Technical Reference Guide HP Compaq 8200 Elite Series Business Desktop Computers

Total Page:16

File Type:pdf, Size:1020Kb

Technical Reference Guide HP Compaq 8200 Elite Series Business Desktop Computers Technical Reference Guide HP Compaq 8200 Elite Series Business Desktop Computers Document Part Number: 656770-001 March 2011 This document provides information on the design, architecture, function, and capabilities of the HP Compaq 8200 Elite Series Business Desktop Computers. This information may be used by engineers, technicians, administrators, or anyone needing detailed information on the products covered. © Copyright 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP is not responsible for any omissions or errors contained herein. Microsoft, MS-DOS, Windows, Windows NT, Windows XP, Windows Vista, and Windows 7 are trademarks of Microsoft Corporation in the U.S. and other countries. Intel, Intel Core i3/i5/i7, Pentium Dual-Core, Intel Celeron, Intel vPro, and Intel Inside are trademarks of Intel Corporation in the U.S. and in other countries. Adobe, Acrobat, and Acrobat Reader are trademarks or registered trademarks of Adobe Systems Incorporated. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. This document contains proprietary information that is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. Technical Reference Guide HP Compaq 8200 Elite Series Business Desktop Computers First Edition (March 2011) Document Part Number: 656770-001 Contents 1 Introduction 1.1 About this Guide . 1–1 1.1.1 Online Viewing . 1–1 1.1.2 Hardcopy . 1–1 1.2 Additional Information Sources . 1–1 1.3 Serial Number . 1–2 1.4 Notational Conventions . 1–2 1.5.1 Special Notices. 1–2 1.5.2 Values. 1–2 1.5 Common Acronyms and Abbreviations . 1–3 2 System Overview 2.1 Introduction . 2–1 2.2 Features . 2–2 2.3 System Architecture . 2–4 2.3.1 Intel Processor Support . 2–6 2.3.2 Chipset . 2–6 2.3.3 Support Components . 2–7 2.3.4 System Memory . 2–7 2.3.5 Mass Storage Accomodations . 2–8 2.3.6 Legacy Input/Output Interfaces . 2–8 2.3.7 Universal Serial Bus Interface . 2–8 2.3.8 Network Interface Controller . 2–8 2.3.9 Graphics Subsystem . 2–9 2.3.10 Audio Subsystem . 2–9 2.3.11 HP ProtectTools Embedded Security . 2–9 2.4 Specifications. 2–10 Technical Reference Guide www.hp.com iii Contents 3 Processor/Memory Subsystem 3.1 Introduction . 3–1 3.2 Intel Processor . 3–2 3.2.1 Intel Processor Features . 3–2 3.2.2 Processor Changing/Upgrading . 3–3 3.3 Memory Subsystem . 3–4 3.3.1 Memory Upgrading . 3–5 3.3.2 Memory Mapping and Pre-allocation . 3–5 4 System Support 4.1 Introduction . 4–1 4.2 PCI Bus Overview. 4–1 4.2.1 PCI 2.3 Bus Operation . 4–1 4.2.2 PCI Express Bus Operation . 4–2 4.2.3 Option ROM Mapping . 4–3 4.2.4 PCI Interrupts . 4–3 4.2.5 PCI Power Management Support. 4–3 4.2.6 PCI Connectors. 4–4 4.3 System Resources . 4–6 4.3.1 Interrupts . 4–6 4.3.2 Direct Memory Access. 4–7 4.4 Real-Time Clock and Configuration Memory. 4–8 4.4.1 Clearing CMOS . 4–8 4.4.2 Standard CMOS Locations. 4–9 4.5 System Management . 4–9 4.5.1 Security Functions . 4–9 4.5.2 Power Management . 4–11 4.5.3 System Status . 4–12 4.5.4 Thermal Sensing and Cooling . 4–13 4.6 Register Map and Miscellaneous Functions . 4–13 4.6.1 System I/O Map . 4–13 4.6.2 GPIO Functions . 4–15 5 Input/Output Interfaces 5.1 Introduction . 5–1 5.2 SATA/eSATA Interface . 5–2 5.2.1 SATA Inteerface. 5–2 5.2.2 eSATA Interface. ..
Recommended publications
  • User's Guide PN: 961Ć047Ć081
    6950 Enterprise Gateway Server USER’S GUIDE """""""""""""""""""""""""""" PN: 961-047-091 Revision D September 1999 " NOTICE The information contained herein is proprietary and is provided solely for the purpose of allowing customers to operate and service Intermec manufactured equipment and is not to be released, reproduced, or used for any other purpose without written permission of Intermec. Disclaimer of Warranties. The sample source code included in this document is presented for reference only. The code does not necessarily represent complete, tested programs. The code is provided AS IS WITH ALL FAULTS." ALL WARRANTIES ARE EXPRESSLY DISCLAIMED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. We welcome your comments concerning this publication. Although every effort has been made to keep it free of errors, some may occur. When reporting a specific problem, please describe it briefly and include the book title and part number, as well as the paragraph or figure number and the page number. Send your comments to: Intermec Technologies Corporation Publications Department 550 Second Street SE Cedar Rapids, IA 52401 INTERMEC and NORAND are registered trademarks and ENTERPRISE WIRELESS LAN, UAP, and UNIVERSAL ACCESS POINT are trademarks of Intermec Technologies Corporation. 1996 Intermec Technologies Corporation. All rights reserved. Acknowledgments AS/400 and IBM are registered trademarks of International Business Machines Corporation. DEC, VAX, and VT220 are registered trademarks of Digital Equipment Corporation. UNIX is a registered trademark of UNIX System Laboratories, Inc. B CAUTION: Intermec Technologies Corporation suggests you buy cables from us to connect with other devices. Our cables are safe, meet FCC rules, and suit our products.
    [Show full text]
  • PCSA Oct 2001
    Understanding CPU Upgrades In theory, one way to t seems that every time a new software product is released the system require- ments are increased - everything from the hard drive capacity and CPU speed increase the performance of a Ito the required RAM. One of the apparently obvious ways to gain a speed PC with little effort is to increase is by upgrading the CPU. But such an upgrade isn’t always cost effective and in some cases simply increasing the available RAM can help considerably to upgrade the CPU. Surely it boost the apparent speed of the PC. Sometimes though the best (and maybe only) option is to upgrade the CPU, although this can be a more involved process than it can’t be that difficult? might at first seem due to socket/motherboard incompatibilities, differing CPU and Actually there’s lots to think RAM speed requirements, cooling problems and inevitably assorted knock-on effects causing the upgrade to be anything but cost effective. Also, it is worth about. remembering that just because the replacement CPU has, for example, double the clock rate of the old unit doesn’t necessarily mean that the new one will increase the By Phil Morris processing performance of the PC in question by anything like 100%. Technical Writer This article looks at some of the options for upgrading the CPUs in existing systems. It is extremely unlikely that recent processors like AMD’s Duron (and forthcoming Hammer) and Intel’s Pentium 4 and Itanium will require upgrading for some time, so I will omit those in the context of this article.
    [Show full text]
  • VX97 User's Manual ASUS CONTACT INFORMATION Asustek COMPUTER INC
    R VX97 Pentium Motherboard USER'S MANUAL USER'S NOTICE No part of this manual, including the products and softwares described in it, may be repro- duced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means, except documentation kept by the purchaser for backup pur- poses, without the express written permission of ASUSTeK COMPUTER INC. (“ASUS”). ASUS PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PAR- TICULAR PURPOSE. IN NO EVENT SHALL ASUS, ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDEN- TAL, OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSI- NESS AND THE LIKE), EVEN IF ASUS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS MANUAL OR PRODUCT. Products and corporate names appearing in this manual may or may not be registered trade- marks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. • Intel, LANDesk, and Pentium are registered trademarks of Intel Corporation. • IBM and OS/2 are registered trademarks of International Business Machines. • Symbios is a registered trademark of Symbios Logic Corporation. • Windows and MS-DOS are registered trademarks of Microsoft Corporation. • Sound Blaster AWE32 and SB16 are trademarks of Creative Technology Ltd. • Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
    [Show full text]
  • COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous Multi-Threading and Multi-Core Processors Edgar Gabriel Spring 2011
    COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous multi-threading and multi-core processors Edgar Gabriel Spring 2011 Edgar Gabriel Moore’s Law • Long-term trend on the number of transistor per integrated circuit • Number of transistors double every ~18 month Source: http://en.wikipedia.org/wki/Images:Moores_law.svg COSC 6385 – Computer Architecture Edgar Gabriel 1 What do we do with that many transistors? • Optimizing the execution of a single instruction stream through – Pipelining • Overlap the execution of multiple instructions • Example: all RISC architectures; Intel x86 underneath the hood – Out-of-order execution: • Allow instructions to overtake each other in accordance with code dependencies (RAW, WAW, WAR) • Example: all commercial processors (Intel, AMD, IBM, SUN) – Branch prediction and speculative execution: • Reduce the number of stall cycles due to unresolved branches • Example: (nearly) all commercial processors COSC 6385 – Computer Architecture Edgar Gabriel What do we do with that many transistors? (II) – Multi-issue processors: • Allow multiple instructions to start execution per clock cycle • Superscalar (Intel x86, AMD, …) vs. VLIW architectures – VLIW/EPIC architectures: • Allow compilers to indicate independent instructions per issue packet • Example: Intel Itanium series – Vector units: • Allow for the efficient expression and execution of vector operations • Example: SSE, SSE2, SSE3, SSE4 instructions COSC 6385 – Computer Architecture Edgar Gabriel 2 Limitations of optimizing a single instruction
    [Show full text]
  • Pentium® Processor Family Developer's Manual
    D Pentium® Processor Family Developer’s Manual Volume 1: Pentium® Processors NOTE: The Pentium® Processor Family Developer’s Manual consists of three books: Pentium® Processors, Order Number 241428; the 82496/82497/82498 Cache Controller and 82491/82492/82493 Cache SRAM, Order Number 241429; and the Architecture and Programming Manual, Order Number 241430. Please refer to all three volumes when evaluating your design needs. 1995 PATENT NOTICE Through its investment in computer technology, Intel Corporation (Intel) has acquired numerous proprietary rights, including patents issued by the U.S. Patent and Trademark Office. Intel has patents covering the use or implementation of processors in combination with other products, e.g., certain computer systems. System and method patents or pending patents, of Intel and others, may apply to these systems. A separate license may be required for their use (see Intel Terms and Conditions for details). Specific Intel patents include U.S. patent 4,972,338. Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein. Intel retains the right to make changes to these specifications at any time, without notice. Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
    [Show full text]
  • AX34-U Hardware
    Overview AX34-U Online Manual Installation AX34-U Hardware Drivers & Utilities BIOS Setup AWARD AWARD Glossary DOC. NO.: AX34U-OL-E0108A Troubleshooting & Technical Support Technical 1 AX34-U Online Manual What’s in this manual AX34-U .............................................................................................................................................1 What’s in this manual ......................................................................................................................................................2 You Must Notice ..............................................................................................................................................................8 Before You Start ..............................................................................................................................................................9 Overview .......................................................................................................................................................................10 Feature Highlight ...........................................................................................................................................................11 Quick Installation Procedure..........................................................................................................................................14 Motherboard Map ..........................................................................................................................................................15
    [Show full text]
  • 486/25/33 EISA System Board User's Manual
    PREFACE Thank you for purchasing 486EI EISA/VESA system board. This document helps configure and install the system board. The document is prepared with our best knowledge; however, we make no representation or warranty concerning the contents or use of this manual, and specifically disclaim any expressly implied warranties or merchant ability or fitness of any particular purpose. The information in this document is subject to change without notice. This document contains information protected by copyright. All rights are reserved. No part of this document may be used or reproduced in any forms or by any means, or stored in a database or retrieval system, without prior written permission. TRADEMARKS IBM, PC, XT, and AT are trademarks of International Business Machines Corp. UNIX is a trademark of AT&T Bell Labs. DOS, OS/2 and XENIX are trademarks of Microsoft Corp. 8086, 80286, i386, i486 , i486DX, i486DX2, i486DX4, i486SX, and i487SX, Intel OverDrive Processor are trademarks of Intel Corp. TECHNICAL REFERENCE . I486 Microprocessor (Intel Order No: 240440-002) . I486 Microprocessor Programmer’s Reference Manual (Intel Order No. 240486-001) . SIS 85C411 EISA System Chipset Data Book . The EISA Specification published by: BCPR Services, Incorporated . The VESA VL Bus Specification published by: Video Electronics Standard Association 486EI EISA&VESA System Board User's Manual Page 1 TABLE OF CONTENTS PREFACE CHAPTER 1: INTRODUCTION PRODUCT OVERVIEW FEATURES CPU SUPPORT CACHE MEMORY SYSTEM MEMORY DRAM SYSTEM BIOS SHADOW RAM SYSTEM CHIPSET
    [Show full text]
  • Evolution of the Pentium
    Chapter 7B – The Evolution of the Intel Pentium This chapter attempts to trace the evolution of the modern Intel Pentium from the earliest CPU chip, the Intel 4004. The real evolution begins with the Intel 8080, which is an 8–bit design having features that permeate the entire line. Our discussion focuses on three organizations. IA–16 The 16–bit architecture found in the Intel 8086 and Intel 80286. IA–32 The 32–bit architecture found in the Intel 80386, Intel 80486, and most variants of the Pentium design. IA–64 The 64–bit architecture found in some high–end later model Pentiums. The IA–32 has evolved from an early 4–bit design (the Intel 4004) that was first announced in November 1971. At that time, memory came in chips no larger than 64 kilobits (8 KB) and cost about $1,600 per megabyte. Before moving on with the timeline, it is worth recalling the early history of Intel. Here, we quote extensively from Tanenbaum [R002]. “In 1968, Robert Noyce, inventor of the silicon integrated circuit, Gordon Moore, of Moore’s law fame, and Arthur Rock, a San Francisco venture capitalist, formed the Intel Corporation to make memory chips. In the first year of operation, Intel sold only $3,000 worth of chips, but business has picked up since then.” “In September 1969, a Japanese company, Busicom, approached Intel with a request for it to manufacture twelve custom chips for a proposed electronic calculator. The Intel engineer assigned to this project, Ted Hoff, looked at the plan and realized that he could put a 4–bit general–purpose CPU on a single chip that would do the same thing and be simpler and cheaper as well.
    [Show full text]
  • Technical Reference Guide HP Compaq Dc7800 Series Business Desktop Computers
    Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers Document Part Number: 461444-001 October 2007 This document provides information on the design, architecture, function, and capabilities of the HP Compaq dc7800 Series Business Desktop Computers. This information may be used by engineers, technicians, administrators, or anyone needing detailed information on the products covered. © Copyright 2007 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Microsoft, MS-DOS, Windows, and Windows NT are trademarks of Microsoft Corporation in the U.S. and other countries. Intel, Intel Core 2 Duo, Intel Core 2 Quad, Pentium Dual-Core, Intel Inside, and Celeron are trademarks of Intel Corporation in the U.S. and other countries. Adobe, Acrobat, and Acrobat Reader are trademarks or registered trademarks of Adobe Systems Incorporated. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. This document contains proprietary information that is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. Technical Reference Guide HP Compaq dc7800 Series Business Desktop Computers First Edition (October 2007) Document Part Number: 461444-001 Contents 1Introduction 1.1 About this Guide . 1–1 1.1.1 Online Viewing . 1–1 1.1.2 Hardcopy . 1–1 1.2 Additional Information Sources . 1–1 1.3 Model Numbering Convention .
    [Show full text]
  • M4-4X4 / M4-4X4s / M4-4X2 / M4-4X2s / PCS42P
    M4-4x4 / M4-4x4S / M4-4x2 / M4-4x2S / PCS42P CHARACTERISTICS This Personal Computer line is highly modular. The different models of this product line, in fact, are the result of the combination of two different board versions (ENTRY and ENHANCED), different CPUs (i486SX, i486SX2, i486DX2 and Intel DX4) and two different cases (TIN BOX and SLIM TIN BOX). The models of this product line are listed in the following table. 4 CASE MOTHER- PROCESSOR COMMERCIAL OLIVETTI BOARD NAME PROJECT NAME TIN BOX ENTRY i486SX @ 33 MHz MODULO M4-422 KPT44 S33 i486SX2 @ 50 MHz MODULO M4-432 KPT44 S50 i486DX2 @ 50 MHz MODULO M4-452 KPT44 D50 i486SX @ 25 MHz PCS42P SX/25 E XST41 S25 i486SX @ 33 MHz PCS42P SX/33 E XST41 S33 i486SX2 @ 50 MHz PCS42P S2/50 E XST41 S50 ENHANCED i486SX @ 33 MHz MODULO M4-424 KPT45 S33 i486SX2 @ 50 MHz MODULO M4-434 KPT45 S50 i486DX2 @ 50 MHz MODULO M4-454 KPT45 D50 i486DX2 @ 66 MHz MODULO M4-464 KPT45 D66 Intel DX4 @ 100 MHz MODULO M4-484 KPT45 DX4 i486DX2 @ 50 MHz PCS42P D2/50 E XST42 D250 i486DX2 @ 66 MHz PCS42P D2/66 E XST42 D266 SLIM TIN BOX ENTRY i486SX @ 33 MHz MODULO M4-422 S KPS44 S33 i486SX2 @ 50 MHz MODULO M4-432 S KPS44 S50 i486DX2 @ 50 MHz MODULO M4-452 S KPS44 D50 i486SX @ 25 MHz PCS42P SX/25 XSS41 S25 i486SX @ 33 MHz PCS42P SX/33 XSS41 S33 i486SX2 @ 50 MHz PCS42P S2/50 XSS41 S50 ENHANCED i486SX @ 33 MHz MODULO M4-424 S KPS45 S33 i486SX2 @ 50 MHz MODULO M4-434 S KPS45 S50 i486DX2 @ 50 MHz MODULO M4-454 S KPS45 D50 i486DX2 @ 66 MHz MODULO M4-464 S KPS45 D66 Intel DX4 @ 100 MHz MODULO M4-484 S KPS45 DX4 i486DX2 @ 50 MHz
    [Show full text]
  • Of 2 18/02/2010
    Page 1 of 2 Support Home Search Support & Downloads OverDrive ® Processors Product Reference Table Product Ordercode Pins Socket Voltage Upgrades Name Pentium® II UBPODP66X333 387 Socket 8 3.3V 150 and 180MHz Pentium Pro OverDrive® processor based-system to Processor 300MHz. 166 and 200MHz Pentium Pro processor based-system to 333MHz. Pentium® BOXPODPMT 321 Socket 7 3.3V 75 to 150, 90 to 180MHz Pentium OverDrive 66X200 processor-based systems with MMX Processor with tech. MMX™ Technology 100 with 66MHz bus/133/166MHz Pentium processor-based systems to 200MHz with MMX tech. Pentium® BOXPODPMT 320 Socket 5 3.3V 75 to 125, 90 to 150, 100(66MHz OverDrive 66X166 321 bus) and 133 to 166MHz Pentium Processor with Socket 7 processor-based systems with MMX MMX™ tech. Technology 100(50MHz bus) to 150MHz Pentium processor-based systems with MMX tech. Pentium® PODPMT60X150 320 Socket 5 3.3V 75 to 125, 90 to 150MHz Pentium OverDrive 321 processor-based systems with MMX Processor with Socket 7 tech. MMX™ Technology Pentium® PODPMT60X180 320 Socket 5 3.3V 75 to 150, 90/120 to 180MHz, 100 OverDrive 321 (50MHz bus) to 150 Pentium Processor with Socket 7 processor-based systems with MMX MMX™ tech. For 100MHz with 66MHz bus Technology use BOXPODPMT66x166/200 Pentium® PODP3V125 320 Socket 5 3.3V 100/133MHz Pentium processor- OverDrive PODP3V150 321 based systems to 125/150/166MHz Processor PODP3V166 Socket 7 Pentium® PODP5V133 273 Socket 4 5V Upgrades 60/66MHz Pentium® OverDrive processor-based systems to Processor 120/133MHz Pentium® PODP5V83 237 Socket
    [Show full text]
  • Motherboard/Processor/Memory Different Kinds of SLOTS Different
    Motherboard/Processor/Memory There are different slots and sockets for CPUs, and it is necessary for a motherboard to have the appropriate slot or socket for the CPU. Most sockets are square. Several precautions are taken to ensure that both the socket and the processor are indicated to ensure proper orientation. The processor is usually marked with a dot or a notch in the corner that is intended to go into the marked corner of the socket. Sockets and slots on the motherboard are as plentiful and varied as processors. The three most popular are the Socket 5 and Socket 7, and the Single Edge Contact Card (SECC). Socket 5 and Socket 7 CPU sockets are basically flat and have several rows of holes arranged in a square. The SECC connectors are of two types: slot 1 & slot 2. Design No of Pins Pin Rows Voltage Mobo Class Processor's supported Socket 1 169 3 5 Volts 486 80486SX, 80486DX, 80486DX2, 80486DX4 Socket 2 238 4 5 Volts 486 80486SX, 80486DX, 80486DX2, 80486DX4 Socket 3 237 4 5 / 3.3 Volts 486 80486SX, 80486DX, 80486DX2, 80486DX4 Socket 4 273 4 5 Volts 1st Generation Pentium Pentium 60-66, Pentium OverDrive Socket 5 320 5 3.3 Volts Pentium Pentium 75-133 MHz, Pentium OverDrive Socket 6 235 4 3.3 Volts 486 486DX4, Pentium OverDrive Design No of Pins Pin Rows Voltage Mobo Class Processor's supported Socket 7 321 5 2.5 / 3.3Volts Pentium 75-200 MHz, OverDrive, Pentium MMX Socket 8 387 5 (dual pattern) 3.1 / 3.3Volts Pentium Pro Pentium Pro OverDrive, Pentium II OverDrive Intel Slot 1 242 N/a 2.8 / 3.3Volts Pentium Pro / Pentium II Pentium II, Pentium Pro, Celeron.
    [Show full text]