The Inspiration, Progress, and Future of Evolved Plastic Artificial Neural

Total Page:16

File Type:pdf, Size:1020Kb

The Inspiration, Progress, and Future of Evolved Plastic Artificial Neural 1 Born to Learn: the Inspiration, Progress, and Future of Evolved Plastic Artificial Neural Networks Andrea Soltoggio, Kenneth O. Stanley, Sebastian Risi Abstract—Biological neural networks are systems of extraor- is to simulate natural evolution in-silico, as in the field of dinary computational capabilities shaped by evolution, develop- evolutionary computation (Holland, 1975; Eiben and Smith, ment, and lifelong learning. The interplay of these elements leads 2015). Sub-fields of evolutionary computation such as evo- to the emergence of biological intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural lutionary robotics (Harvey et al., 1997; Nolfi and Floreano, Networks (EPANNs) employ simulated evolution in-silico to breed 2000), learning classifier systems (Lanzi et al., 2003; Butz, plastic neural networks with the aim to autonomously design and 2015), and neuroevolution (Yao, 1999) specifically research create learning systems. EPANN experiments evolve networks algorithms that, by exploiting artificial evolution of physical, that include both innate properties and the ability to change computational, and neural models, seek to discover principles and learn in response to experiences in different environments and problem domains. EPANNs’ aims include autonomously behind intelligent and learning systems. creating learning systems, bootstrapping learning from scratch, In the past, research in evolutionary computation, particu- recovering performance in unseen conditions, testing the com- larly in the area of neuroevolution, was predominantly focused putational advantages of particular neural components, and de- on the evolution of static systems or networks with fixed riving hypotheses on the emergence of biological learning. Thus, neural weights: evolution was seen as an alternative to learning EPANNs may include a large variety of different neuron types and dynamics, network architectures, plasticity rules, and other rules to search for optimal weights in an artificial neural factors. While EPANNs have seen considerable progress over the network (ANN). Also, in traditional and deep ANNs, learning last two decades, current scientific and technological advances in is often performed during an initial training phase, so that artificial neural networks are setting the conditions for radically weights are static when the network is deployed. Recently, new approaches and results. Exploiting the increased availability however, inspiration has originated more strongly from the of computational resources and of simulation environments, the often challenging task of hand-designing learning neural fact that intelligence in biological organisms considerably networks could be replaced by more autonomous and creative relies on powerful and general learning algorithms, designed processes. This paper brings together a variety of inspiring by evolution, that are executed during both development and ideas that define the field of EPANNs. The main methods and continuously throughout life. results are reviewed. Finally, new opportunities and possible As a consequence, the field of neuroevolution is now pro- developments are presented. gressively moving towards the design and evolution of lifelong Index Terms—Artificial Neural Networks, Lifelong Learning, learning plastic neural systems, capable of discovering learn- Plasticity, Evolutionary Computation. ing principles during evolution, and thereby able to acquire I. INTRODUCTION knowledge and skills through the interaction with the envi- ronment (Coleman and Blair, 2012). This paper reviews and Over the course of millions of years, evolution has led to the organizes the field that studies evolved plastic artificial neural emergence of innumerable biological systems, and intelligence networks, and introduces the acronym EPANN. EPANNs are itself, crowned by the evolution of the human brain. Evolution, evolved because parts of their design are determined by an development, and learning are the fundamental processes that arXiv:1703.10371v3 [cs.NE] 8 Aug 2018 evolutionary algorithm; they are plastic because parts of their underpin biological intelligence. Thus, it is no surprise that structures or functions, e.g. the connectivity among neurons, scientists have tried to engineer artificial systems to reproduce change at various time scales while experiencing sensory- such phenomena (Sanchez et al., 1996; Sipper et al., 1997; motor information streams. The final capabilities of such Dawkins, 2003). The fields of artificial intelligence (AI) and networks are autonomously determined by the combination artificial life (AL) (Langton, 1997) are inspired by nature and of evolved genetic instructions and learning that takes place biology in their attempt to create intelligence and forms of as the network interacts with an environment. life from human-designed computation: the main idea is to EPANNs’ ambitious motivations and aims, centered on the abstract the principles from the medium, i.e., biology, and autonomous discovery and design of learning systems, also utilize such principles to devise algorithms and devices that entail a number of research problems. One problem is how reproduce properties of their biological counterparts. to set up evolutionary experiments that can discover learning, One possible way to design complex and intelligent sys- and then to understand the subsequent interaction of dynamics tems, compatible with our natural and evolutionary history, across the evolutionary and learning dimensions. A second Department of Computer Science, Loughborough University, LE11 3TU, open question concerns the appropriate neural model abstrac- Loughborough, UK, [email protected] tions that may capture essential computational principles to Department of Computer Science, University of Central Florida, Orlando, FL, USA, [email protected] enable learning and, more generally, intelligence. One further IT University of Copenhagen, Copenhagen, Denmark, [email protected] problem is the size of very large search spaces, and the high 2 computational cost required to simulate even simple models determine the ultimate capabilities of complex biological of lifelong learning and evolution. Finally, experiments to neural systems (Deary et al., 2009; Hopkins et al., 2014): autonomously discover intelligent learning systems have a different animal species manifest different levels of skills wide range of performance metrics, as their objectives are and intelligence because of their different genetic blueprint sometimes loosely defined as the increase of behavioral com- (Schreiweis et al., 2014). The intricate structure of the brain plexity, intelligence, adaptability, evolvability (Miconi, 2008), emerges from one single zygote cell through a developmental and general learning capabilities (Tonelli and Mouret, 2011). process (Kolb and Gibb, 2011), which is also strongly affected Thus, EPANNs explore a larger search space, and address by input-output learning experiences throughout early life broader research questions, than machine learning algorithms (Hensch et al., 1998; Kolb and Gibb, 2011). Yet high levels specifically designed to improve performance on well-defined of plasticity are maintained throughout the entire lifespan and narrow problems. (Merzenich et al., 1984; Kiyota, 2017). These dimensions, The power of EPANNs, however, derives from two au- evolution, development and learning, also known as the phylo- tonomous search processes: evolution and learning, which genetic (evolution), ontogenetic (development) and epigenetic arguably place them among the most advanced AI and machine (learning) (POE) dimensions (Sipper et al., 1997), are essential learning systems in terms of open-endedness, autonomy, po- for the emergence of biological plastic brains. tential for discovery, creativity, and human-free design. These The POE dimensions lead to a number of research ques- systems rely the least on pre-programmed instructions because tions. Can artificial intelligence systems be entirely engineered they are designed to autonomously evolve while interacting by humans, or do they need to undergo a less human-controlled with a real or simulated world. Plastic networks, in particular process such as evolution? Do intelligent systems need to recurrent plastic networks, are known for their computational learn, or could they be born already knowing? Is there an power (Cabessa and Siegelmann, 2014): evolution can be a optimal balance between innate and acquired knowledge? valuable tool to explore the power of those computational Opinions and approaches are diverse. Additionally, artificial structures. systems do not need to implement the same constraints and In recent years, progress in a number of relevant areas has limitations as biological systems (Bullinaria, 2003). Thus, set the stage for renewed advancements of EPANNs: ANNs, inspiration is not simple imitation. in particular deep networks, are becoming increasingly more EPANNs assume that both evolution and learning, if not successful and popular; there has been a remarkable increase strictly necessary, are conducive to the emergence of a strongly in available computational power by means of parallel GPU bio-inspired artificial intelligence. While artificial evolution is computing and dedicated hardware; a better understanding of justified by the remarkable achievements of natural evolution, search, complexity, and evolutionary computation allows for the role of learning has gathered significance in recent years. less naive approaches; and finally,
Recommended publications
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Evolving Neural Networks That Are Both Modular and Regular: Hyperneat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune
    Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune To cite this version: Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune. Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique. GECCO ’14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, Vancouver, Canada. pp.697-704. hal-01300699 HAL Id: hal-01300699 https://hal.archives-ouvertes.fr/hal-01300699 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To appear in: Proceedings of the Genetic and Evolutionary Computation Conference. 2014 Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga Jean-Baptiste Mouret Jeff Clune Evolving AI Lab ISIR, Université Pierre et Evolving AI Lab Department of Computer Marie Curie-Paris 6 Department of Computer Science CNRS UMR 7222 Science University of Wyoming Paris, France University of Wyoming [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION One of humanity’s grand scientific challenges is to create ar- An open and ambitious question in the field of evolution- tificially intelligent robots that rival natural animals in intel- ary robotics is how to produce robots that possess the intel- ligence and agility.
    [Show full text]
  • High Heritability of Telomere Length, but Low Evolvability, and No Significant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High heritability of telomere length, but low evolvability, and no significant 2 heritability of telomere shortening in wild jackdaws 3 4 Christina Bauch1*, Jelle J. Boonekamp1,2, Peter Korsten3, Ellis Mulder1, Simon Verhulst1 5 6 Affiliations: 7 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 8 9747AG Groningen, The Netherlands 9 2 present address: Institute of Biodiversity Animal Health & Comparative Medicine, College 10 of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United 11 Kingdom 12 3 Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, 13 Germany 14 15 16 * Correspondence to: 17 [email protected] 18 19 Running head: High heritability of telomere length bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Telomere length (TL) and shortening rate predict survival in many organisms. Evolutionary 22 dynamics of TL in response to survival selection depend on the presence of genetic variation 23 that selection can act upon. However, the amount of standing genetic variation is poorly known 24 for both TL and TL shortening rate, and has not been studied for both traits in combination in 25 a wild vertebrate.
    [Show full text]
  • 12 Evolvability of Real Functions
    i i i i Evolvability of Real Functions PAUL VALIANT , Brown University We formulate a notion of evolvability for functions with domain and range that are real-valued vectors, a compelling way of expressing many natural biological processes. We show that linear and fixed-degree polynomial functions are evolvable in the following dually-robust sense: There is a single evolution algorithm that, for all convex loss functions, converges for all distributions. It is possible that such dually-robust results can be achieved by simpler and more-natural evolution algorithms. Towards this end, we introduce a simple and natural algorithm that we call wide-scale random noise and prove a corresponding result for the L2 metric. We conjecture that the algorithm works for a more general class of metrics. 12 Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa- tion—Self-modifying machines; G.1.6 [Numerical Analysis]: Optimization—Convex programming; I.2.6 [Artificial Intelligence]: Learning—Concept learning;J.3[Computer Applications]: Life and Medical Sciences—Biology and genetics General Terms: Algorithms, Theory Additional Key Words and Phrases: Evolvability, optimization ACM Reference Format: Valiant, P. 2014. Evolvability of real functions. ACM Trans. Comput. Theory 6, 3, Article 12 (July 2014), 19 pages. DOI:http://dx.doi.org/10.1145/2633598 1. INTRODUCTION Since Darwin first assembled the empirical facts that pointed to evolution as the source of the hugely diverse and yet finely honed mechanisms of life, there has been the mys- tery of how the biochemical mechanisms of evolution (indeed, how any mechanism) can apparently consistently succeed at finding innovative solutions to the unexpected problems of life.
    [Show full text]
  • The University of Chicago Epistasis, Contingency, And
    THE UNIVERSITY OF CHICAGO EPISTASIS, CONTINGENCY, AND EVOLVABILITY IN THE SEQUENCE SPACE OF ANCIENT PROTEINS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES AND THE PRITZKER SCHOOL OF MEDICINE IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOCHEMISTRY AND MOLECULAR BIOPHYSICS BY TYLER NELSON STARR CHICAGO, ILLINOIS AUGUST 2018 Table of Contents List of Figures .................................................................................................................... iv List of Tables ..................................................................................................................... vi Acknowledgements ........................................................................................................... vii Abstract .............................................................................................................................. ix Chapter 1 Introduction ......................................................................................................1 1.1 Sequence space and protein evolution .............................................................1 1.2 Deep mutational scanning ................................................................................2 1.3 Epistasis ...........................................................................................................3 1.4 Chance and determinism ..................................................................................4 1.5 Evolvability ......................................................................................................6
    [Show full text]
  • Studying Professional Learning from the Perspective Of
    STUDYING PROFESSIONAL LEARNING FROM THE PERSPECTIVE OF WITTGENSTEIN’S PICTURE OF LANGUAGE AND MEANING JOSEPH SAMUEL GARDNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN EDUCATION YORK UNIVERSITY TORONTO, ONTARIO March 2019 © Joseph Sam Gardner, 2019 Abstract My own experience working with professionals is that while ongoing professional learning is valued, in most cases there is little that is done well to support such learning. The dominant foci in both practice and the relevant academic fields tend more towards issues connected to linear features of dissemination, to the development of programmatic change approaches, and to scientism. My perception is that these fields are wedded to outdated and problematic foundational metaphors such as ‘trajectories,’ ‘impacts,’ and ‘outcomes,’ to the quantification of learning processes and outcomes, and to the idea of knowledge and research as things that are somehow “transferable.” The aim of this dissertation is, therefore, to find a grounding way to think and talk about professionals’ learning in situ. In turning to Wittgenstein I shift the fundamentals underlying our talk about professional learning towards a picture of language and meaning. I draw a picture of professional learning based on Wittgenstein’s picture of language and meaning, emphasizing Wittgenstein’s notion of a ‘picture,’ versus a ‘theory’ (i.e., a hypothetical, causal explanatory account), of language. Wittgenstein’s picture of language and meaning can be seen as a reaction to the representationalist (cognitivist, intellectualist) approach to language and meaning initiated mainly by Frege. Wittgenstein sketches a picture of language and meaning consisting of the interrelated parts of ‘language-games,’ ‘grammar,’ and ‘rules,’ focused around the ‘use’ of signs.
    [Show full text]
  • Reconciling Explanations for the Evolution of Evolvability
    Reconciling Explanations for the Evolution of Evolvability Bryan Wilder and Kenneth O. Stanley To Appear In: Adaptive Behavior journal. London: SAGE, 2015. Abstract Evolution's ability to find innovative phenotypes is an important ingredient in the emergence of complexity in nature. A key factor in this capability is evolvability, or the propensity towards phenotypic variation. Numerous explanations for the origins of evolvability have been proposed, often differing in the role that they attribute to adaptive processes. To provide a new perspective on these explanations, experiments in this paper simulate evolution in gene regulatory networks, revealing that the type of evolvability in question significantly impacts the dynamics that follow. In particular, while adaptive processes result in evolvable individuals, processes that are either neutral or that explicitly encourage divergence result in evolvable populations. Furthermore, evolvability at the population level proves the most critical factor in the production of evolutionary innovations, suggesting that nonadaptive mechanisms are the most promising avenue for investigating and understanding evolvability. These results reconcile a large body of work across biology and inform attempts to reproduce evolvability in artificial settings. Keywords: Evolvability, evolutionary computation, gene regulatory networks Introduction Something about the structure of biological systems allows evolution to find new innovations. An important question is whether such evolvability (defined roughly as the propensity to introduce novel 1 phenotypic variation) is itself a product of selection. In essence, is evolvability evolvable (Pigliucci, 2008)? Much prior work has attempted to encourage evolvability in artificial systems in the hope of reproducing the open-ended dynamics of biological evolution (Reisinger & Miikkulainen, 2006; Grefenstette, 1999; Bedau et al., 2000; Channon, 2006; Spector, Klein, & Feinstein, 2007; Standish, 2003).
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]
  • Cell Biology, Molecular Embryology, Lamarckian and Darwinian Selection As Evolvability
    Evolvability of multicellular systems 7 Cell biology, molecular embryology, Lamarckian and Darwinian selection as evolvability H. Hoenigsberg Instituto de Genética Evolutiva y Biologia Molecular, Universidad Manuela Beltrán, Bogotá, DC, Colombia Corresponding author: H. Hoenigsberg E-mail: [email protected] Genet. Mol. Res. 2 (1): 7-28 (2003) Received July 31, 2002 Published February 6, 2003 ABSTRACT. The evolvability of vertebrate systems involves various mechanisms that eventually generate cooperative and nonlethal functional variation on which Darwinian selection can operate. It is a truism that to get vertebrate animals to develop a coherent machine they first had to inherit the right multicellular ontogeny. The ontogeny of a metazoan involves cell lineages that progressively deny their own capacity for increase and for totipotency in benefit of the collective interest of the individual. To achieve such cell altruism Darwinian dynamics rescinded its original unicellular mandate to reproduce. The distinction between heritability at the level of the cell lineage and at the level of the individual is crucial. However, its implications have seldom been explored in depth. While all out reproduction is the Darwinian measure of success among unicellular organisms, a high replication rate of cell lineages within the organism may be deleterious to the individual as a functional unit. If a harmoniously functioning unit is to evolve, mechanisms must have evolved whereby variants that increase their own replication rate by failing to accept their own somatic duties are controlled. For questions involving organelle origins, see Godelle and Reboud, 1995 and Hoekstra, 1990. In other words, modifiers of conflict that control cell lineages with conflicting genes and new mutant replication rates that deviate from their somatic duties had to evolve.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Behavioural Processes 85 (2010) 246–251 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc Functional relationships for determining similarities and differences in comparative cognition Anthony A. Wright ∗ Department of Neurobiology and Anatomy, Medical School, University of Texas Health Center at Houston, P.O. Box 20708, Houston, TX 77225, United States article info abstract Article history: Pigeons, capuchin monkeys and rhesus monkeys were trained in nearly identical same/different tasks Received 6 May 2010 with an expanding 8-item training set and showed qualitatively similar functional relationships: increas- Received in revised form 22 July 2010 ing novel-stimulus transfer (i.e., concept learning) as a function of the training-set size and the level of Accepted 30 July 2010 transfer eventually becoming equivalent to baseline training performance. There were also some quan- titative functional differences: pigeon transfer increases were more gradual and baseline-equivalent Keywords: transfer occurred at a larger set size (256 items) than for monkeys (128 items).
    [Show full text]
  • Just How Lamarckian Is CRISPR-Cas Immunity: the Continuum of Evolvability Mechanisms Eugene V
    Koonin and Wolf Biology Direct (2016) 11:9 DOI 10.1186/s13062-016-0111-z OPINION Open Access Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms Eugene V. Koonin* and Yuri I. Wolf Abstract The CRISPR-Cas system of prokaryotic adaptive immunity displays features of a mechanism for directional, Lamarckian evolution. Indeed, this system modifies a specific locus in a bacterial or archaeal genome by inserting a piece of foreign DNA into a CRISPR array which results in acquired, heritable resistance to the cognate selfish element. A key element of the Lamarckian scheme is the specificity and directionality of the mutational process whereby an environmental cue causes only mutations that provide specific adaptations to the original challenge. In the case of adaptive immunity, the specificity of mutations is equivalent to self-nonself discrimination. Recent studies on the CRISPR mechanism have shown that the levels of discrimination can substantially differ such that in some CRISPR-Cas variants incorporation of DNA is random whereas discrimination occurs by selection of cells that carry cognate inserts. In other systems, a higher level of specificity appears to be achieved via specialized mechanisms. These findings emphasize the continuity between random and directed mutations and the critical importance of evolved mechanisms that govern the mutational process. Reviewers: This article has been reviewed by Yitzhak Pilpel, Martijn Huynen, and Bojan Zagrovic. Keywords: CRISPR-Cas, Self-nonself discrimination, Lamarckian evolution, Darwinian evolution, DNA repair Background For several decades in the 20th century, IAC has fallen out Inheritance of Acquired adaptive Characters (IAC) has of fashion in mainstream biology, and worse, has been been a subject of thorny, circuitous debates among bi- central to several pseudo-scientific fads the foremost of ologists over the last two centuries [1].
    [Show full text]
  • Concept Learning for Robot Intelligence Justus Piater, University of Innsbruck
    Concept Learning For Robot Intelligence Justus Piater, University of Innsbruck Abstract Current robot learning, and machine learning in general, requires carefully- engineered setups (environments, objective functions, training data, etc.) for learning to succeed. Perception and action spaces are specially crafted to meet the requirements of the learning objective, which is specified in advance. How can we construct robot learning systems that can learn in an open-ended fashion, acquire skills not foreseen by its designers, and scale up to virtually unlimited levels of complexity? I argue that a key to achieving this lies in the robot's ability to learn abstract concepts that can be reused as a basis for future learning, both in autonomous exploration and for teaching by humans. Table of Contents 1. Preface ..................................................................................... 1 2. Skill Learning Using Stacked Classifiers .......................................... 4 3. Skill Learning Using Projective Simulation ...................................... 7 4. Search Space Management ......................................................... 11 5. Conclusions ............................................................................. 13 1. Preface 1.1. Classical Machine Learning [Image1 from New Scientist2] [From my LinkedIn page] [Source3] [Image4 from The Next Web5] 1 https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2017/05/23120156/ rexfeatures_8828108ac1.jpg 2 https://www.newscientist.com/article/2132086-deepminds-ai-beats-worlds-best-go-player-in- latest-face-off/ 3 http://5.imimg.com/data5/YN/EU/MY-54329049/face-detection-and-recognition-500x500.jpg 4 https://cdn0.tnwcdn.com/wp-content/blogs.dir/1/files/2016/09/SwiftKey-neural-networks- hed-796x398.jpg 5 https://thenextweb.com/apps/2016/09/16/swiftkey-improves-its-android-keyboard-predictions- with-neural-networks/ 1 Preface 1.2. Autonomous Airshow Apprenticeship Learning Via Inverse Reinforcement Learning [Abbeel et al.
    [Show full text]