The University of Chicago Epistasis, Contingency, And

Total Page:16

File Type:pdf, Size:1020Kb

The University of Chicago Epistasis, Contingency, And THE UNIVERSITY OF CHICAGO EPISTASIS, CONTINGENCY, AND EVOLVABILITY IN THE SEQUENCE SPACE OF ANCIENT PROTEINS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES AND THE PRITZKER SCHOOL OF MEDICINE IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOCHEMISTRY AND MOLECULAR BIOPHYSICS BY TYLER NELSON STARR CHICAGO, ILLINOIS AUGUST 2018 Table of Contents List of Figures .................................................................................................................... iv List of Tables ..................................................................................................................... vi Acknowledgements ........................................................................................................... vii Abstract .............................................................................................................................. ix Chapter 1 Introduction ......................................................................................................1 1.1 Sequence space and protein evolution .............................................................1 1.2 Deep mutational scanning ................................................................................2 1.3 Epistasis ...........................................................................................................3 1.4 Chance and determinism ..................................................................................4 1.5 Evolvability ......................................................................................................6 1.6 Ancestral protein reconstruction ......................................................................6 1.7 Research questions and approach ....................................................................7 Chapter 2 Epistasis in protein evolution .........................................................................10 2.1 Summary ........................................................................................................10 2.2 Introduction ....................................................................................................11 2.3 Epistasis and protein sequence space .............................................................13 2.4 Prevalence and strength of epistasis ..............................................................15 2.4.1 Epistasis in a protein’s local sequence neighborhood ......................15 2.4.2 Epistasis in long-term protein evolution ..........................................17 2.5 Specificity of epistasis and causal mechanisms .............................................24 2.5.1 Specific epistasis ..............................................................................25 2.5.2 Nonspecific epistasis ........................................................................28 2.5.3 Specific positive versus nonspecific negative epistasis ...................31 2.5.4 Specific and nonspecific epistasis in long-term evolution ...............32 2.6 Evolutionary implications of epistasis ...........................................................34 2.6.1 Evolvability and robustness ..............................................................34 2.6.2 Historical contingency ......................................................................35 2.6.3 Reversibility .....................................................................................36 2.6.4 Long-term evolutionary constraints .................................................37 2.7 Conclusions and future directions ..................................................................38 Chapter 3 Pervasive contingency and entrenchment in a billion years of Hsp90 evolution ........................................................................................................42 3.1 Summary ........................................................................................................42 3.2 Introduction ....................................................................................................43 3.3 Results ............................................................................................................45 3.3.1 The historical trajectory of Hsp90 sequence evolution ....................45 3.3.2 Entrenchment and irreversibility ......................................................46 ii 3.3.3 Intramolecular versus intermolecular epistasis ................................47 3.3.4 Contingency and permissive substitutions .......................................50 3.3.5 Specificity of epistatic interactions ..................................................51 3.4 Discussion ......................................................................................................56 3.4.1 Relation to prior work ......................................................................56 3.4.2 Limitations ........................................................................................57 3.4.3 Implications ......................................................................................58 3.5 Methods..........................................................................................................59 Chapter 4 Alternative evolutionary histories in the sequence space of an ancient protein ............................................................................................................72 4.1 Summary ........................................................................................................72 4.2 Introduction ....................................................................................................73 4.3 Results ............................................................................................................75 4.3.1 Deep mutational scanning of an ancient evolutionary transition .....75 4.3.2 The historical outcome is not unique in its function ........................76 4.3.3 The historical outcome is not unique in its accessibility ..................77 4.3.4 The historical starting point is not unique in its evolvability ...........80 4.3.5 Historical permissive substitutions are broadly permissive .............81 4.4 Discussion ......................................................................................................85 4.5 Methods..........................................................................................................88 Chapter 5 Epistasis and evolvability in a protein sequence-function landscape ..........105 5.1 Summary ......................................................................................................105 5.2 Introduction ..................................................................................................105 5.3 Results & Discussion ...................................................................................108 5.3.1 A global model of the sequence-function landscape ......................108 5.3.2 The genetic determinants of ERE- and SRE-binding .....................113 5.3.3 Partitioning the determinants of ERE- and SRE-binding ...............118 5.3.4 Epistatic and main-effect terms synergize to cause single-step transitions in specificity ..................................................................122 5.4 Conclusions and Future Directions ..............................................................125 5.5 Methods........................................................................................................127 Chapter 6 Conclusion ...................................................................................................130 Appendix 1 Supplementary figures for Chapter 3 ..........................................................133 Appendix 2 Supplementary figures and tables for Chapter 4 .........................................144 Bibliography ...................................................................................................................156 iii List of Figures Figure 2.1. Patterns of epistasis between mutations ......................................................................11 Figure 2.2. Evidence for epistasis in extant sequence data ............................................................20 Figure 2.3. Mechanisms of epistasis and their evolutionary implications .....................................25 Figure 2.4. Examples of specific and nonspecific epistasis ...........................................................26 Figure 3.1. Ancestral states are deleterious in the yeast Hsp90 NTD ............................................45 Figure 3.2. Fitness effects of substitutions are modified by intramolecular epistasis ...................48 Figure 3.3. Widespread contingency and entrenchment ................................................................51 Figure 3.4. Epistatic interactions are specific ................................................................................52 Figure 3.5. A daisy-chain model of epistasis .................................................................................55 Figure 4.1. Diverse sequences and mechanisms can yield the derived DNA specificity ..............74 Figure 4.2. Evolvability of SRE specificity in an ancestral sequence space .................................79 Figure 4.3. Historical permissive substitutions broadly enhanced evolvability ............................83 Figure 4.4. The effect of historical permissive substitutions is mediated by nonspecific increases in affinity ............................................................................................................................85
Recommended publications
  • Two Types of Cis-Trans Compensation in the Evolution of Transcriptional Regulation
    Two types of cis-trans compensation in the evolution of transcriptional regulation K. Ryo Takahasia,b,1, Takashi Matsuoc,2, and Toshiyuki Takano-Shimizu-Kounoa,d,e,1,3 aDepartment of Population Genetics, National Institute of Genetics, Misima 411-8540, Japan; bLab 31, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; cDepartment of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; dDepartment of Genetics, Graduate University for Advanced Studies (SOKENDAI), Misima 411-8540, Japan; and eDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan Edited by Gregory Gibson, Georgia Tech University, Atlanta, GA, and accepted by the Editorial Board August 3, 2011 (received for review April 18, 2011) Because distant species often share similar macromolecules, regu- regulatory changes to gene expression divergence would be latory mutations are often considered responsible for much of spuriously exaggerated. their biological differences. Recently, a large portion of regulatory Here, by specifically discriminating two distinct types of cis-trans changes has been attributed to cis-regulatory mutations. Here, we compensation, we show, based on stochastic simulations, that examined an alternative possibility that the putative contribution compensatory regulatory evolution under stabilizing selection of cis-regulatory changes was, in fact, caused by compensatory ac- could reduce heterospecific binding and therefore explain the tion of cis- and trans-regulatory elements. First, we show by sto- hypothetical increase in the relative contribution of cis-regulatory chastic simulations that compensatory cis-trans evolution changes without invoking preferential fixation of cis- over trans- maintains the binding affinity of a transcription factor at a constant regulatory mutations (5).
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Evolving Neural Networks That Are Both Modular and Regular: Hyperneat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune
    Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune To cite this version: Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune. Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique. GECCO ’14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, Vancouver, Canada. pp.697-704. hal-01300699 HAL Id: hal-01300699 https://hal.archives-ouvertes.fr/hal-01300699 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To appear in: Proceedings of the Genetic and Evolutionary Computation Conference. 2014 Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga Jean-Baptiste Mouret Jeff Clune Evolving AI Lab ISIR, Université Pierre et Evolving AI Lab Department of Computer Marie Curie-Paris 6 Department of Computer Science CNRS UMR 7222 Science University of Wyoming Paris, France University of Wyoming [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION One of humanity’s grand scientific challenges is to create ar- An open and ambitious question in the field of evolution- tificially intelligent robots that rival natural animals in intel- ary robotics is how to produce robots that possess the intel- ligence and agility.
    [Show full text]
  • Linking Transcriptomic and Genomic Variation to Growth in Brook Charr Hybrids (Salvelinus Fontinalis, Mitchill)
    Heredity (2013) 110, 492–500 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis, Mitchill) B Bougas1, E Normandeau1, C Audet2 and L Bernatchez1 Hybridization can lead to phenotypic differences arising from changes in gene expression patterns or new allele combinations. Variation in gene expression is thought to be controlled by differences in transcription regulation of parental alleles, either through cis- or trans-regulatory elements. A previous study among brook charr hybrids from different populations (Rupert, Laval, and domestic) showing distinct length at age during early life stages also revealed different patterns in transcription regulation inheritance of transcript abundance. In the present study, transcript abundance using RNA-sequencing and quantitative real-time PCR, single-nucleotide polymorphism (SNP) genotypes and allelic imbalance were assessed in order to understand the molecular mechanisms underlying the observed transcriptomic and differences in length at age among domestic  Rupert hybrids and Laval  domestic hybrids. We found 198 differentially expressed genes between the two hybrid crosses, and allelic imbalance could be analyzed for 69 of them. Among these 69 genes, 36 genes exhibited cis-acting regulatory effects in both of the two crosses, thus confirming the prevalent role of cis-acting regulatory elements in the regulation of differentially expressed genes among intraspecific hybrids. In addition, we detected a significant association between SNP genotypes of three genes and length at age. Our study is thus one of the few that have highlighted some of the molecular mechanisms potentially involved in the differential phenotypic expression in intraspecific hybrids for nonmodel species.
    [Show full text]
  • On the Mechanistic Nature of Epistasis in a Canonical Cis-Regulatory Element
    RESEARCH ARTICLE On the mechanistic nature of epistasis in a canonical cis-regulatory element Mato Lagator1†, Tiago Paixa˜ o1†, Nicholas H Barton1, Jonathan P Bollback1,2, Ca˘ lin C Guet1* 1Institute of Science and Technology Austria, Klosterneuburg, Austria; 2Department of Integrative Biology, University of Liverpool, Liverpool, United Kingdom Abstract Understanding the relation between genotype and phenotype remains a major challenge. The difficulty of predicting individual mutation effects, and particularly the interactions between them, has prevented the development of a comprehensive theory that links genotypic changes to their phenotypic effects. We show that a general thermodynamic framework for gene regulation, based on a biophysical understanding of protein-DNA binding, accurately predicts the sign of epistasis in a canonical cis-regulatory element consisting of overlapping RNA polymerase and repressor binding sites. Sign and magnitude of individual mutation effects are sufficient to predict the sign of epistasis and its environmental dependence. Thus, the thermodynamic model offers the correct null prediction for epistasis between mutations across DNA-binding sites. Our results indicate that a predictive theory for the effects of cis-regulatory mutations is possible from first principles, as long as the essential molecular mechanisms and the constraints these impose on a biological system are accounted for. DOI: 10.7554/eLife.25192.001 *For correspondence: calin@ist. ac.at Introduction The interaction between individual mutations – epistasis – determines how a genotype maps onto a † These authors contributed phenotype (Wolf et al., 2000; Phillips, 2008; Breen et al., 2012). As such, it determines the struc- equally to this work ture of the fitness landscape (de Visser and Krug, 2014) and plays a crucial role in defining adaptive Competing interests: The pathways and evolutionary outcomes of complex genetic systems (Sackton and Hartl, 2016).
    [Show full text]
  • High Heritability of Telomere Length, but Low Evolvability, and No Significant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High heritability of telomere length, but low evolvability, and no significant 2 heritability of telomere shortening in wild jackdaws 3 4 Christina Bauch1*, Jelle J. Boonekamp1,2, Peter Korsten3, Ellis Mulder1, Simon Verhulst1 5 6 Affiliations: 7 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 8 9747AG Groningen, The Netherlands 9 2 present address: Institute of Biodiversity Animal Health & Comparative Medicine, College 10 of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United 11 Kingdom 12 3 Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, 13 Germany 14 15 16 * Correspondence to: 17 [email protected] 18 19 Running head: High heritability of telomere length bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Telomere length (TL) and shortening rate predict survival in many organisms. Evolutionary 22 dynamics of TL in response to survival selection depend on the presence of genetic variation 23 that selection can act upon. However, the amount of standing genetic variation is poorly known 24 for both TL and TL shortening rate, and has not been studied for both traits in combination in 25 a wild vertebrate.
    [Show full text]
  • Epistatic Interactions and Epigenetic Modifications for Molecular Stratification of Chronic Diseases Ting Xie
    Epistatic interactions and epigenetic modifications for molecular stratification of chronic diseases Ting Xie To cite this version: Ting Xie. Epistatic interactions and epigenetic modifications for molecular stratification of chronic dis- eases. Human health and pathology. Université de Lorraine, 2017. English. NNT : 2017LORR0339. tel-01835056 HAL Id: tel-01835056 https://tel.archives-ouvertes.fr/tel-01835056 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2-
    [Show full text]
  • 12 Evolvability of Real Functions
    i i i i Evolvability of Real Functions PAUL VALIANT , Brown University We formulate a notion of evolvability for functions with domain and range that are real-valued vectors, a compelling way of expressing many natural biological processes. We show that linear and fixed-degree polynomial functions are evolvable in the following dually-robust sense: There is a single evolution algorithm that, for all convex loss functions, converges for all distributions. It is possible that such dually-robust results can be achieved by simpler and more-natural evolution algorithms. Towards this end, we introduce a simple and natural algorithm that we call wide-scale random noise and prove a corresponding result for the L2 metric. We conjecture that the algorithm works for a more general class of metrics. 12 Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa- tion—Self-modifying machines; G.1.6 [Numerical Analysis]: Optimization—Convex programming; I.2.6 [Artificial Intelligence]: Learning—Concept learning;J.3[Computer Applications]: Life and Medical Sciences—Biology and genetics General Terms: Algorithms, Theory Additional Key Words and Phrases: Evolvability, optimization ACM Reference Format: Valiant, P. 2014. Evolvability of real functions. ACM Trans. Comput. Theory 6, 3, Article 12 (July 2014), 19 pages. DOI:http://dx.doi.org/10.1145/2633598 1. INTRODUCTION Since Darwin first assembled the empirical facts that pointed to evolution as the source of the hugely diverse and yet finely honed mechanisms of life, there has been the mys- tery of how the biochemical mechanisms of evolution (indeed, how any mechanism) can apparently consistently succeed at finding innovative solutions to the unexpected problems of life.
    [Show full text]
  • What Can We Learn from Fitness Landscapes?
    What can we learn from fitness landscapes? The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hartl, Daniel L. 2014. “What Can We Learn from Fitness Landscapes?” Current Opinion in Microbiology 21 (October): 51–57. doi:10.1016/j.mib.2014.08.001. Published Version 10.1016/j.mib.2014.08.001 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:22898356 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Elsevier Editorial System(tm) for Current Opinion in Microbiology Manuscript Draft Manuscript Number: Title: What Can We Learn From Fitness Landscapes? Article Type: 22 Growth&Develop: prokaryotes (2014 Corresponding Author: Dr. Daniel Hartl, Corresponding Author's Institution: First Author: Daniel Hartl Order of Authors: Daniel Hartl Manuscript Click here to view linked References What Can We Learn From Fitness Landscapes? Daniel L. Hartl Department of Organismic and Evolutionary Biology Harvard University Cambridge, Massachusetts 02138 USA Contact information: Email: [email protected], TEL: 617-396-3917 In evolutionary biology, the fitness landscape of set of mutants is the mapping of genotypes onto phenotypes when the phenotype is fitness or some proxy for fitness such as growth rate or drug resistance. When the set of mutants is not too large, it is possible to create every possible combination of mutants and map these to fitness.
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • Reconciling Explanations for the Evolution of Evolvability
    Reconciling Explanations for the Evolution of Evolvability Bryan Wilder and Kenneth O. Stanley To Appear In: Adaptive Behavior journal. London: SAGE, 2015. Abstract Evolution's ability to find innovative phenotypes is an important ingredient in the emergence of complexity in nature. A key factor in this capability is evolvability, or the propensity towards phenotypic variation. Numerous explanations for the origins of evolvability have been proposed, often differing in the role that they attribute to adaptive processes. To provide a new perspective on these explanations, experiments in this paper simulate evolution in gene regulatory networks, revealing that the type of evolvability in question significantly impacts the dynamics that follow. In particular, while adaptive processes result in evolvable individuals, processes that are either neutral or that explicitly encourage divergence result in evolvable populations. Furthermore, evolvability at the population level proves the most critical factor in the production of evolutionary innovations, suggesting that nonadaptive mechanisms are the most promising avenue for investigating and understanding evolvability. These results reconcile a large body of work across biology and inform attempts to reproduce evolvability in artificial settings. Keywords: Evolvability, evolutionary computation, gene regulatory networks Introduction Something about the structure of biological systems allows evolution to find new innovations. An important question is whether such evolvability (defined roughly as the propensity to introduce novel 1 phenotypic variation) is itself a product of selection. In essence, is evolvability evolvable (Pigliucci, 2008)? Much prior work has attempted to encourage evolvability in artificial systems in the hope of reproducing the open-ended dynamics of biological evolution (Reisinger & Miikkulainen, 2006; Grefenstette, 1999; Bedau et al., 2000; Channon, 2006; Spector, Klein, & Feinstein, 2007; Standish, 2003).
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]