<<

Global Journal of Science Frontier Research and Decision Sciences Volume 12 Issue 11 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Certain Indefinite Involving Lucas Polynomials and Harmonic Number By Salahuddin P.D.M College of Engineering, India Abstract - In this paper we have established certain indefinite integrals involving Harmonic number and Lucas Polynomials. The results represent here are assume to be new. Keywords and Phrases : ; Lucas polynomials; Harmonic Number; Gaussian Hypergeometric Function. GJSFR-F Classification : MSC 2010: 11B39

Certain Indefinite Integrals Involving Lucas Polynomials and Harmonic Number

Strictly as per the compliance and regulations of :

© 2012. Salahuddin. This is a research/review paper, distributed under the terms of the Creative Commons Attribution- Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Certain Indefinite Integrals Involving Lucas Notes Polynomials and Harmonic Number 2012 r

Salahuddin ea Y

Abstract - In this paper we have established certain indefinite integrals involving Harmonic number and Lucas 37 Polynomials. The results represent here are assume to be new. Keywords and Phrases : Polylogarithm; Lucas polynomials; Harmonic Number; Gaussian Hypergeometric Function.

V I. Introduction and P reliminaries XI a) Harmonic Number th The n harmonic number is the sum of the reciprocals of the first n natural numbers: n 1 H = (1.1) n k Xk=1

) F )

Harmonic numbers were studied in antiquity and are important in various branches of number

theory. They are sometimes loosely termed harmonic , are closely related to the , and appear in various expressions for various .

An representation is given by Euler Research Volume XII Issue ersion I 1 1 xn Hn = − dx (1.2) Z0 1 x

− Frontier The equality above is obvious by the simple algebraic identity below

1 xn − = 1 + x + ...... + xn (1.3) 1 x − An elegant combinatorial expression can be obtained for Hn using the simple integral transform

x = 1 u : Journal of Science − 1 1 xn 0 1 (1 u)n 1 1 (1 u)n Hn = − = − − du = − − du Global Z0 1 x − Z1 u Z0 u − 1 n = ( 1)k−1 n uk−1 du Z  − k   0 Xk=1

Author : P.D.M College of Engineering, Bahadurgarh, Haryana , India. E-mail : [email protected]

©2012 Global Journals Inc. (US) Certain Indefinite Integrals Involving Lucas Polynomials and Harmonic Number

n 1 = ( 1)k−1 n uk−1du − k  Z Xk=1 0

n (1.4) k−1 1 n = ( 1) − k k  Xk=1

b) Lucas polynomials Notes The sequence of Lucas polynomials is a sequence of polynomials defined by the recurrence rela- tion 2012

r 2x0 = 2 , if n = 0 ea Y

1 L x x x , n .

n( ) =  1 = if = 1 (1 5) 1 0  x Ln (x) + x Ln (x) , if n 2 38 −1 −2 ≥  The first few Lucas polynomials are:

V L0(x) = 2

XI L1(x) = x 2 L2(x) = x + 2

3 L3(x) = x + 3x 4 2 L4(x) = x + 4x + 2

) The ordinary of the Lucas polynomials is F )

∞ n 2 xt G{Ln(x)}(t) = Ln(x)t = − . (1.6) 1 t(x + t) nX=0 −

Research Volume XII Issue ersion I c) Polylogarithm

The polylogarithm (also known as Jonquire’s function) is a special function Li (z) that is defined s Frontier by the infinite sum, or power series:

∞ zk Li (z) = (1.7) s ks Xk=1

It is in general not an elementary function, unlike the related logarithm function. The above definition is valid for all complex values of the order s and the argument z where z < 1.The Journal of Science | | polylogarithm is defined over a larger range of z than the above definition allows by the process of .

Global The special case s = 1 involves the ordinary (Li (z) = ln(1 z)) while the 1 − − special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence’s function)

and trilogarithm respectively. The name of the function comes from the fact that it may alter- natively be defined as the repeated integral of itself, namely that

z Li s(t) Lis+1(z) = dt (1.8) Z0 t

©2012 Global Journals Inc. (US) Certain Indefinite Integrals Involving Lucas Polynomials and Harmonic Number

Thus the dilogarithm is an integral of the logarithm, and so on. For nonpositive orders

s, the polylogarithm is a rational function. The polylogarithm also arises in the closed form of the integral of the FermiDirac distribution and the Bose-Einstein distribution and is sometimes known as the Fermi- Dirac integral or the Bose-Einstein integral. should not be confused with polylogarithmic functions nor with the offset logarithmic integral which has a similar notation.

d) Generalized Gaussian Hypergeometric Function Generalized ordinary hypergeometric function of one variable is defined by Notes

a1, a2, , aA ; ∞ k ··· (a1)k(a2)k (aA)kz AFB  z  = ··· 2012 (b1)k(b2)k (bB)kk! r

b1, b2, , bB ; Xk=0 ··· ea

 ···  Y or A 39 (a ) ; (a ) ; ∞ A j j=1 ((a )) zk z z A k AFB   AFB   = (1.9) ≡ B ((bB))kk! (b ) ; (b ) ; Xk=0  B   j j=1 

V b , b , , b A, B where denominator parameters B are neither zero nor negative and XI 1 2 ··· are non-negative integers.

II. Main Indefinite Integrals

(x) sinh x H L1(x) 1 8 6ι ι x 1 dx = e(−1− 2 )x sin Z √1 cos x −√ 1 cos x25 − 25 2 × − − ) F ) 2x 1 1 1 1 ιx ιx 1 1 3 3 ιx 2e 3F2 ι, ι, 1; ι, ι; e 2e 3F2 + ι, + ι, 1; + ι, + ι; e ×h  − 2 − −2 − 2 − 2 −  − 2 2 2 2 − 1 1 1 3 (2 ι)xe2x F ι, 1; ι; eιx (2 ι)xeιx F + ι, 1; + ι; eιx + − − 2 1 − 2 − 2 − − − 2 1 2 2     Research Volume XII Issue ersion I 2x 2x +(2 ι)xe 2e + Constant (2.1) − − i

(x) Frontier sin x H1 L1(x) 1 −ιx x 1 1 3 3 x dx = e (e 1) (8+6ι)3F2 ι, ι, 1; ι, ι; e Z √1 cosh x 25√1 cosh x − − 2 − 2 − 2 − 2 − − − − h   2ιx 1 1 3 3 1 3 x (8 6ι)e 3F2 +ι, +ι, 1; +ι, +ι; cosh x +sinh x +5x (2 ι)2F1 ι, 1; ι; e + − − 2 2 2 2  n − 2 − 2 − 

2ιx 1 3 +(2 + ι)e 2F1 + ι, 1; + ι; cosh x + sinh x + Constant (2.2)

2 2 Journal of Science  oi

(x) cos x H L1(x) 1 1 1 3 3 1 −ιx x x Global dx = e (e 1) (6 8ι)3F2 ι, ι, 1; ι, ι; e + Z √1 cosh x −25√1 cosh x − h − 2 − 2 − 2 − 2 −  − − 2ιx 1 1 3 3 1 3 x +(6+8ι)e 3F2 +ι, +ι, 1; +ι, +ι; cosh x+sinh x +5x (1+2ι)2F1 ι, 1; ι; e + 2 2 2 2  n 2 − 2 −  2ιx 1 3 +(1 2ι)e 2F1 + ι, 1; + ι; cosh x + sinh x + Constant (2.3) − 2 2 oi

©2012 Global Journals Inc. (US) Certain Indefinite Integrals Involving Lucas Polynomials and Harmonic Number

(x) x sin x H L (x) 2 x x 1 tan + 1 1 1 dx = cos sin π tanh−1 4 + Z √1 sin x √1 sin x 2 − 2 √2  √2  − − 1 3 ιx 3 ιx 3 ιx 4 2 4 2 4 2 + 4ιLi2 ( 1) e 4ιLi2 ( 1) e (π 2x) log 1 ( 1) e 2  − −  −  −  − −   − − − 3 ιx x x log 1 + ( 1) 4 e 2 (x 2) sin (x + 2) cos + Constant (2.4) −  −  − − 2 − 2 

(x) cot x H L (x) 1 x x ιx ιx Notes 1 1 2 2 dx = cos sin 4ιLi2( e ) + 4ιLi2( ιe ) Z √1 sin x 2√1 sin x 2 − 2 h − − − ιx− ιx − ιx ιx ιx 2012 4ιLi2(ιe 2 ) 4ιLi2(e 2 ) ιπx + 2x log(1 e 2 ) + 2x log(1 ιe 2 ) 2x log(1 + e 2 ) r − − − − − − − ea ιx ιx ιx x + π Y 2 2 2

2x log(1 + ιe ) + 2π log(1 ιe ) + 2π log(1 + ιe ) 2π log sin

− − −  4 − 40 x + π 2π log cos + Constant (2.5) − − 4  i x H(x)L x tan 1 1( ) 1 ιx 1 1 2ιx

V ι e Li e dx = ιx 2 ( 1 + ) 4 2 1 + Z √1 sec x (−1+e ) √ 2ιx  −  −  2 − 2 − 8 e2ιx 1 + e p XI − 1+ q −1 ιx −2 sinh (e ) 2 2ιx 2 1 2ιx 4Li2 e log ( e ) 2 log 1 + 1 + e + −   − − − 2 p  1 e2ιx e2ιx ιx e2ιx eιx −1 eιx 2 +4 log( ) log 1 + 1 + 8 log 1 + + + 4 sinh ( ) + − 2 p  − p  −1 ιx −1 2ιx −1 ιx −2 sinh (e ) +8ιx tanh 1 + e + 8 sinh ( e ) log 1 e

) − − p    F ) 4 log( e2ιx) tanh−1 1 + e 2ιx + Constant (2.6)

− − p 

(x) ιx 2 cot x H L1(x) 1 (e ι) 1 Research Volume XII Issue ersion I 1 2ιx 2ιx dx = − 1 + e 1 e Z √1 cosec x 8(eιx ι)r 1 + e2ιx  − √ 1 + e2ιx − × − − − p − p 1 1 1 4Li 1 e2ιx + log2(e2ιx ) + 2 log2 1 + 1 e2ιx Frontier 2 × − 2 − 2p −  2 p − − 1 4 log 1 + 1 e2ιx log(e2ιx) + 4(2ιx log(e2ιx)) tan−1 1 + e2ιx − 2 − − − −   p   p −1 ιx 2ιx −2ι sin (e ) 2ιx ιx −1 ιx 2 4 1 e Li2 e + 2ιx log( 1 e + ιe ) + sin (e ) − p −    p − − −1 ιx −2ι sin− 1(eιx) Journal of Science ι e e Constant . 2 sin ( ) log 1 + (2 7) −  − 

Global x ιx ιx ( ) − 2 − 2 tan x H1 L1(x) 1 x (1 + ι)e (1 ι)e dx = sin 8ιLi2 + 8ιLi2 − + Z √1 cos x 2√2 2 cos x 2   − √2   √2  − − x x x x (1 + ι)(cos 2 + ι sin 2 ) (1 + ι)(sin 2 ι cos 2 ) 2 +8ιLi2 + 8ιLi2 − + 2ιx 2ιπx+  − √2   √2  − ιx ιx ιx (1 ι)e− 2 (1 + ι)e− 2 (1 ι)e− 2 +4x log 1 − + 4x log 1 + 4π log 1 −  − √2   √2  −  − √2 −

©2012 Global Journals Inc. (US) Certain Indefinite Integrals Involving Lucas Polynomials and Harmonic Number

ιx ιx − 2 − 2 (1 + ι)e − 1 2 + √2 (1 ι)e 4π log 1 + + 16 sin p log 1 − −  √2   2   − √2 − ιx 2 + √2 (1 + ι)e− 2 x −1 √ 16 sin p log 1 + + 4π log 2 sin + 2 −  2   √2   2 −

(1 + ι) sin x (1 ι) cos x (1 ι) sin x (1 + ι) cos x 4x log 2 − 2 + 1 4x log − 2 + 2 + 1 −  − √2 − √2  −  − √2 √2 − √ √ x+π Notes −1 2 + 2 −1 ( 2 2) cot 4 2 32 sin p tanh − + ιπ + Constant (2.8) −  2   √2  

2012

III. Derivation of the Integrals r ea

Y Involving the same parallel method of ref[8] , one can derive the integrals. 41 IV. Con clusion In our work we have established certain indefinite integrals involving Lucas Polynomials , Har-

monic Number , and Hypergeometric function . However, one can establish such type of in-

V tegrals which are very useful for different field of engineering and sciences by involving these

integrals.Thus we can only hope that the development presented in this work will stimulate XI further interest and research in this important area of classical special functions.

References Références Referencias

1. Abramowitz, Milton., A and Stegun, Irene ; Handbook of Mathematical Functions with Formulas , Graphs , and Mathematical Tables , National Bureau of Standards, 1970.

2. Arthur T. B, Gregory O. P, Jennifer J. Quinn(2002); A Stirling Encounter with Harmonic ) F ) Numbers, Mathematics Magazine, 75(2),95-103. 3. Arfken, G. ; Mathematical Methods for Physicists , Academic Press,1985.

4. Guillera, J., Sondow, J. ;Double integrals and infinite products for some classical constants

via analytic continuations of Lerch’s transcendent, The Ramanujan Journal,16(2008), 247- Research Volume XII Issue ersion I 270. 5. Jahnke, E., Emde, F. ; Tables of Functions with Formulae and Curves (4th ed.), Dover Publications,New York,1945. Frontier

6. Olver, Frank, W. J., Lozier, Daniel, M., Boisvert, Ronald F.,Clark, C. W.; NIST Handbook

of Mathematical Functions,Cambridge University Press,2010. 7. Ricci, Paolo Emilio ;Generalized Lucas polynomials and Fibonacci polynomials, Rivista di Matematica della Universit di Parma, 4(1995),137-146.

8. Salahuddin; Hypergeometric Form of Certain Indefinite Integrals, Global Journal of Sci- Journal of Science ence Frontier Research(F), 12(2012), 37-41.

9. Stein, Elias, Weiss, Guido ; Introduction to Fourier Analysis on Euclidean Spaces, Prince- Global ton, N.J.: Princeton University Press,1971.

10. Temme, Nico ; Special Functions: An Introduction to the Classical Functions of Mathe- matical Physics, Wiley, New York, 1996 11. Whittaker, E. T.; Watson, G. N. ; A Course of Modern Analysis, London: Cambridge University Press,1962.

12. Wiener, Norbert ; The Fourier Integral and Certain of its Applications, New York: Dover

Publications,1958.

©2012 Global Journals Inc. (US)