Characterization of Anoxygenic Phototrophs That Grow Using Infrared Radiation (>800 Nm) (Sampling Location: Little Sippewissett Marsh, Woods Hole, Ma)

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Anoxygenic Phototrophs That Grow Using Infrared Radiation (>800 Nm) (Sampling Location: Little Sippewissett Marsh, Woods Hole, Ma) Characterization Of Anoxygenic Phototrophs That Grow Using Infrared Radiation (>800 Nm) (Sampling Location: Little Sippewissett Marsh, Woods Hole, Ma) Martina Cappelletti, PhD University of Bologna, e-mail: [email protected] Microbial Diversity Course Marine Biological Laboratory, June-July 2011 1 ABSTRACT In this study I performed two enrichment cultures for purple bacteria from a mat soil sample collected in Little Sippewissett marsh. I obtained two mixed culture that were named LWS_880 and LWS_960 as they could grow absorbing light at 880 nm and 960 nm. The molecular analysis of the culturable bacteria obtained by using two different isolation techniques was performed with two primer sets, one specific for the 16S rDNA and the other for the pufM gene. As a result, culturable bacteria in LWS_880 were identified as purple non- sulphur bacteria belonging to the following genera Rhodobacter, Rhodospirillum, Rhodovulum and Rhodobium. The culturable bacteria in LW_960 were shown to belong to the genera Thioroducoccus, Allochromatium, Marichromatium of purple sulfur bacteria and to the purple non-sulfur Rhodovolum genus. CARD-FISH hybridization technique allowed measuring the relative abundance of each group of Proteobacteria in each microbial community pointing out interesting differences between the two samples. Further biochemical assay identified the bacterioclorophyll present in each consortium and chemotaxis activity was detected in the sample LWS_960. INTRODUCTION Most of the fossil fuels utilized as energy source on earth is the result of photosynthesis process occurred many hundreds of millions of years ago. Moreover, the evolution of oxygenic photosynthesis resulted in the oxygenation of Earth’s atmosphere creating a radical new environment for all life. These two observations point out how the photosynthesis is an invaluable process to understand at the deepest levels (Bekker et al. 2004). It is likely that some form of anoxygenic photosynthesis was a precursor to the complex machinery necessary for oxygenic photosynthetis (Blankenship, 1992). Because of this, the modern anaerobic phototrophs, belonging exclusively to the bacterial kingdom, represent model systems to study photosynthesis in its simplest forms. The anoxygenic photosynthesis occurs in 4 groups of bacteria: phototrophic green bacteria, phototrophic purple bacteria, Heliobacteria and Acidobacteria. Purple bacteria are divided in purple sulphur bacteria that are able to utilize H2S as electron donor along with other sulphur reduced compounds (as thiosulfate), and purple non-sulphur bacteria that are mainly able to utilize organic compounds as electron donors such as organic, fatty and amino acids, alcohols and aromatic compounds (Overmann, 2001). Anoxygenic phototrophs are taxonomically dispersed among the α-, β- and γ-proteobacteria groups and have bacteriochlorophyll a or b in their photosynthetic reaction center that have 2 absorption maxima in the red and near infrared part of the spectrum (wavelength >700-1100 nm). Due to these peculiar chlorophylls, they can grow in the deeper layers of microbial mats in sandy sediments that are reached only by light in the infrared wavelength range. Indeed, the light in the visible spectrum is almost completely absorbed by cyanobacteria and diatoms composing the upper layers of the mat (Overmann, 2001). In this study I enriched for purple non-sulphur bacteria communities that were able to grow absorbing two different wavelengths of light in the IR region (i.e. 880 nm and 960 nm). The enrichments were performed by using the sediment layer underlying the phototrophic mats in Little Sippewissett marsh. Composition of the anoxygenic phototrophic consortia was assessed by identifying at molecular level the culturable bacteria and by performing CARD- FISH hybridization technique. Biochemical features were also investigated with chemotaxis activity assay and pigments analyses by analyzing the absorption spectra of whole cells samples of the biomass. MATERIALS AND METHODS Enrichment. A microbial mat sample in Little Sippewissett Marsh, Woods Hole, MA was collected in a 50-mL Falcon tubes maintaining the layers stratification existing in the soil. 0.5 gr of the soil laying around 2 cm deep in the sediment was added into “Pfennig bottles” containing 10 mL of Marine Phototrophic Base each. The medium contained the following components: Artificial seawater base, 10 mM NH4Cl, 1 mM KH2PO4, 1 mM NaSO4, 20 mM MOPS buffer, pH 7.2, HCl-dissolved trace elements, Multivitamin solution, 5 mM NaHCO3. 5 enrichments were performed by adding different electron donors and by incubating the cultures at different wavelengths of light, as described in the Table 1. !"#$%&'()*'('& +,-".%/)'0)".12% !(&.$23#(%)0'& !"# @',+*+, $$# 9&:43,5)/)A2&341&:5;*'+,:(*5 %&''()*+, $$# <97%-= -,)./*+, $$# 01(/2&341*+,5*)657*8% $$# 9&:43,52&341&:5;*'+,:(*5<9%-= >8# 7*8% B:,,)52&341&:5;*'+,:(*5<B%-= >?# Table 1. The different conditions of growth including the electron donor and the quality of light used are described. The last column described the type of enrichment expected for each condition. One bottle was set for each condition. Isolation of single colonies in Agar Shake Tubes. 1 mL of each grown enrichment was inoculated into 50 mL glass tube containing 9 mL of anaerobe Marine Phototroph Base 3 supplemented with the appropriate electron donor and 15 g/L of washed agar. Serial diutions were performed in order to obtain single colonies. Shake Tubes were incuated at 30ºC and were illuminated by LEDs emitting the same light that was used to illuminate the liquid enrichment that was inoculated. When the colonies were grown, the agar in the original shake tubes was aseptically blown into sterile petri dishes; the colonies were picked and resuspended in 10 µL of H2O in a sterile 1.5-mL tube for further analyses. Isolates obtained with this cultivation method were named as ST followed by the wavelength of growth. Isolation of single colonies from Agar Plates. 100 µL of each enrichment was spread onto Marine Phototroph Base agar medium containing the appropriate electron donor. The plates were incubated at room temperature anaerobically in GasPak jars in ambient light. After two weeks, the GasPack jars were opened and single colonies were picked up from the plates and resuspended in 10 µL of H20 in a sterile 1.5-mL tube for further analysis. Isolates obtained with this cultivation method were named as PL followed by the wavelength of growth. Phylogenetic analysis of the isolates. 2 µL of each suspension containing a single isolate was used for colony PCRs with two primer sets. The first primer set included the universal bacterial primers 8F and 1492R amplifying the 16S rDNA gene. The second primer set (PB557F-PB750R) targets the pufM gene encoding the M subunit of the photosynthetic reaction center. Since purple sulfur and non-sulfur bacteria are phylogenetically distributed among the α−, β− and γ−proteobacteria (Lee et al., 2005), the 16S rDNA gene may not be an appropriate target for phylogenetic analysis. Recently, Achenbach et al. (2001) developed a functional gene approach to assess the community composition of anoxygenic purple bacteria in natural environments. This approach is based on the molecular analysis of the photochemical reaction centre complex encoded by the puf operon that is universally distributed among purple phototrophic bacteria (Anthony Ranchou-Peyruse et al, 2006). The 16S rDNA sequences obtained were compared with existing sequences in the Ribosomal Database Project. Geneious Pro 4.7.6 software was used to process the nucleotide sequences of pufM gene while homology searches were performed with nBLAST. The alignment program CLUSTALW (http://www.ebi.ac.uk/clustalw/) was used for the nucleotide comparative studies. Phylogenetic trees were created by Geneiuos Tree Builder using the following parameters: genetic distance model, Juke-Cantor; tree build method, Neighbor- Joining; 4 DAPI/CARD-FISH. DAPI staining procedure was performed along with Fluorescence In Situ Hybridization as described in the lab manual. 100 µL of each secondary enrichment was filtered through a 0.2 µm filter. After cutting each filter in 8 pieces, one piece was embedded with DAPI staining for counting the entire number of cells present in the enrichment. The other pieces were treated with one of the following probe: - Alf986 (5’-GGTAAGGTTCTGCGCGTT-3’) - Bet42a (5’-GCCTTCCCACTTCGTTT-3’) - Gam42a (5’-GCCTTCCCACATCGTT-3’) - EubI-III (5’-GCWGCCWCCCGTAGGWGT-3’) The formamide concentration in the hybridization buffer was 35% for the treatment of the sample with each probe. An unlabelled target competitor was used in the hybridization reaction involving the probes Bet42a and Gam42a. The competitors were the unlabelled probes Gam42a and Bet42a, respectively. Pigment analysis. Spectra of 1 mL cultures were measured spectrometrically from 350 to 1100 nm. Chemotaxis activity assay. 200 µL of the enrichment under analysis was inoculated inside a chamber created by sealing the edges of a cover slip onto a slide. Five capillaries each containing a different substrate to be tested as chemotaxis inducer were inserted inside the chamber. After 1 hour of incubation the capillaries were observed through a phase-contrast microscope at 100X of magnification. RESULTS Primary and secondary enrichments of anoxygenic phototrophic bacterial communities. Two primary enrichments grew after two weeks from the initial inoculum. The cultures that showed increased turbidity were those containing
Recommended publications
  • Pufc Gene Targeted PCR Primers for Identification and Classification of Marine Photosynthetic Bacterium Rhodovulum Sulfidophilum
    Acta Scientific MICROBIOLOGY (ISSN: 2581-3226) Volume 4 Issue 2 February 2021 Research Article pufC Rhodovulum sulfidophilum Gene Targeted PCR Primers for Identification and Classification of Marine Photosynthetic Bacterium Aoi Koga, Nao Yamauchi, Mayu Imamura, Mina Urata, Tomomi Received: Kurayama, Ranko Iwai, Shuhei Hayashi, Shinjiro Yamamoto and January 28, 2021 Hitoshi Miyasaka* Published: December 30, 2020 © All rights are reserved by Hitoshi Department of Applied Life Science, Sojo University, Nishiku, Japan Miyasaka., et al. *Corresponding Author: Sojo University, Nishiku, Japan. Hitoshi Miyasaka, Department of Applied Life Science, DOI: 10.31080/ASMI.2020.04.0770 Abstract Rhodovulum sulfidophilum - The marine non-sulfur purple photosynthetic bacterium has a wide application potential in the fields sify various R. sulfidophilum strains, we designed a PCR primer set targeting pufC of aquaculture, renewable energy production, environmental protection, and biomaterial production. To detect, identify and clas pufC R. sulfidophilum gene encoding one of the photosystem proteins. - Nucleotide sequence alignment of the genes from five strains revealed that the 3’ region of this gene is rich in ious R. sulfidophilum pufC gene. For the validation of this nucleotide substitutions (approximately 10 substitutions/100 bp), making it suitable for the identification and classification of var R. sulfidophilum strains. strains. We designed a primer set that amplified 0.7 kb of the 3’ region of primerKeywords: set, we used fish fecal DNA as Rhodovulumthe PCR templates, sulfidophilum and successfully identified and classified several Photosynthetic Bacteria; ; PCR; Fish Fecal DNA Introduction R. sulfidophilum Rho- Marsupenaeus japonicus classified several strains from the intestinal tracts dovulum sulfidophilum The marine non-sulfur purple photosynthetic bacterium of some fish and kuruma shrimps ( ).
    [Show full text]
  • Mining Saltmarsh Sediment Microbes for Enzymes to Degrade Recalcitrant Biomass
    Mining saltmarsh sediment microbes for enzymes to degrade recalcitrant biomass Juliana Sanchez Alponti PhD University of York Biology September 2019 Abstract Abstract The recalcitrance of biomass represents a major bottleneck for the efficient production of fermentable sugars from biomass. Cellulase cocktails are often only able to release 75-80% of the potential sugars from biomass and this adds to the overall costs of lignocellulosic processing. The high amounts of fresh water used in biomass processing also adds to the overall costs and environmental footprint of this process. A more sustainable approach could be the use of seawater during the process, saving the valuable fresh water for human consumption and agriculture. For such replacement to be viable, there is a need to identify salt tolerant lignocellulose-degrading enzymes. We have been prospecting for enzymes from the marine environment that attack the more recalcitrant components of lignocellulosic biomass. To achieve these ends, we have carried out selective culture enrichments using highly degraded biomass and inoculum taken from a saltmarsh. Saltmarshes are highly productive ecosystems, where most of the biomass is provided by land plants and is therefore rich in lignocellulose. Lignocellulose forms the major source of biomass to feed the large communities of heterotrophic organisms living in saltmarshes, which are likely to contain a range of microbial species specialised for the degradation of lignocellulosic biomass. We took biomass from the saltmarsh grass Spartina anglica that had been previously degraded by microbes over a 10-week period, losing 70% of its content in the process. This recalcitrant biomass was then used as the sole carbon source in a shake-flask culture inoculated with saltmarsh sediment.
    [Show full text]
  • Relevance of Phenotypic Information for the Taxonomy of Not-Yet-Cultured Microorganisms
    Systematic and Applied Microbiology 42 (2019) 22–29 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms a,b,c,∗ a a,b a a Jörg Overmann , Sixing Huang , Ulrich Nübel , Richard L. Hahnke , Brian J. Tindall a Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany b Deutsches Zentrum für Infektionsforschung (DZIF), Standort Braunschweig-Hannover, Braunschweig, Germany c German Center for Integrative Biodiversity Research (iDiv) Jena Halle Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany a r t i c l e i n f o a b s t r a c t Keywords: To date, far less than 1% of the estimated global species of Bacteria and Archaea have been described and Not-yet-cultured microorganisms their names validly published. Aside from these quantitative limitations, our understanding of phenotypic Taxonomy and functional diversity of prokaryotes is also highly biased as not a single species has been described Nomenclature for 85 of the 118 phyla that are currently recognized. Due to recent advances in sequencing technology Candidatus and capacity, metagenomic datasets accumulate at an increasing speed and new bacterial and archaeal International Code of Nomenclature of Prokaryotes genome sequences become available at a faster rate than newly described species. The growing gap between the diversity of Bacteria and Archaea held in pure culture and that detected by molecular methods has led to the proposal to establish a formal nomenclature for not-yet-cultured taxa primarily based on sequence information.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
    Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family.
    [Show full text]
  • Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
    1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
    Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • D 3111 Suppl
    The following supplement accompanies the article Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster Sarah G. Feinman, Andrea Unzueta Martínez, Jennifer L. Bowen, Michael F. Tlusty* *Corresponding author: [email protected] Diseases of Aquatic Organisms 124: 41–54 (2017) Figure S1. Principal coordinates analysis of bacterial communities on lobster shell samples taken on different days. Principal coordinates analysis of the weighted UniFrac metric comparing bacterial community composition of diseased lobster shell on different days of sampling. Diseased lobster shell includes samples collected from the site of disease (square), as well as 0.5 cm (circle), 1 cm (triangle), and 1.5 cm (diamond) away from the site of the disease, while colors depict different days of sampling. Note that by day four, two of the lobsters had molted, hence there are fewer red symbols 1 Figure S2. Rank relative abundance curve for the 200+ most abundant OTUs for each shell condition. The number of OTUs, their abundance, and their order varies for each bar graph based on the relative abundance of each OTU in that shell condition. Please note the difference in scale along the y-axis for each bar graph. Bars appear in color if the OTU is a part of the core microbiome of that shell condition or appear in black if the OTU is not a part of the core microbiome of that shell condition. Dotted lines indicate OTUs that are part of the “abundant microbiome,” i.e. those whose cumulative total is ~50%, as well as OTUs that are a part of the “rare microbiome,” i.e.
    [Show full text]
  • Int J Syst Evol Microbiol 67 1
    Author version : International Journal of Systematic and Evolutionary Microbiology, vol.67(6); 2017; 1949-1956 Imhoffiella gen. nov.. a marine phototrophic member of family Chromatiaceae including the description of Imhoffiella purpurea sp. nov. and the reclassification of Thiorhodococcus bheemlicus Anil Kumar et al. 2007 as Imhoffiella bheemlica comb. nov. Nupur1, Mohit Kumar Saini1, Pradeep Kumar Singh1, Suresh Korpole1, Naga Radha Srinivas Tanuku2, Shinichi Takaichi3 and Anil Kumar Pinnaka1* 1Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh – 160 036, INDIA 2CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam-530017, INDIA 3Nippon Medical School, Department of Biology, Kyonan-cho, Musashino 180-0023, Japan Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh – 160 036, INDIA Email: [email protected] Telephone: 00-91-172-6665170 Running title Imhoffiella purpurea sp. nov. Subject category New taxa (Gammaproteobacteria) The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AK35T is HF562219. A coccoid-shaped phototrophic purple sulfur bacterium was isolated from a coastal surface water sample collected from Visakhapatnam, India. Strain AK35T was Gram-negative, motile, purple colored, containing bacteriochlorophyll a and the carotenoid rhodopinal as major photosynthetic pigments. Strain AK35T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically. Strain AK35T was able to utilize sulfide and thiosulfate as electron donors. The main fatty acids present were identified as C16:0, C18:1 T 7c and C16:1 7c and/or iso-C15:0 2OH (Summed feature 3) were identified.
    [Show full text]