result.  Corollary 2.5. For integers r, k, m N and α > k > r, then ∈  r H(2) k H(2)   P α+j r P α+j k   (r α) − (k α) −   j(α+j r) j(α+j k)  (2)  − j=1 − − − j=1 −  X∞   Hn+α m 1  k r  − = P Hα+j k (3) (2)  − −  (n + r)(n + k) k r  2 + 2Hα r + Hα kζ (2) + 2Hα rHα r  n=1 −  − j=1 (α+j k) − − − −   −   (3) (2)  2H Hα rζ (2) 2Hα kH − α k − − − − α k  − ( ) −  m m ζ(2) H 2  P Hα+j m Hr P α+j m   − − − −   2   (α+j m r) α+j m r  1  j=1 − − − j=1 − −  (2) . (2.31)  m m ζ(2) H  − k r  P Hα+j m Hk P α+j m   − − − −  −  2 +   (α+j m k) α+j m k   − j=1 − − j=1 − −   where α , m + r j, m + k j j = 1, 2, , m and α m < N−. − − ··· − C. Xu / Filomat 31:19 (2017), 6071–6086 6080

Proof. By a similar argument as in the proof of Corollary 2.3, we have

(2) (2) m X∞ Hn+α m X∞ Hn+α X X∞ 1 − = . (2.32) 2 (n + r)(n + k) (n + r)(n + k) − n + j + α m (n + k)(n + r) n=1 n=1 j=1 n=1 − On the other hand, we easily obtain the result

X∞ 1 2 n=1 n + j + α m (n + k)(n + r)  −  1 X∞  1 1  =    2 2  k r  n + j + α m (n + r) − n + j + α m (n + k) − n=1 − −      1 P∞ 1 1   2 n+r n+j+α m   (j+α m r) n=1 − −   − −   1 P∞ 1   j+α m r 2  1  − − − n=1 (n+j+α m)  =   −   k r  1 P∞ 1 1  −  2 n+k n+j+α m   −(j+α m k) n=1 − −   − −   1 P∞ 1   + 2   j+α m k (n+j+α m)  − − n=1 −  ( )  m m ζ(2) H 2  P Hα+j m Hr P α+j m   − − − −   2   (α+j m r) α+j m r  1  j=1 − − − j=1 − −  = (2) . (2.33)  m m ζ(2) H  k r  P Hα+j m Hk P α+j m   − − − −  −  2 +   (α+j m k) α+j m k   − j=1 − − j=1 − −  Substituting (2.28) and (2.33) into (2.32) respectively, we deduce (2.31). This completes the proof of Corollary 2.5.  Theorem 2.6. For integers r, k 0 and α > k > r, then we have ≥  (2)  X 2 (2) H3 + 3H H(2) + 2H(3) Xk H2 + H  ∞ Hn+α + Hn+α k α  α k α k α k α k α+j k α+j k  = −  − − − − − −  (n + r)(n + k) k r  α k − j α + j k  n=1 −  − j=1 −   (2)   3 (2) (3) Xr H2 + H  α r Hα r + 3Hα rHα r + 2Hα r α+j r α+j r  + −  − − − − − −  . (2.34) k r  α r − j α + j r  −  − j=1 −  Proof. From (2.12) and (2.14), we know that

1 (2) Z X∞ 2 X∞ Hn+α + Hn+α 1 n+α 1 2 = x − ln (1 x)dx (n + k)(n + α) n + k − n n =1 =1 0 1 1 Z Xk Z α k 1 3 1 α+j k 1 2 = x − − ln (1 x)dx x − − ln (1 x)dx − − − j − j 0 =1 0 3 (2) (3) k H2 + H(2) Hα k + 3Hα kHα k + 2Hα k X α+j k α+j k = − − − − − − . (2.35) α k − j α + j k − j=1 −

2 (2) Setting f (n, α) = Hn+α + Hn+α in (1.10) and combining (2.35), the result is (2.34).  Similarly to the proof of Theorem 2.6, we have the following similar result. C. Xu / Filomat 31:19 (2017), 6071–6086 6081

Theorem 2.7. For integers r, k 0 and α > k > r, then the following identity holds: ≥ 3 (2) (3) X∞ Hn+α + 3Hn+αHn+α + 2Hn+α (n + r)(n + k) n=1 2  4 2 (2) (3)  (2)  (4)  H + 6H H + 8Hα kH + 3 H + 6H   α k α k α k − α k α k α k   − − − − − −  k α  α k   −  = −  k 3 (2) (3)  k r  X H + 3Hα+j kH + 2H  −  α+j k − α+j k α+j k   − − −  − j α + j k  j=1 − 2  4 2 (2) (3)  (2)  (4)  Hα r + 6Hα rHα r + 8Hα rHα r + 3 Hα r + 6Hα r   − − − − − − −    α r  α r   −  + −  r 3 (2) (3)  . (2.36) k r  X H + 3Hα+j rH + 2H  −  α+j r − α+j r α+j r   − − −  − j α + j r  j=1 − Proof. Applying the same arguments as in the proof of Theorem 2.6, we may easily deduce

1 1 (2) (3) Z k Z X∞ 3 X Hn+α + 3Hn+αHn+α + 2Hn+α α k 1 4 1 α+j k 1 3 = x − − ln (1 x)dx + x − − ln (1 x)dx. (2.37) (n + α)(n + k) − j − n j =1 0 =1 0 Setting m = 4 in (2.7) and combining (1.10), (2.11), (2.12) with (2.14) we obtain

2 1 4 2 (2) (3)  (2) (4) Z H + 6H H + 8HαH + 3 H + 6H α 1 4 α α α α α α x − ln (1 x)dx = . (2.38) − α 0 Therefore, by using (2.14), (2.37) and (2.38) yields the desired result. This completes the proof Theorem 2.7.  Substituting (2.28) into (2.34), we can obtain the following Corollary. Corollary 2.8. For integers r, k 0 and α > k > r, then we have the quadratic sums ≥  3 (2)   Hα r + Hα rHα r + Hα rζ (2)   − −   −3 −(2)   H Hα kH Hα kζ (2)   − α k − − α k − −  X 2  − r H2 − k r  ∞ Hn+α 1  P α+j r P Hα+j k   − − −  = + (r α) + 2 . (2.39)  j α+j r  (n + r)(n + k) k r  − j=1 ( ) j=1 (α+j k)  n=1 −  − −   k H2   P α+j k   (k α) −   j(α+j k)   − − j=1 −  Further, using the definition of shifted harmonic number, by a simple calculation, the following relations are easily derived ∂     H(m) = m ζ (m + 1) H(m+1) , ∂α n+α − n+α m ∂ m+1  (m+1) (Hn ) = ( 1) m! ζ (m + 1) H , ∂αm +α − − n+α ∂  2  (2) H = 2ζ (2) Hn 2Hn H , ∂α n+α +α − +α n+α ∂   H3 = 3ζ (2) H2 3H2 H(2) . ∂α n+α n+α − n+α n+α Hence, from Theorems 2.2, 2.4, 2.7 and Corollary 2.8 with the above relations, we can get the Theorem 2.9. C. Xu / Filomat 31:19 (2017), 6071–6086 6082

Theorem 2.9. For positive integers k, r, m and real α > max k, r with k , r. Then the linear, quadratic and cubic sums { }

(m) (2) 3 2 (2) X∞ H X∞ Hn+αH X∞ H X∞ H H n+α , n+α , n+α , n+α n+α (n + r)(n + k) (n + r)(n + k) (n + r)(n + k) (n + r)(n + k) n=1 n=1 n=1 n=1 can be expressed in terms of shifted harmonic numbers and zeta values. As simple example is as follows: Corollary 2.10. For integers r, k 0 and α > k > r, then we have ≥  r H(3) k H(3)   P α+j r P α+j k   (r α) − (k α) −   j(α+j r) j(α+j k)   − j=1 − − − j=1 −   (2)  (3)  k r H k r     1 P− α+j k P− Hα+j k (4) (4)  X∞ Hn+α 1  − −   2 2 3 + 3 Hα r Hα k  =  − (α+j k) − (α+j k) − −  . (n + r)(n + k) k r   j=1 −  j=1 − −  n=1 −  (2) (2)   + H Hα r ζ (2) + (Hα k Hα r) ζ (3)   α k − −    − −2 − 2  −    (2) (2) (3) (3)   + Hα r Hα k + 2 Hα rHα r Hα kHα k  − − − − − − − −

3. Some Results on Shifted Harmonic Number Sums

(l1, ,lq)   In this section, we give some closed form of sums W ··· p; m , , mq; α through shifted harmonic k,r 1 ··· numbers and zeta values. First, we consider the partial fraction decomposition

m 1 X Aj m = , (3.1) Q n + aj (n + ai) j=1 i=1 where n n + aj Y   1 − Aj = lim m = ai aj . n aj Q − →− (n + ai) i=1,i,j i=1

Letting m = k and ai = r + i in (3.1), we have

k ! 1 k! X j+1 k 1 ! = = ( 1) j , k, r N0 . (3.2) n + k + r Qk − j n + r + j ∈ (n + r + i) j=1 k i=1 On the other hand, we can find that 1 k ! = ! n + k + r n + k + r (n + r + 1) k k 1 − k 1 ! k X− k 1 1 = ( 1)j+1 j − (n + r + 1) − j n + r + 1 + j j=1 k 1 ! X− j+1 k 1 1 =k ( 1) j − , r N0, k N. (3.3) − j (n + r + 1) n + r + 1 + j ∈ ∈ j=1 C. Xu / Filomat 31:19 (2017), 6071–6086 6083

From identities (2.16), (2.28), (2.39), (3.2) and (3.3), we obtain the following new results: for α > k + r, 2 k N, r N , ≤ ∈ ∈ 0

(1) X∞ Hn+α Wk,r (0; 1; α) = ! n=1 n + k + r k k 1 ! X− j+1 k 1 X∞ Hn+α = k ( 1) j −  − j (n + r + 1) n + r + 1 + j j=1 n=1  2 (2) 2 (2)   Hα r 1 + Hα r 1 Hα r 1 j Hα r 1 j   − − − − − − − − − − − −  k 1 !  r+1+j  X−   P Hα+i r 1 j  j+1 k 1  r + 1 + j α − − −  = k ( 1) −  i(α+i r 1 j) . (3.4) − j  − − i=1 − − −  j=1  r+1   P Hα+i r 1   + (r + 1 α) i(α+i −r− 1)  − i=1 − − (2) (1) X∞ Hn+α Wk,r (0; 2; α) = ! n=1 n + k + r k

k 1 ! (2) X− j+1 k 1 X∞ Hn+α = k ( 1) j −  − j (n + r + 1) n + r + 1 + j j=1 n=1

 r+1 H(2)   P α+i r 1   (r + 1 α) − −   − i(α+i r 1)   i=1 − −   r+1+j H(2)    P α+i r 1 j   r + 1 + j α − − −  Xk 1 !  i(α+i r 1 j)  − j+1 k 1  − − i=1 − − −  = k ( 1) −  j , (3.5) j  P Hα+i r 1 j  −  − − −  j=1  2   (α+i r 1 j)   − i=1 − − −   (3) (2)   +2H + Hα r 1 jζ (2) + 2Hα r 1H   α r 1 − − − − − α r 1   (3−) − −(2−)  2Hα r 1 j Hα r 1ζ (2) 2Hα r 1 jHα r 1 j − − − − − − − − − − − − − − 2 (2) X∞ Hn+α Wk,r (0; 1; α) = ! n=1 n + k + r k

k 1 ! 2 X− j+1 k 1 X∞ Hn+α = k ( 1) j −  − j (n + r + 1) n + r + 1 + j j=1 n=1  3 (2)   H + Hα r 1H + Hα r 1ζ (2)   α r 1 − − α r 1 − −   −3 − − − (2)   Hα r 1 j Hα r 1 jHα r 1 j Hα r 1 jζ (2)   − − − − − − − − − − − − − − −   r+1 H2   P α+i r 1  k 1 !  + (r + 1 α) − −  X− k 1  i(α+i r 1)  = k ( 1)j+1 −  − i=1 − −  . (3.6) j  j  −  P Hα+i r 1 j  j=1  − − −   + 2   (α+i r 1 j)   i=1 − − −   r+1+j H2    P α+i r 1 j   r + 1 + j α − − −   i(α+i r 1 j)  − − i=1 − − − C. Xu / Filomat 31:19 (2017), 6071–6086 6084 and for k N and α > k, ∈

(1) X∞ Hn+α W (1; 1; α) = ! k,0 n + k n=1 n k k ! X j+1 k X∞ Hn+α = ( 1) j  − j n n + j j=1 n=1  2 (2) 2 (2)  k !  H + Hα H H  X k  α − α j − α j  = ( 1)j+1  j − −  , (3.7)   P Hα+i j  − j  j α −  j=1  i(α+i j)  − − i=1 − (2) (1) X∞ Hn+α W (1; 2; α) = ! k,0 n + k n=1 n k k ! (2) X j+1 k X∞ Hn+α = ( 1) j  − j n n + j j=1 n=1  (3) (2)   2Hα + Hα jζ (2) + 2HαHα   −   (3) (2)   2Hα j Hαζ (2) 2Hα jHα j  k !  − − − − − −  X k  j H(2)  j+1   P α+i j  = ( 1)  j α − , (3.8) − j  i(α+i j)  j=1  − − i=1 −   j   P Hα+i j   −   2   (α+i j)  − i=1 − 2 (2) X∞ Hn+α W (1; 1; α) = ! k,0 n + k n=1 n k

k ! 2 X j+1 k X∞ Hn+α = ( 1) j  − j n n + j j=1 n=1    H3 H H(2) H ( )   α + α α + αζ 2   3 (2)   H Hα jH Hα jζ (2)  k !  − α j − − α j − −  X k  j − −  j+1  P Hα+i j  = ( 1) − . (3.9)  + 2  − j  (α+i j)  j=1  i=1 −   j H2    P α+i j   j α −   i(α+i j)  − − i=1 − Hence, from Corollary 2.8, Theorem 2.9 and formulas (3.2), (3.3), we obtain the following description of (l1, ,lq)   W ··· p; m , , mq; α . k,r 1 ··· Theorem 3.1. For positive integers k, r, m and real α (α > k > r) with p = 0, 1, then the sums

(1)  (2)  (3)  Wk,r p; m; α , Wk,r p; 1; α , Wk,r p; 1; α and

(1,1)  (2,1)  Wk,r p; 1, 2; α , Wk,r p; 1, 2; α can be expressed in terms of shifted harmonic numbers and ordinary zeta values. C. Xu / Filomat 31:19 (2017), 6071–6086 6085

At the end of this section we give a explicit formula of sums associated with shifted harmonic numbers. We define the parametric polylogarithm function by the series

X∞ xn Lip,α (x) := , x ( 1, 1) , (p) > 1, α < N−. (n + α)p ∈ − < n=1

Next, we consider the following integral

Z1 r 1 x − Lip (x) Lim (x)dx, p, m N, α, β, r < N−. ,α ,β ∈ 0

First, using integration by parts, the following identity is easily derived

1 p 1 Z X− i 1 r 1 ( 1) −  p 1 Hr Hα x − Lip,α (x)dx = − ζ p + 1 i, α + 1 + ( 1) − − . (3.10) i − − (r )p i (r α) α 0 =1 − − We note that

Z1 Z1 X∞ r 1 1 n+r 1 x − Lip,α (x) Lim,β (x)dx = x − Lim,β (x)dx (n + )p n α 0 =1 0 Z1 X∞ 1 n+r 1 = m x − Lip,α (x)dx. (3.11) n n + β =1 0

Substituting (3.11) into (3.10), we can deduce that

m 1 X∞ Hn+r p 1 X∞ Hn+r ( 1) − p m ( 1) − m p − (n + α) n + r β − − n + β (n + r α) n=1 − n=1 − m 1 X∞ 1 p 1 X∞ 1 = ( 1) − Hβ p m ( 1) − Hα m p − (n + α) n + r β − − n + β (n + r α) n=1 − n=1 − p 1 X− X i 1  ∞ 1 ( 1) − p 1 i 1 + ζ + , α + m i − − n + β (n + r α) i=1 n=1 − Xm 1 X − i 1  ∞ 1 ( 1) − ζ m + 1 i, β + 1 . (3.12) p i − − − (n + α) n + r β i=1 n=1 − Putting r = 2α, α = β in (3.12), we have that

n m 1 p 1o X∞ Hn+2α ( 1) − ( 1) − − − − p+m n=1 (n + α) p 1 X− n m 1 p 1o  i 1  = ( 1) − ( 1) − H ζ p + m, α + 1 + ( 1) − ζ p + 1 i, α + 1 ζ (m + i, α + 1) − − − α − − i=1 Xm 1 − i 1   ( 1) − ζ m + 1 i, β + 1 ζ p + i, α + 1 . (3.13) − − − i=1 C. Xu / Filomat 31:19 (2017), 6071–6086 6086

From (3.13), we can get some specific cases

X∞ H 1 n+2α = H ζ (3, α + 1) + ζ2 (2, α + 1) , 3 α 2 n=1 (n + α) X∞ H 1 n+2α = H ζ (5, α + 1) + ζ (2, α + 1) ζ (4, α + 1) ζ2 (3, α + 1) , 5 α − 2 n=1 (n + α) X∞ H 1 n+2α = H ζ (7, α + 1) + ζ (2, α + 1) ζ (6, α + 1) + ζ2 (4, α + 1) ζ (3, α + 1) ζ (5, α + 1) . 7 α 2 − n=1 (n + α)

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful com- ments, which improve the presentation of the paper.

References

[1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press (2000) 481-532. [2] D.H. Bailey, Jonathan M. Borwein and Roland Girgensohn, Experimental evaluation of Euler sums, Experimental Mathematics, 3 (1994) 17–30. [3] B.C. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, New York (1985). [4] B.C. Berndt, Ramanujan’s Notebooks, Part II, Springer-Verlag, New York (1989). [5] D. Borwein, J.M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. 38 (1995) 277–294. [6] J. Borwein, P.Borwein, R.Girgensohn and S.Parnes, Making sense of experimental mathematics, Mathematical Intelligencer 18 (1996) 12–18. [7] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and Petr. Lison˘ek,Special values of multiple , Trans. Amer. Math. Soc. 353 (2001) 907-941. [8] J.M. Borwein, I.J. Zucker and J. Boersma, The evaluation of character Euler double sums, Ramanujan J. 15 (2008) 377–405. [9] J.M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, Electron. J. Combin. (1996) 2–7. [10] J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Model. 54 (2011) 2220–2234. [11] J. Choi and D. Cvijovi´c,Values of the polygamma functions at rational arguments, J. Phys. A. Math. Theor. 40 (2007) 15019–15028. [12] G. Dattoli and H. M. Srivastava, A note on harmonic numbers, umbral calculus and generating functions, Appl. Math. Lett. 21 (2008) 686–693. [13] P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics 7 (1998) 15–35. [14] P. Freitas, Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Mathematics of Computation 74 (2005) 1425–1440. [15] K. K¨olbig,The polygamma function ψ(x) for x = 1/4 and x = 3/4, J. Comput. Appl. Math. 75 (1996) 43–46. [16] C. Markett, Triple sums and the Riemann zeta function, J. 48 (1994) 113–132. [17] I. Mez¨o,Nonlinear Euler sums, Pacific J. Math. 272 (2014) 201–226. [18] Th. M. Rassias and H. M. Srivastava, Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131 (2002) 593–605. [19] X.Si, C. Xu and M. Zhang, Quadratic and cubic harmonic number sums, J. Math. Anal. Appl. 447 (2017) 419-434. [20] A. Sofo, Computational Techniques for the Summation of Series, Kluwer Academic/Plenum Publishers, New York, 2003. [21] A. Sofo, Integral forms of sums associated with harmonic numbers, Applied Mathematics and Computation 207 (2009) 365–372. [22] A. Sofo, Finite mixed sums wih harmonic terms, Mathematica Slovaca, 65 (2015) 923–934. [23] A. Sofo and H. M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011) 93–113. [24] A. Sofo and H. M. Srivastava, A family of shifted harmonic sums, Ramanujan J. 37 (2015) 89–108. [25] A. Sofo, Harmonic number sums in closed form, Math. Commun. 16 (2011) 335–345. [26] A. Sofo, Shifted harmonic sums of order two, Communications of the Korean Mathematical Society 29 (2014) 239–255. [27] A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory 154 (2015) 144–159. [28] H.M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amster- dam, London and New York (2012). [29] T.-C. Wu, S.-T. Tu and H. M. Srivastava, Some combinatorial series identities associated with the Digamma function and harmonic numbers, Appl. Math. Lett. 13 (2000) 101–106. [30] C. Xu and J. Cheng, Some results on Euler sums, Functions et Approximatio 54 (2016) 25–37. [31] C. Xu, Y. Yan and Z. Shi, Euler sums and integrals of polylogarithm functions, J. Number Theory 165 (2016) 84–108. [32] C. Xu, M. Zhang and W. Zhu, Some evaluation of harmonic number sums, Integral Transforms and Special Functions 27 (2016) 937–955. [33] C. Xu and Z. Li, Tornheim type series and nonlinear Euler sums, J. Number Theory 174 (2017) 40–67. [34] C. Xu, Y. Yang and Jianwen Zhang, Explicit evaluation of quadratic Euler sums, Int. J. Number Theory 13 (2017) 655–672. [35] C. Xu, Multiple zeta values and Euler sums, J. Number Theory 177 (2017) 443–478.