ęඈඋ1࣏ۘऺ ৰ 19 Ż ৰ 36 ƛ 20150903 ϦČ Chinese Journal of Tissue Engineering Research September 3, 2015 Vol.19, No.36 www.CRTER.org

 ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉

Äņᇽ(ǧSďS˂ˡŋʒ½ˍãKǧSď 300350)

তšͥ fK˿K1983 ˝ÛK ĚȈ࿁3Ⴎu̩:࿁ŸṇƆ਍Ľͥ «ֲQ¾ඊྡྷ͹ϣۘऺ:ǻₑᡅՈඊྡྷࢿΉ ȩ ၠⒸ̱ᯬ¾ඊྡྷͣƅ̶๎ ǡļ7P4ত඗ȘᜬŠ Ởẋ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉdzƅά͏ћசɳ҉4 ̂ZàǁžďNK˩ȂK 2010 ˝ 7 ÅǧSãî͸ ͟⏲᪑ ϤKœþKå ۔ඊྡྷࢿΉ¦๎ၠⒸ̱ᯬ¾ඊྡྷசɳ҉ाွᜄசྴˏ௤঳ୖ›ǑḰơ›Ȗüᜄச֕ϟ̓¾ 'L᪑ ȁ·ȔŀYȩ fKǧS ¾ඊྡྷඈඋ1࣏ᜄசசɳ҉ ď S ˂  ˡ ŋ ʒ  ½ ˍ ෭Щ᪱ ãKǧSď 300350

঳ୖ›ǑḰơ›human telomerase reverse transcriptase hTERT Ě ିǻ:R394.2 B:ۅDzʃ᪊ ʼᡅ তේǻ:2095-4344 ྐë๎ၠ«ྒ̫ϦϣȒՈëŏĭ ๎ၠⒸ̱ᯬ¾ඊྡྷͣƅǚnj5ƫ3ʺȪ࿁ŸƆ3\Ēˊƚuᩲ3̹ѯƣ (2015)36-05827-06 ɳĺ਍ĄÃ4 ɘ4ěY2015-07-25 http://WWW.crter.org ՈỞẋ঳ୖ›ǑḰơ›(human telomerase reverse transcriptase hTERT)ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊֲ Ոћά4۔சɳ҉µƧ Ȇᩬ͢ȭசɳ҉̓۔ࢿΉ4̓ྡྷ ƶǚ╓۔̓ ࡿȕͧ¦๎ၠⒸ̱ᯬ¾ඊྡྷ ඓ hTERT ȖüϹḰɏ๎ၠⒸ̱ᯬ¾ඊྡྷ º 50 Ǯ SD 5ͩ

10 Ǯň&ȭ+ඈ mŅ 40 Ǯŭ 45 mg/kg ՈFₓͼȸ⏂࿶◍௤ ņএசɳ҉µƧȒ Ⱥņµt£Ո 36 Ǯ SD &சɳ҉ඈ3¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈʐ hTERTŒ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ ɣඈȈ 12 Ǯ ƶ╓۔̓

ა[☝࿍ͼȸࢿΉ¦๎ၠⒸ۔/Ởẋ̓ ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈʐ hTERTŒ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ๎¦ ᯬ¾ඊྡྷʐඓ hTERT ȖüϹḰɏ๎ၠⒸ̱ᯬ¾ඊྡྷ4ࢿΉȒȈඈẟᜐ¬ɍᜄசˈ¿֕ϟ zࢿΉȒɣɬ̼̱

ċᆓƤஂŒö൦ɏᄶᢆȓ҉ˊǜĚ4 ᜄϚྴˏ௤Ոϧò ྴှ۔ϟȈඈ̓ ඗Ș^඗᩾ࢿΉȒ 4 ɬ ^சɳ҉ඈɨṇ ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈʐ hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿ

Ήඈᜄசˈ¿Šº[┑(P < 0.05) ɘ͢« hTERTŒ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈՈाွᜄசˈ¿ȉẕzȭ+ඈ ˈ¿(P > 0.05) ໐சɳ҉ඈाွᜄசමťńṇʌˈ¿ࢿΉȒ 6 ɬ ^சɳ҉ඈɨṇ ¦๎ၠⒸ̱ᯬ¾ඊྡྷ

ࢿΉඈʐ hTERTŒ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈՈᜄϚྴˏ௤ȯₓʺ¤(P < 0.05) ྴှ҉ǃ࣏òλḿ(P < 0.05) hTERTŒ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈۊº(P < 0.05)4඗Ș᪅ǒ ȴ߾ hTERT ḰɏՈ๎ၠⒸ̱ᯬ¾

சɳ҉4۔ᜄசʐλḿྴˏǃĐ dzÑƅά͏ћ̓۔ඊྡྷࢿΉ࿁Šº┑ĺசɳ҉̓

:(Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉[J].ęඈඋ1࣏ۘऺ 2015 19(36 5827-5832. doi:10.3969/j.issn.2095-4344.2015.36.016

Telomerase reverse transcriptase gene transfection of human amniotic electrical mesenchymal stem cell transplantation for treatment of diabetes mellitus

Fu Jian-ru (Department of Internal Medicine, Xianshuigu Hospital of Jinnan , 300350, )

Abstract BACKGROUND: The amniotic membrane is the rejected material after birth. Amniotic mesenchymal stem cells are characterized as easy harvesting, strong proliferation ability, no ethical controversy, and low immunogenicity. OBJECTIVE: To electrotransfer human telomerase reverse transcriptase (hTERT) gene into amniotic mesenchymal stem cells transplanted into diabetic rats and to explore its effect on diabetic rats. Fu Jian-ru, Master, Physician, METHODS: Human amniotic mesenchymal stem cells were isolated, cultured and electrotransferred by hTERT Department of Internal gene. Ten of 50 Sprague-Dawley rats were randomized selected as controls, and the remaining rats were used to Medicine, Xianshuigu Hospital establish diabetic models through injection of 45 mg/kg streptozotocin. Thirty-six model rats were randomized into of , Tianjin model group, cell transplantation group and hTERT-transfected cell transplantation group, with 12 rats in each 300350, China group. In the latter two groups, human amniotic mesenchymal stem cells and hTERT-transfected amniotic Corresponding author: Fu mesenchymal stem cells were injected via sublingual veins, respectively. After transplantation, blood glucose Jian-ru, Department of Internal levels were monitored dynamically, and plasma insulin concentration was detected every week. Pancreas tissues Medicine, Xianshuigu Hospital were taken and cut into sections for histological observation using hematoxylin-eosin staining. of Jinnan District, Tianjin RESULTS AND CONCLUSION: At 4 weeks after transplantation, the blood glucose levels were significantly lower in 300350, China the two cell transplantation groups than the model group (P < 0.05), and especially in the hTERT-transfected cell transplantation group, the blood glucose level was close to the normal value (P > 0.05). However, the model group still Accepted: 2015-07-25

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 5827

Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ www.CRTER.org had a higher blood glucose level. At 6 weeks after transplantation, compared with the model group, the plasma insulin concentration was significantly increased in the two cell transplantation group (P < 0.05), and the severity of pancreatic injury was also eased in these two groups (P < 0.05), especially in the hTERT-transfected cell transplantation group (P < 0.05). These findings indicate that hTERT-transfected amniotic mesenchymal stem cell transplantation can dramatically decrease blood glucose level and relieve pancreatic injury in diabetic rats, which is an effective method for treatment of mellitus diabetes in rats.

Subject headings: Stem Cells; Tissue Engineering; Blood Glucose; Diabetes Mellitus

Fu JR. Telomerase reverse transcriptase gene transfection of human amniotic electrical mesenchymal stem cell transplantation for treatment of diabetes mellitus. Zhongguo Zuzhi Gongcheng Yanjiu. 2015;19(36):5827-5832.

50Ǯ Ŀᯬₓ۔šᣄ Introduction 1.3.1 ǒɀ¬ĭ ɑă1Ƅܸ▐ɳSD̓ 0 ؄͹ϣĿƚՈẉợǕʉ -Ϭ¾ඊྡྷՈ͹ϣ£࿁ǡ 210Û225 g ᯱႮęĿƚ࢕ƚ┦¬ĭǒɀǘ ¬ĭᯬₓ╓ ŻÏ¦Ŀ͍£࿁Ո„njʐඈඋ ǡẂ4͏ћֲՈՈּ͟ Ȍʸ᪅ǻSCXK(ι)200500024 “ऺᱎǡᱎ̶[1-3]4ü¾ඊྡྷͣƅʌòႮuŰ,࿁Ÿʐ̶ȕ 1.3.2 ๎ၠ ¦๎ၠǡႮͅιNιśľʼˈ͑Ŀ┦Ոۘ ĚȈ࿁ ᝯň&ඊྡྷ͏ћʐȖü͏ћՈˊ̿☺ඊྡྷ4 Σ ºᱷƄZǟ“,ѐྒ֜iࡿ๎ၠ4“Σ“Q̼ɡEཡ ¦๎ၠⒸ̱ᯬ¾ඊྡྷ«ºྒ̫ ]ȒՈëŏĭ๎ၠ ҉ɦ3ཡ҉ɦ3́ɦᙾGĿʐ¦ି̹ѯ෾┻҉ɦţ&⓸ Ȑ͛R4̑کȐ͛ Âੂึ̑کȴǚϦ ͢Ĺzྒ֜Ոżͱɶ ϵZղɶ3ȖၠɶʐⒸᯬ ɳ4ǒɀQඓẋ“Σඓ ɶ3ɶ඗Ȁඈt \ཐཌྷ3ࠢඓ3ᜄ੥Ñǎw@ிඣ ɨṇ 1.4 ôκǒƽ ࡿ[4-6]4¦๎ၠⒸ̱ᯬ¾ඊྡྷ'ᡅǡļz๎ 1.4.1 ¦๎ၠⒸ̱ᯬ¾ඊྡྷՈȕͧǎℸǎ ቻǚྒ֜w ǭ^ඖɯၠ ๎¦ࡿቻǚ Ȑ͛ Ɖǒdž໇Dz[16]Ո5ͩ̑کĚȈ࿁[7-8]4঳ୖ› ̴ǣ4 ၠՈྞɶ ۘऺǕɴ͢Kͣƅ̶ȕ ^ڃǑ Ḱ ơ › (human telomerase reverse transcriptase ၠ4₋ϬD-Hank’s^Ǒ̩ΫP๎ၠѱ┨ȟНᜄ¹3 ϔ0.25%Ոྴ› 37 ?[200 r/min ĚՈŊọϣ⑃üƄ7P ͣƅ nݒ๎ၠ ΢าĿࢳ hTERT)«᫇ȋʺȪǎǎȕ ̶ₑϣĭƚάà[9-10]4 4Ě10 minȒ±┨¦๎ၠZղඊྡྷ ŏƿ4Ě^ ඓ̝l ϔ0.01%Ո rⒸͱٰⒸǀt œř Ȓʇ͑,ѐ4Ě^ ₑ̩ẟᜐ2ƵȒ4ϬĿࢳڱϹḰɏ̱ͩň੄ř dzÑń ƵdzÑ̓ÝₓḰɏ «·ȰȖüḰȰՈ„Ϭ5ͩ[11]4╓؄ ྺƣ›ǎDNA›£Ȍ^ń37 ?[Ñ200 r/minණනGḰ4 ¦ØϣϏˈ¿Ոȴʌ சɳ҉ՈǕ҉ɋńАȈŌţº߾ Ě1 h4Ǒ4Ěඈඋtలź -Ϭ]⏌⍦ตẋƐȒ Ⱥඊྡྷ Ϧͤŋᱏà ȭ¦ିɑăźΡǛ4ₑƽˑ[12-13]4ǒɀȆ ˸^Κ▊ ȯĿࢳ ϔ10%FBSՈDMEMȕͧ^ₑ,̝l Ȓ ˸ඊྡྷ ẟᜐඊྡྷᩥϔ z25 cm2ȕͧκͱ าz37 ?3۔ᩬhTERTᜬẂՈ๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͑சɳ҉̓

ȭசɳ҉͏ћՈάȘ4 Ŀࢳ ϔ5%CO2ĥʐīòȕͧੵȕྲྀ ȕͧ40 hȒŰdž ^Ŀ ŏƿƦ᯸˝ඊྡྷ Âᢆȓ4᯸˝ඊྡྷ☦ࢳẂ90%r 1njʐ5ͩMaterials and methods ỞẋĿࢳ ϔ0.25%Ոྴ›4Ěඊྡྷ ࡿȏȒቻǣ¦๎ၠ 1.1 Éα ╓ƶȭ+¬ĭǒɀ4 Ⓒ̱ᯬඊྡྷ4ǾาºǺ␠[ᢆȓඊྡྷƮɍ4ǚP3Ïඊྡྷ 1.2 ðϏΛıļ z2014À2ƄႷ2015À1ƄńͅιĿ࢕ ŭϕśඊྡྷÖ᪙F᪸ŠRẟᜐ̱ň 4ĚȒ¤͑PE FITC ̓ƚȏǒɀǘǀt4 ʃᩴՈCD9 CD13 CD19 CD29 CD34 CD44 CD45 1.3 ƨ CD46 CD49ûĿẟᜐඊྡྷՈϕśඊྡྷÖℸǎ4 1.4.2 hTERTϹḰɏ๎ၠⒸ̱ᯬ¾ඊྡྷ ๎ၠⒸ̱ᯬ¾ ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ǒɀ'ᡅ ඊྡྷń37 ?3Ŀࢳ ϔ5%CO ǝâ[„ᢈȕͧ24 h4Ⱥ̠ ᪙Fǎք 2 zȭϔϣ⑃ƛՈඊྡྷ :třඊྡྷ˸^ PBS±ΫÂඓྴ› ᪙Fǎք ǡļ 4ĚȒ ࡿȏΚ▊๎ၠⒸ̱ᯬ¾ඊྡྷ ϬϹृƈ෗Ξ^ₑ Ƀğᜄ± ๒ęBecon Dickinson͘Ǽ ˸ ࡿȏ800×g ☝า5 min ±Ϋඊྡྷ3Ƶ ࡿȏ ₑ˸ ྒğᜄ±3DMEMȕͧ^Ŀࢳ ϔ0.25%ྴ ๒ęGibco͘Ǽ zϹḰ^ ḰࢿาϹϧǫ ¤͑20 µgՈᯬୖDNA £Ą ›3BƧྺƣ›3⏂࿶ነ௤ ΢าΜZ30 minȒ ÑϹƏ350 V/cm Ϲǭ25 µF rⒸ β-actin̶̷ ๒ęBD͘Ǽ۔û¦hTERT̶̷╊ûĿ3̀û̀ MBPûĿ „ϔT&0.9 msՈϹḰĚdžϔ ẟᜐϹृƈ4ȺḰɏȒՈ۔ûĿ ʐ̀û╊

঳ୖ› ǑḰơ› ̓ẢǑϣϣĭ͘Ǽ hTERT๎ၠⒸ̱ᯬ¾ඊྡྷ΢าzǘÕ30 min ඊྡྷࢿ͑ DMEMȕͧȖ ȯĿࢳ ϔ10%Ƀğᜄ±ǎ1%ǐûՈȕͧ mRNAȴǚ᪙F֖3PCRǑà᪙F֖ ๒ęKPL͘Ǽ փ าz37 ?3Ŀࢳ ϔ5%CO2Ʃੵͱȕྲྀ4 (#௤ELISA᪙F֖ Excell(ęZˏྴ ඈ Ⴎ50Ǯɑă▐ɳSD µƧ:̣ǎ۔சɳ҉̓ 1.4.3 AMVǑḰơ᪙F֖ ě˜ͅʵϣĚƅ└͘Ǽ ŭ╓ƶͩǚ10Ǯň&Ƿ„ȭ+ඈ ඝt਍ĿࢳFₓP۔̓ ᜄசϟǎÖ Eukare ǴĪ̬Ī͘Ǽ ࡅ“12 h Â۔ƵɳͼȸՈϣˊ֔ˈ4ȺŅ[Ո40ǮSD̓

5828 P.O. Box 10002, Shenyang 110180 www.CRTER.org

Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ www.CRTER.org zა[☝࿍ͼȸ45 mg/kgFₓՈ⏂࿶◍௤(ϬQŢzpH ⒸϔǒɨṇϬʳƨt ̼ɀ ̼ɀˈβα=0.054 4.5Ոɜŀ‼֔෗Ξ^) 1ɬͱẢන2Ƶ3Ⓒ╘ႷɅ2 d Ƨ ƵͼȸȒ zɣɬǚɲ☝࿍ᜄச1Ƶ ᜄச֕ϟẢන3Ƶ̓ 2඗ȘResults &50Ǯ ╓ƶǚ10Ǯň۔z16.7 mmol/L ໐/Ϧɴ̶“3̶Ģ3̶ɳ3ĿᯬₓλɅ 2.1 ôκŦʦļƘǫʭ ൷͑̓ ȭ+ඈ 36Ǯdž^Ụµ ȏʐͫɏ4ǮX┨ żඌᩥ͑ ۔Ụµt£4Ụµẋ࣏ 3Ǯ¬ĭȏ 1ǮƌϏՈ̓& ᜄசϧò]ࣷǎ tÑX┨ żඌỤµt£¬ĭϔ&36Ǯ4 ඗Ș ȌՈϔₓ46Ǯ4 ň&ࢿΉǛĿ4Ⱥசɳ҉ 2.2 ̱ωĝσʗϏƉȼˍFĝ́Ƨ ᰻!ȕͧՈ๎ၠ ۔Ⱥசɳ҉Ụµt£Ո36Ǯ̓ &hTERT_¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ3¦๎ Ⓒ̱ᯬ¾ඊྡྷɌ᯸˝ϣ⑃ Ʈɍ̶ʳ Ɍ̩Ʈ3̶ṽƮ3 ƶ╓۔̓ ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈʐசɳ҉ඈ ɣඈȈ12Ǯ hTERT_ ›Ʈ3ൾ⏨Ʈz̶ᢖƮ਍(Ě1A)4ČႷৰ2ÏȒ๎ၠⒸ̱ᯬ ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ3¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ ¾ඊྡྷ᯸˝ợò¤ȷ 8 hό:ǀ͔᯸˝ ඊྡྷɌɴţĄP ა[☝࿍ͼȸࢿΉ๎ၠⒸ̱ᯬ¾ඊྡྷ˸^/ ႸՈt൨මඊྡྷʳ ඊྡྷ̶Ɍřɶ΢ȸƮź3⑃̩ƮzG۔Ởẋ̓/ hTERT๎ၠⒸ̱ᯬ¾ඊྡྷ˸^ ¦๎ၠⒸ̱ᯬ¾ඊྡྷ˸ ॡźϣ⑃ ǾาºǺ␠[ᢆȓ4 ๎ၠⒸ̱ᯬ¾ඊྡྷ¿ţ ȯƅ਍ₓ ȀՈⒸՈඊྡྷϧò&2×106 L 14 ָǐ൪&15 µm ྡྷϚͱȯƅ^ 1.4.4 RT-PCR̼ϟ ỞẋTRIzolͩȴǚʇRNA ₋Ϭ௯ ՈʌɈȖ̩ȌĿ3ඃୖĿʐႸǺĿ ྡྷϚɬĐƅႮˆा͵ òᩥϟǎRNAȯₓ ÑǑḰơȌt᪙F֖᪸ŠR ʐྡྷĢɃ͵ ඊྡྷzඊྡྷॅ᰻7Ⓒdzᢅ4ඊྡྷẢȉ඗Ȁ̵̵ ̲ ẟᜐǑḰơ4PCRǑàǝâ94 ?ǜɳ5 min 95 ?ǜ ᢅĚ1B4ȕͧՈ๎ၠⒸ̱ᯬ¾ඊྡྷඓϕśඊྡྷÖℸǎȒdz ɳ30 s 54 ?Ễ̗36 s 72 ?łĤ30 s 36ɬƛǶɳȒ ᜬẂּàՈʃᩴĭ ܲᩨȕͧඊྡྷ&๎ၠⒸ̱ᯬ¾ඊྡྷ4 72 ?łĤ6 min4z4 ?[ljƌ“ĭ4PCRɣPǑàₑ̩ 2.3 hTERTΆ9LJA̢ÝσʗϏƉȼˍFƏĝ2ê ẟᜐ3Ƶ4PCR“ĭǚ5 mLẟᜐϹ· Ñβ-actinň&ͱdž RT-PCR̼ϟº߾ ϹḰɏͩ·ȰhTERTȖüḰɏ๎ၠⒸ̱ +4Ϲ·ȒาGDSS000ωྺႮ¬tʻÖZı+ljƌĚʻ ᯬ¾ඊྡྷ48 hȒ ඗Șº߾Ϧ2ǝ±ìǝr ᜬŠRNAᯬₓ

àϬImage-Pro Plus 8.0ḳâ ȌhTERTՈǝr^β-actin Ι -Ϭ௯̲ඃ ̵̵òք̼ϟRNAńA260 nm A280 nm̠

Ȍ4 Ոȼ̵òȨ ඗Șº߾A260 nm/280 nm=1.82.0 ᜬŠRNA൳ ǝrՈּȭ̜òɨȨ ẟᜐmRNAŎǎₓ òṇΙ PCR“ĭ̼ϟℸǎ඗ȘᜬŠhTERT_๎ၠⒸ̱ šĭÛ  ᯬ¾ඊྡྷḰɏඈń750 bpdzᢅĽŎɳǝr ໐¦๎ၠⒸ̱ Ȗü šĭÛ ċɉ⑃ò ᯬ¾ඊྡྷࢿΉඈ3சɳ҉ඈ̼ϟƦᢅĽŎɳǝrᜬŠ\ hTERT Zä5’-CTGAAGTGTCACAGCCTGTTT-3' 1 1 1 bp hTERT mRNAՈᜬẂ ᢅĚ24 [ä5’-CACACATGCGTGAAACCTGTA-3' 1 1 1 bp 2.4 σʗϏƉȼˍF ű̢ɪȆîIJͻǂΛͻ ē β-actin Zä5’-TATCGGACGCCTGGTTAC-3' 151 bp ŵŋͬ)̼ ࢿΉȒ4ɬ ȭ+ඈᜄசljť൪4.0 mmol/L [ä5’-CTCAGCCTTGACTGTGCC-3' 1 51 bp சɳ҉ඈᜄச2226 mmol/LdzᢅŠºŋʌhTERT¦๎ h TERT঳ୖ›ǑḰơ›4 ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈᜄசljť൪7.01 mmol/L3¦๎ၠⒸ / ᜄசǎᜄ±ྴ ̱ᯬ¾ඊྡྷࢿΉඈᜄசljť൪12.03 mmol/Lţƅ┑ĺ۔ၠⒸ̱ᯬ¾ඊྡྷࢿΉȒȈඈ̓๎ 1.4.5 ɣ hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈṇ¦๎ၠⒸ̱ᯬ¾ඊ۔௤ˈ¿̼ϟ ๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉȒ ȭȈඈ̓ˏ ɬǎrzɲ☝࿍₋ᜄ -ϬᜄசÖർċͩϟǎाွᜄச ྡྷࢿΉඈՈᜄச┑ĺۊº(P < 0.05) ᢅᜬ14 ɣɬ2Ƶ4Ảන֕ϟᜄச6ɬ4z๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉȒ ࢿΉȒ6ɬ ^சɳ҉ඈɨṇ ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿ Ȓඓွ'¬ ΉඈʐhTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈՈᜄϚྴˏ௤⁍ٯ6ɬ ₋Ϭ7%ˈȌ˃ (5 mL/kg)ွဘͼȸ ࿍ǚᜄ ࡿȏ Ñ20 ?ljНᜄ± ƉǒELISA᪙F֖Ẕ ˈ¿ʺ¤ ྴှ҉ǃ࣏òλḿ ^¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿ ᜄϚྴˏ௤ˈ¿4 Ήඈּɨṇ hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈۊº۔ň᪸ŠR ̼ϟȈඈ̓ 1.4.6 ๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉȒ҉ˊ̼ϟ ๎ၠⒸ̱ᯬ (P < 0.05) ᢅᜬ24 ¾ඊྡྷࢿΉȒৰ6ɬ ඓွ'¬࿍ǚᜄȒ ẉợ-Ϭ)ʇͩ 2.5 σʗϏƉȼˍF ű̢îIJēȆŮDŨ)̼ ඈඋƅ]Ȑ࣏ˏྴ۔ှඈඋ Ñ40 g/L̶༞϶ Ėǎ ๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉȒ6ɬ Ȉඈ̓ྴ۔ȏ¬ĭ ǚȈඈ̠̓ ˏྴ ċ ₋ϬᆓƤஂö൦„ᢈɏᄶ ᢆȓ̓ òՈǃǧ ྴˏඊྡྷūȏ ྴˏṽො̺ɳඊྡྷ$R ᗥẢනڷ ẋ̸ ๎¦Ո҉ˊǜĚ4 ₑ۸ū ྴˏඊྡྷᢅɅ 3ඈּɨṇ໐ᣄ hTERTˏྴ۔ 1.5 ƶϙʬ+ŷ/ ᢆȓȈඈᜄச¬ɍˈ¿ǜĚ zࢿΉ ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈՈྴˏඊྡྷǑàdzᢅŠºλḿ / ċᆓƤஂ_ ඗ȀǀϘ ྴˏඊྡྷṇ̶ ࢿΉȒ6ɬ ^சɳ҉ඈɨṇ ᜄϚྴˏ௤Ոϧò ྴှ۔Ȓɣɬ̼ϟȈඈ̓ ö൦ɏᄶᢆȓ҉ˊǜĚ4 ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈʐhTERT¦๎ၠⒸ̱ᯬ¾ඊ 1.6 Ȍα͸ǫʭ ǒɀϔǒţ₋ϬSPSS 15.0ḳâிඣ ྡྷࢿΉඈྴှ҉ǃ࣏òλḿ ɘ͢«hTERT_¦๎ၠⒸ̱ _ ẟᜐ Ȍ ϔȨ৪ȌǷɍ O ᩥₓᰈÑx±sᜬ߾ ඈ ᯬ¾ඊྡྷࢿΉඈۊº‡(P < 0.05) ᢅĚ34

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 5829

Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ www.CRTER.org

A B Ě 1 ȕͧՈ๎ၠⒸ̱ᯬ¾ඊྡྷՈƮɍ(Ǿา

ºǺ␠) Figure 1 Morphology of amniotic mesenchymal stem cells cultured under inverted microscope ĚͼĚ A &᰻!ȴǚՈ๎ၠⒸ̱ᯬ¾ඊྡྷ (×40)Ɍ⑃̩ƮB &ČႷৰ 2 ÏȒՈ๎ၠⒸ̱ ᯬ¾ඊྡྷ ɌɴţĄPႸՈt൨මඊྡྷʳ඗Ȁ (×100)4

1 2 3 4

Ě 2 ঳ୖ›ǑḰơ›(hTERT)ȖüḰɏȒń๎ၠⒸ̱ᯬ¾ඊྡྷՈ ᜬẂ bp Figure 2 hTERT expression in amniotic mesenchymal stem cells

2 000 after transfection Ěͼ14 & Marker ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ3சɳ҉ඈ3 1 000 hTERT2๎ၠⒸ̱ᯬ¾ඊྡྷḰɏඈ4hTERT๎ၠⒸ̱ᯬ¾ඊྡྷḰɏ 750 ඈń 750 bp dzᢅĽŎɳ mRNA ǝr4 500

250 100

A B C D

(ඈඋ҉ˊǜĚ(ᆓƤஂö൦ɏᄶ ×100ˏྴ۔̓ Ě 3 F igure 3 Histological changes of the pancreas islet of rats (hematoxylin-eosin staining, ×100) Ě ͼĚ A &ȭ+ඈǷ„ྴˏඊྡྷB &சɳ҉ඈ ྴˏඊྡྷᢅɅ ̺ɳඊྡྷ$R ྴˏඊྡྷₑ۸ūC &¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ ̺ɳ$RඊྡྷǑàλḿD & hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ ྴˏඊྡྷǑàŠºλḿ ඗ȀǀϘ4ੱ͐¤ūÏᜬྴˏඊྡྷ4hTERT঳

ୖ›ǑḰơ›4

௤ˈ¿ǜĚˏྴ۔ᜄசǜĚ ᜬ 2 ๎ၠⒸ̱ᯬ¾ඊྡྷა[☝࿍ࢿΉȒȈඈ̓۔ᜬ 1 ๎ၠⒸ̱ᯬ¾ඊྡྷა[☝࿍ࢿΉȒȈrⒸɉȈඈ̓ _ _ (x±s mmol/L) (x±s µg/L) T able 1 Variation of blood glucose levels in rats at different time after Table 2 Variation of fasting insulin levels in rats at different time a mniotic mesenchymal stem cell transplantation via sublingual veins after amniotic mesenchymal stem cell transplantation via sublingual veins ඈ / n 5 d 14 d

ȭ +ඈ 10 4.01±0.05a 4.02±0.01a ඈ/ ࢿΉQ ࢿΉȒ6ɬ ab ab ச ɳ҉ඈ 12 22.35±0.06 22.42±0.04 ȭ+ඈ 14.61±5.32ab 15.41±3.02ab ab ab ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ 12 20.03±0.32 19.68±0.01 சɳ҉ඈ 0.33±0.05 0.30±0.06 b b hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ 12 17.01±0.12 14.27±0.01 ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ 0.28±0.03ab 9.02±0.11ab a a ඈ/ n 21 d 28 d hTERT¦๎ၠⒸ̱ᯬ 0.29±0.10 12.38±0.32 ¾ඊྡྷࢿΉඈ ȭ+ඈ 10 4.02±0.04a 4.02±0.01a a ச ɳ҉ඈ 12 23.67±0.07ab 26.21±0.08ab ᜬͼ^சɳ҉ඈɨṇ P < 0.05^ hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈɨ ab ab b ¦ ๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ 12 14.32±0.03 12.03±1.08 ṇ P < 0.054hTERT঳ୖ›ǑḰơ›4 hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈ 12 9.08±0.02b 7.02 ±0.07b

ᜬͼ^ hTERT¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈɨṇ aP < 0.05^ȭ+ඈɨṇ bP < 0.054hTERT঳ୖ›ǑḰơ›4

5830 P.O. Box 10002, Shenyang 110180 www.CRTER.org

Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ www.CRTER.org

3ᩬ᩾Discussion ᯬ¾ඊྡྷࢿΉȒ࿁̻ƯūǃĐՈྴˏඈඋඊྡྷʺȪ ẟ໐ ǂ˥DĝƍƟǒƽĝ˫Ǒ˼̵řǮ ֲQȭzசɳ Ưūᜄச[┑4 3.1 Ո͏ћ5ͩ ẜɎƦƅdzÑẂ4LJá͏͔Ո5ͩ4ɴ Ñnjȭz๎ၠⒸ̱ᯬ¾ඊྡྷՈۘऺţᜬŠ๎ၠⒸ̱ᯬ҉ ⓺ɉ₋ǚՈ┑சሳĭǎɬ௤ћͩKƦ࿁LJá͏͔[14-16] ¾ඊྡྷ«·zྞྒ¾ඊྡྷ^tĿ¾ඊྡྷⒸՈPିⒸ਍൫ ÖĿTØȺྴˏࢿΉň&͏͔சɳ҉Ոˊ̿5ͩ IJ«ƅ Ո¾ඊྡྷ üǸͣƅĺ̹ѯƣɳ3ʌʺȪ࿁Ÿ3Ɔ ĚȈ ͢ǡļʐ̹ѯǑàՈ└:໐ƽˑrྴˏࢿΉՈàϬ4 ࿁3ǡļ5ƫ਍ưĽՈĄᱎɳ[32-37]4IJŸ෾Ʌ๎ၠⒸ̱ᯬ ĚǺɳʟՈּۘ͟ऺ Kƽ ẕ‡Àǡ ╓؄¾ඊྡྷࢿΉǒɀǎ ÖۘऺՈǕʉ ¾ඊྡྷȖü᫇ȋƶ:ǎǎȕ Ěάɋ ໐ǒɀ඗Șȴ சɳ҉ՈLJá͏͔rǡrXƗ4ϬǡۘऺՈ¾ඊྡྷΞྴ ˑr๎ၠⒸ̱ᯬ¾ඊྡྷՈʺȪʐ& ှ¾ඊྡྷ3᪵Ȱɳ̶࿁¾ඊྡྷÑǎ]ȐǡļՈⒸ̱ᯬ¾ඊ ߾ ඓhTERTȖü᫇ȋȒdzÑƯẟ๎ၠⒸ̱ᯬ¾ඊྡྷՈʺ ྡྷ਍[17-18] ͢¦๎ၠⒸ̱ᯬ¾ඊྡྷͣƅĺ̹ѯƣɳ3ʌ Ȫάɋ ࿁ƯūඊྡྷˌϣĚ4 ĚȈ࿁3ǡļ5ƫ਍ưĽĄÃ[19]4ƅۘऺ වZ¤Ẵ ỞẋhTERTϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿ Ȫ࿁Ÿ3Ɔʺ Ǖɴ¦๎ၠⒸ̱ᯬ¾ඊྡྷńĿ̲᪵Ȱǝâ[dz Ětྴˏ Ήdzƅά͏ћசɳ҉4ʇ໐ᣄ7 ๎ၠⒸ̱ᯬ¾ඊྡྷͣƅ ĚȈ࿁3Ⴎu̩:࿁ŸṇƆ਍Ľͥ «ֲQ¾ඊྡྷ͹ ௤“ϣඊྡྷ ÂdzƯẟᜄசʮ̩ႷǷ„ˈ¿[20-22]4ẕ‡À ̶ ǡ ̓ₓۘऺ>ᜬŠr๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉȭசɳ҉ͣ ϣۘऺ:ǻₑᡅՈඊྡྷࢿΉǡļ7P4IJüǒɀۘऺᰈ Ě£࿁ÑǎĿͱ ƅṇΙћά IJ«͢ňϬƶ:ƅǑẟPǹۘऺ[23-25]4 ƅ└ ͟z๎ၠⒸ̱ᯬ¾ඊྡྷՈ̶ȕ 3.2 hTERTĝjļΛLJAhTERT̢ˍFĝją hTERT ƌϏ3ẅࢿ3 Ěʐ^dz'„njՈ඗ȀϘȌ3£࿁ϘȌẜ ঳ୖ›Ոʘ̆řĹ ۘऺǕɴš͑hTERTdzÑūඊྡྷ ◄ᡅẟPǹ͑ۘऺȆᩬ4» ljťǷ„ᜬƧǎ ĚĽͥ ࿁ūš͑hTERTՈඊྡྷ঳ୖ⑃ òǣÑł⑃ ƯūඊྡྷቻǣˌϣĚ4ḰɏrhTERTՈ๎ၠ ň້ᯥDzôκÉαôèͯʑǧƨĔΚfɻΛÔ̖ Ⓒ̱ᯬ¾ඊྡྷljťr๎ၠⒸ̱ᯬ¾ඊྡྷՈĽͥ ͣƅࣷǎ ¸ɡȩ f ঳ୖ›ϏɳᜬẂ ÂᜬɴϦࣷǎťනʺȪՈĄÃ4hTERT -֎ΞॅƖuȔŀʃȅRæɻģʕ˵ʩŶ-‚Ȕ ȖüϹḰɏdzÑǚǣƅά໐ť1ՈňϬ4ƅۘऺǕɴඓΝ Ēˊ⒲LôκˎiƏƋŦʦĝ¡ƂȐ˾ 2009 ˝Ethical ՈⒸ̱ᯬ¾ඊྡྷ Ởẋራ̵ᖏՁ issues in animal experimentation˵ʩŦʦȎŨ͸/ǙĝǰŸ۔ᄳՈϹḰɏͩ Ḱɏ̓ ˍᢆȓḰɏඊྡྷՈ⓷ɳᜬẂɋʺ¤[26] ╓؄ȕͧrⒸՈł⑃ ƚƫƫ᪱NσʗϏƉȼˍFĝhȗ^NσʗϏƉȼ ໐ɌɴϦʺʌᜬẂᱏà ᜬŠhTERTdzÑᝯň&ņএࣷǎᜬ FƞuȼˍFǓ͇ĝˍF9$ǒ(į·ʴǏġjļf ~ẂֲՈȖüՈ1࣏ඊྡྷ[27]4ǪƅǒɀۘऺǕɴ ϬϹृƈͩ ɡɪˋΡ~ȆŮɵi͸ΛˍFǡõƍƟĝļ]˝įˋȻΡ ­űƍƟɪƕΝDKƯϟ$ĜƤ0˲ĝƲ ḰɏȖü ǕɴֲՈȖüٰrᜬẂɋʌz࿆ᯬĿḰɏ5ͩ ŀ ΓȔɡǡõˍF üǸϹḰɏͩdzň&P੄řdzᜐ3ƅάՈ5ͩ[28-31]4IJ« ̚ˌ ΞŁẟPǹȴʌḰɏƣÏඊྡྷՈḰɏɋ ֲQ«PȨǣ ň້̌ŠɻģijȔŀƋΡ~˼Lj̧ĝȒɻƏ“˫ĝ^Ƃ ͑ȆᩬՈ⒲L4 ̓ɡmüóQȒɻƏÇΛĝ°ûȕ͛ļœ(Gģαƀ·ļœÿ) 3.3 ôκΡ~Bˌĝ̵fŒ ǒɀඓhTERTḰɏ๎ၠⒸ βdzΛϊcĶuʩʷşLáǫ̂˼̏ͦKæ4ě˺( 4ɬȒ ¦๎ၠⒸ̱ᯬ۔ᯬ¾ඊྡྷȒࢿΉ͑சɳ҉µƧ̱̓ ¾ඊྡྷࢿΉඈʐhTERTæ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈᜄச 4 dž໇Dz References ˈ¿^சɳ҉ඈɨṇϦɴŠº[┑ ໐hTERTæ¦๎ၠⒸ [1] 5Ƶ,ŬᲳ,ƿࢄ·,਍.¦๎ၠⒸ̱ᯬ¾ඊྡྷՈ ࡿ3ȕͧǎℸǎ [J].Ἱ5Ŀƚ┦ƚĉ,2009,32(2):234-236. ̱ᯬ¾ඊྡྷࢿΉඈՈाွᜄசˈ¿njĺz¦๎ၠⒸ̱ᯬ¾ [2] Hou Y, Huang Q, Liu T, et al. Human amnion epithelial cells ඊྡྷࢿΉඈ ό:ȉẕȭ+ඈˈ¿4¦๎ၠⒸ̱ᯬ¾ඊྡྷ can be induced to differentiate into functional insulin- ࢿΉඈʐhTERTæ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉඈՈᜄϚྴˏ producing cells. Acta Biochim Biophys Sin. 2008;40(9):830- ௤ˈ¿^சɳ҉ඈɨṇ ţƅʺ¤ óྴှ҉ǃ࣏òλḿ4 839. [3] Okere B, Alviano F, Costa R, et al. In vitro differentiation of ᜄசȋ۔dzᢅඓhTERTϹḰɏͩࢿΉȒ ȭƯẟசɳ҉̓ human amniotic epithelial cells into insulin-producing 3D :3ྴˏ௤ˈ¿ՈΝǜ3ྴှ҉ǃ࣏òՈλḿţƅṇ̓z spheroids. Int J Immunopathol Pharmacol. 2015;28(3):390-402. ­4RT-PCR̼ϟ඗ȘǕɴhTERTæ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿ [4] Ekser B. Clinical xenotransplantation: the next medical Ήඈń750 bpdzᢅĽŎɳǝr ໐ȭ+ඈ3¦๎ၠⒸ̱ᯬ revolution. Lancet. 2012;379(9816):672-683. [5] Bouffi C, Bony C, Courties G, et al. IL-6-dependent PGE-2 ¾ඊྡྷࢿΉඈ3சɳ҉ඈ̼ϟƦᢅĽŎɳǝrᜬŠ\ secretion by mesenchymal stem cells inhibits local inflammation hTERT mRNAՈᜬẂ ȴ߾r̲ļɳhTERTȖüՈḰɏdz in experimental arthritis. PLoS One. 2010;5(12):14247. ÑƯẟ¦๎ၠⒸ̱ᯬ¾ඊྡྷՈhTERTᜬẂ4ǒɀỞẋᆓ [6] Kristien E, Reekmans, Praet J, et al. Clinical potential of intravenous neural stem Cell delivery for treatment of Ƥஂæö൦ɏᄶᢆȓ4hTERTæ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ neuroinflammatory disease in mice? Cell Transplantation. ඈྴှ҉ǃ࣏òŠºλḿ ȴ߾ඓhTERTϹḰɏ๎ၠⒸ̱ 2011;20(6):851-869.

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 5831

Äņᇽ. ঳ୖ›ǑḰơ›ȖüϹḰɏ¦๎ၠⒸ̱ᯬ¾ඊྡྷࢿΉ͏ћசɳ҉ www.CRTER.org

[7] Hu J, Yu X, Wang Z, et al. Long term effects of the [22] Izumi M, Pazin BJ, Minervini CF, et al. Quantitative implantation of Wharton's jelly-derived mesenchymal stem comparison of stem cell marker-positive cells in fetal and term cells from the umbilical cord for newly-onset type 1 diabetes human anmion. J Reprod Immunol. 2009;81(1):39-43. mellitus. Endocr J. 2013;60(3):347-357. [23] Robb WB, Condron C, Moriarty M, et al. Taurine attenuates [8] Dufrane D, Goebbels RM, Gianello P. Alginate radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice. macroencapsulation of pig islets allows correction of Ir J Med Sci. 2010;179(1):99-105. streptozotocin-induced diabetes in primates up to 6 months [24] Christofidou-Solomidou M, Tyagi S, Tan KS, et al. Dietary without immunosuppression. Transplantation. 2010;90(10): flaxseed administered post thoracic radiation treatment 1054-1062. improves survival and mitigates radiation induced [9] Oghiso Y, Yamada Y. Pathogenetic process of lung tumors pneumonopathy in mice. BMC Cancer. 2011;24(11):269. induced by inhalation exposures of rats to plutonium dioxide [25] Monsel A, Zhu YG, Gennai S, et al. Cell-based therapy for aerosols. Radiat Res. 2000;154(3):253-260. acute organ injury: preclinical evidence and ongoing clinical [10] Chen L, Magliano DJ, Balkau B, et al. AUSDRISK an trials using mesenchymal stem cells. Anesthesiology. 2014; Australian Type 2 Diabetes Risk Assessment tool based on 121(5):1099-1121. demographic, lifestyle and simple anthropometric measures. [26] Matthay MA, Goolaerts A, Howard JP, et al. Mesenchymal Med J Aust. 2010:192(4):197-202. stem cells for acute lung injury: preclinical evidence. Crit Care [11] Shu J, Pan L, Huang X, et al. Transplantation of human Med. 2010;38(10):569-573. amnion mesenchymal cells attenuates the disease [27] Ebner B, Behm P, Jacoby C, et al. Early Assessment of development in rats with collagen-induced arthritis. Clin Exp Pulmonary Inflammation By 19F MRI In Vivo. Circ Cardiovasc Rheumatol. 2015;33(4):484-490. Imaging. 2010;3(2):202-210. [12] Park KJ, Oh YT, Kil WJ, et al. Bronchoalveolar lavage findings [28] Li M, Abdollahi A, Gröne HJ, et al. Late treatment with imatinib of radiation induced lung damage in rats. J Radiat Res. 2009; mesylate ameliorates radiation-induced lung fibrosis in a 50(3):177-182. mouse model. Radiat Oncol. 2009;21(4):66. [13] Cargnoni A, Ressel L, Rossi D, et al. Conditioned medium [29] Park Y, Chen YM, Ordovas L, et al. Hepatic differentiation of from amniotic mesenchymal tissue cells reduces progression human embryonic stem cells on microcarriers. J Biotechnol. of bleomycin-induced lung fi brosis. Cytotherapy. 2012;14(2): 2014;174(20):39-48. 153-161. [30] Ono M, Ohnishi S, Honda M, et al. Effects of human [14] ƿÐ,ǜ⚰,ǤŠƀ,਍.RNA¾Ô঳ୖ›ǑḰơ›Ȗüή҉ɦᜬẂ amnion-derived mesenchymal stromal cell transplantation in ṁĿՈȀņǎℸǎ[J].ęඈඋ1࣏ऺ,2014,18(11):1724- rats with radiation proctitis. Cytotherapy. 2015;1465(15):1016. 1729. [31] Nejad NA, Amidi F, Hoseini MA, et al. Male germ-like cell [15] Ogata T, Yamazaki H, Teshima T, et al. Early administration of differentiation potential of human umbilical cord Wharton's IL-6RA does not prevent radiation-induced lung injury in mice. jelly-derived mesenchymal stem cells in co-culture with Radiat Oncol. 2010;7(5):26. human placenta cells in presence of BMP4 and retinoic acid. [16] Paun A, Fox J, Balloy V, et al. Combined Tlr2 and Tlr4 Iran J Basic Med Sci. 2015;18(4):325-333. deficiency increases radiation-induced pulmonary fibrosis in [32] Song J, Cong S, Li Y, et al. Human amniotic mesenchymal mice. Int J Radiat Oncol Biol Phys. 2010;77(4):1198-1205. stem cells inhibit allogeneic lymphocyte proliferation and [17] Cowan PJ, Robson SC, d'Apice AJ. Controlling coagulation reduce the secretion of interferon γ. Xi Bao Yu Fen Zi Mian Yi dysregulation in xenotransplantation. Curr Opin Organ Xue Za Zhi. 2015;31(3):333-337. Transplant. 2011;16(2):214-221. [33] Sabapathy V, Sundaram B, V M S, et al. Human Wharton's [18] Xie J, Hu D, Yu D, et al. A quick self-assessment tool to Jelly Mesenchymal Stem Cells plasticity augments scar-free identify individuals at high risk of type 2 diabetes in the skin wound healing with hair growth. PLoS One. 2014;9(4): Chinese general population. J Epidemiol Community Health. e93726. 2010;64(3):236-242. [34] Intarapat S, Stern CD. Chick stem cells: current progress and [19] Kadam SS, Sudhakar M, Nair PD, et al. Reversal of future prospects. Stem Cell Res. 2013;11(3):1378-1392. experimental diabetes in mice by transplantation of [35] Hu W, Guan FX, Li Y, et al. New methods for inducing the neoisletsgenerated from human amnion. Derived differentiation of amniotic-derived mesenchymal stem cells mesenchymal stroma cells using immuno-isolatory into motor neuron precursor cells. Tissue Cell. 2013;45(5): macrocapsules. Cytotherapy. 2010;12(8):982-991. 295-305. [20] Peron JES, Jazedje T, Brandao WN, et al. Human [36] Bongso A, Fong CY. The therapeutic potential, challenges endometrial-derived mesenchymal stem cells suppress and future clinical directions of stem cells from the Wharton's inflammation in the central nervous system of EAE mice. jelly of the human umbilical cord. Stem Cell Rev. 2013;9(2): Stem Cell Rev Rep. 2012;8(3):940-952. 226-240. [21] Simmous RK, Unwin N, Chiffin SJ, et al. International [37] Roubelakis MG, Trohatou O, Anagnou NP. Amniotic fluid and Diabetes Federationan update of the widence concerning amniotic membrane stem cells: marker discovery. Stem Cells the prevention of type 2 diabetes. Diabetes Res Clin Pract. Int. 2012;2012:107836. 2010;87(2):143-149.

5832 P.O. Box 10002, Shenyang 110180 www.CRTER.org