Source Han Sans Version 2.004 Readme (Released 2021-04-28)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Options for Handling Full Unicode Character Encodings in MARC21 a Study for the Library of Congress
1 Assessment of Options for Handling Full Unicode Character Encodings in MARC21 A Study for the Library of Congress Part 1: New Scripts Jack Cain Senior Consultant Trylus Computing, Toronto 1 Purpose This assessment intends to study the issues and make recommendations on the possible expansion of the character set repertoire for bibliographic records in MARC21 format. 1.1 “Encoding Scheme” vs. “Repertoire” An encoding scheme contains codes by which characters are represented in computer memory. These codes are organized according to a certain methodology called an encoding scheme. The list of all characters so encoded is referred to as the “repertoire” of characters in the given encoding schemes. For example, ASCII is one encoding scheme, perhaps the one best known to the average non-technical person in North America. “A”, “B”, & “C” are three characters in the repertoire of this encoding scheme. These three characters are assigned encodings 41, 42 & 43 in ASCII (expressed here in hexadecimal). 1.2 MARC8 "MARC8" is the term commonly used to refer both to the encoding scheme and its repertoire as used in MARC records up to 1998. The ‘8’ refers to the fact that, unlike Unicode which is a multi-byte per character code set, the MARC8 encoding scheme is principally made up of multiple one byte tables in which each character is encoded using a single 8 bit byte. (It also includes the EACC set which actually uses fixed length 3 bytes per character.) (For details on MARC8 and its specifications see: http://www.loc.gov/marc/.) MARC8 was introduced around 1968 and was initially limited to essentially Latin script only. -
As Seen in the Translation Industry
Chinese Language & Culture As seen in the translation industry Introduction Prior to one of the most important celebrations in Asia - the Lunar New Year, we decided to share our next piece of extraordinary information with you. We have chosen a country quite famous for itself with rich traditions, interesting history and at the same time very different from the modern western world. In our small e-book, we’ve combined something famous, something small, and a bit of professional advice. We are glad to introduce to you our Chinese Language & Culture week. Welcome to our world! Gergana Toleva (Global Marketing Manager) Paper cutting The art of paper cutting is one of the most intricate arts with paper we’ve ever seen. It is oftentimes called chuāng huā ( ), window flowers or window paper- cuts as it was窗花 used to decorate windows and doors, so the light can shine through the cutout and create wondrous effects. They are usually made of red paper and symbolize luck and happiness. About Chinese Fonts When it comes to Chinese language, we don’t need to quote Traditional Chinese was used prior to 1954. Traditional numbers and statistics to convince someone that it’s one Chinese is still used widely in Chinatowns outside of China, of the most widely used languages in the world. Everyone as well as in Hong-Kong, Taiwan and Macau, where it’s the knows that. It’s a beautiful and fascinating language, and it official written language. In Mainland China, it’s used only in looks so different than most western languages that we’re extremely formal cases. -
Package 'Showtextdb'
Package ‘showtextdb’ June 4, 2020 Type Package Title Font Files for the 'showtext' Package Version 3.0 Date 2020-05-31 Author Yixuan Qiu and authors/contributors of the included fonts. See file AUTHORS for details. Maintainer Yixuan Qiu <[email protected]> Description Providing font files that can be used by the 'showtext' package. Imports sysfonts (>= 0.7), utils Suggests curl License Apache License (>= 2.0) Copyright see file COPYRIGHTS RoxygenNote 7.1.0 NeedsCompilation no Repository CRAN Date/Publication 2020-06-04 08:10:02 UTC R topics documented: font_install . .2 google_fonts . .3 load_showtext_fonts . .4 source_han . .4 Index 6 1 2 font_install font_install Install Fonts to the ’showtextdb’ Package Description font_install() saves the specified font to the ‘fonts’ directory of the showtextdb package, so that it can be used by the showtext package. This function requires the curl package. font_installed() lists fonts that have been installed to showtextdb. NOTE: Since the fonts are installed locally to the package directory, they will be removed every time the showtextdb package is upgraded or re-installed. Usage font_install(font_desc, quiet = FALSE, ...) font_installed() Arguments font_desc A list that provides necessary information of the font for installation. See the Details section. quiet Whether to show the progress of downloading and installation. ... Other parameters passed to curl::curl_download(). Details font_desc is a list that should contain at least the following components: showtext_name The family name of the font that will be used in showtext. font_ext Extension name of the font files, e.g., ttf for TrueType, and otf for OpenType. regular_url URL of the font file for "regular" font face. -
CJK Compatibility Ideographs Range: F900–FAFF
CJK Compatibility Ideographs Range: F900–FAFF This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation. -
Hong Kong Supplementary Character Set – 2016 (Draft)
中 文 界 面 諮 詢 委 員 會 工 作 小 組 文 件 編 號 2017/02 (B) Hong Kong Supplementary Character Set – 2016 (Draft) Office of the Government Chief Information Officer & Official Languages Division, Civil Service Bureau The Government of the Hong Kong Special Administrative Region April 2017 1/21 中 文 界 面 諮 詢 委 員 會 工 作 小 組 文 件 編 號 2017/02 (B) Table of Contents Preface Section 1 Overview……………….……………………………………………. 1 - 1 Section 2 Coding Scheme of the HKSCS–2016….……………………………. 2 - 1 Section 3 HKSCS–2016 under the Architecture of the ISO/IEC 10646………. 3 - 1 Table 1: Code Table of the HKSCS–2016……………………………………….. i - 1 Table 2: Newly Included Characters in the HKSCS–2016...………………….…. ii - 1 Table 3: Compatibility Characters in the HKSCS–2016…......………………..…. iii - 1 2/21 中 文 界 面 諮 詢 委 員 會 工 作 小 組 文 件 編 號 2017/02 (B) Preface After the first release of the Hong Kong Supplementary Character Set (HKSCS) in 1999, there have been three updated versions. The HKSCS-2001, HKSCS-2004 and HKSCS-2008 were published with 116, 123 and 68 new characters added respectively. A total of 5 009 characters were included in the HKSCS-2008. These publications formed the foundation for promoting the adoption of the ISO/IEC 10646 international coding standard, and were widely supported and adopted by the IT sector and members of the public. The ISO/IEC 10646 international coding standard is developed by the International Organization for Standardization (ISO) to provide a common technical basis for the storage and exchange of electronic information. -
CJK Compatibility Ideographs Supplement Range: 2F800–2FA1F
CJK Compatibility Ideographs Supplement Range: 2F800–2FA1F This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation. -
About the Code Charts 24
The Unicode® Standard Version 13.0 – Core Specification To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trade- mark claim, the designations have been printed with initial capital letters or in all capitals. Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and other countries. The authors and publisher have taken care in the preparation of this specification, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The recipient agrees to determine applicability of information provided. © 2020 Unicode, Inc. All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction. For information regarding permissions, inquire at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please see http://www.unicode.org/copyright.html. The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version 13.0. Includes index. ISBN 978-1-936213-26-9 (http://www.unicode.org/versions/Unicode13.0.0/) 1. -
New Ideographs in Unicode 3.0 and Beyond
New Ideographs in Unicode 3.0 and Beyond John H. Jenkins International and Text Group Apple Computer, Inc. 1) Background The Unicode Standard, version 2.1, contains a total of 21,204 East Asian ideographs. More than half (nearly 55%) of the encoded characters in the standard are ideographs. This ideographic repertoire, commonly referred to as “Unihan,” is already larger than the ideographic repertoires of most other major character set standards. The exceptions, however, use different unification rules than those used in Unihan, so although they provide more glyphic variants for characters than does Unihan, they actually encode about the same number of characters as Unihan. Nonetheless, Unihan is far from being an exhaustive set of ideographs—tens of thousands more remain unencoded. As a result, additions and extensions to Unihan will continue to be made as the Unicode Standard develops. The history of East Asian ideographs can be reliably traced back to the second millennium BCE, and all the major features of the current system were in place by the Zhou dynasty (ca. 1100 BCE). The shapes of the ideographs have altered over the centuries, and the Chinese language has continued to develop with new words coming into existence and old ones being dropped, but the writing system has endured. Chinese ideographs constitute the oldest writing system in the world still in common use. 15th International Unicode Conference 1 San Jose, CA, August/September 1999 New Ideographs in Unicode 3.0 and Beyond This long history is one of the major reasons why the collection of ideographs is so vast. -
GNU Guix Reference Manual Using the GNU Guix Functional Package Manager
GNU Guix Reference Manual Using the GNU Guix Functional Package Manager The GNU Guix Developers Edition 34cf1f4 29 September 2021 Copyright c 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 Ludovic Court`es Copyright c 2013, 2014, 2016 Andreas Enge Copyright c 2013 Nikita Karetnikov Copyright c 2014, 2015, 2016 Alex Kost Copyright c 2015, 2016 Mathieu Lirzin Copyright c 2014 Pierre-Antoine Rault Copyright c 2015 Taylan Ulrich Bayırlı/Kammer Copyright c 2015, 2016, 2017, 2019, 2020, 2021 Leo Famulari Copyright c 2015, 2016, 2017, 2018, 2019, 2020 Ricardo Wurmus Copyright c 2016 Ben Woodcroft Copyright c 2016, 2017, 2018, 2021 Chris Marusich Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Efraim Flashner Copyright c 2016 John Darrington Copyright c 2016, 2017 Nikita Gillmann Copyright c 2016, 2017, 2018, 2019, 2020 Jan Nieuwenhuizen Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Julien Lepiller Copyright c 2016 Alex ter Weele Copyright c 2016, 2017, 2018, 2019, 2020, 2021 Christopher Baines Copyright c 2017, 2018, 2019 Cl´ement Lassieur Copyright c 2017, 2018, 2020, 2021 Mathieu Othacehe Copyright c 2017 Federico Beffa Copyright c 2017, 2018 Carlo Zancanaro Copyright c 2017 Thomas Danckaert Copyright c 2017 humanitiesNerd Copyright c 2017, 2021 Christine Lemmer-Webber Copyright c 2017, 2018, 2019, 2020, 2021 Marius Bakke Copyright c 2017, 2019, 2020 Hartmut Goebel Copyright c 2017, 2019, 2020, 2021 Maxim Cournoyer Copyright c 2017, 2018, 2019, 2020, 2021 Tobias Geerinckx-Rice Copyright c 2017 George Clemmer Copyright c 2017 Andy Wingo Copyright c 2017, 2018, 2019, 2020 Arun Isaac Copyright c 2017 nee Copyright c 2018 Rutger Helling Copyright c 2018, 2021 Oleg Pykhalov Copyright c 2018 Mike Gerwitz Copyright c 2018 Pierre-Antoine Rouby Copyright c 2018, 2019 G´abor Boskovits Copyright c 2018, 2019, 2020 Florian Pelz Copyright c 2018 Laura Lazzati Copyright c 2018 Alex Vong Copyright c 2019 Josh Holland Copyright c 2019, 2020 Diego Nicola Barbato Copyright c 2019 Ivan Petkov Copyright c 2019 Jakob L. -
Outline of the Course
Outline of the course Introduction to Digital Libraries (15%) Description of Information (30%) Access to Information (()30%) User Services (10%) Additional topics (()15%) Buliding of a (small) digital library Reference material: – Ian Witten, David Bainbridge, David Nichols, How to build a Digital Library, Morgan Kaufmann, 2010, ISBN 978-0-12-374857-7 (Second edition) – The Web FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -1 Access to information Representation of characters within a computer Representation of documents within a computer – Text documents – Images – Audio – Video How to store efficiently large amounts of data – Compression How to retrieve efficiently the desired item(s) out of large amounts of data – Indexing – Query execution FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -2 Representation of characters The “natural” wayyp to represent ( (palphanumeric ) characters (and symbols) within a computer is to associate a character with a number,,g defining a “coding table” How many bits are needed to represent the Latin alphabet ? FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -3 The ASCII characters The 95 printable ASCII characters, numbdbered from 32 to 126 (dec ima l) 33 control characters FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -4 ASCII table (7 bits) FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -5 ASCII 7-bits character set FUB 2012-2013 Vittore Casarosa – Digital Libraries Part 7 -6 Representation standards ASCII (late fifties) – AiAmerican -
Release Notes for Fedora 21
Fedora 21 Release Notes Release Notes for Fedora 21 Edited by The Fedora Docs Team Copyright © 2014 Fedora Project Contributors. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries. All other trademarks are the property of their respective owners. -
CJK Compatibility Range: 3300–33FF
CJK Compatibility Range: 3300–33FF This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation.