INFLUENCE of SOCIOECONOMIC and DEMOGRAPHIC CHARACTERISTICS OVER HERDING in ESTONIAN STOCK MARKET Master’S Thesis

Total Page:16

File Type:pdf, Size:1020Kb

INFLUENCE of SOCIOECONOMIC and DEMOGRAPHIC CHARACTERISTICS OVER HERDING in ESTONIAN STOCK MARKET Master’S Thesis TALLINN UNIVERSITY OF TECHNOLOGY School of Business and Governance Department of Economics and Finance . Gaganmeet Singh Dhir INFLUENCE OF SOCIOECONOMIC AND DEMOGRAPHIC CHARACTERISTICS OVER HERDING IN ESTONIAN STOCK MARKET Master’s Thesis Supervisor: Associate Professor Tõnn Talpsepp Tallinn 2017 I declare I have written the master’s thesis independently. All works and major viewpoints of the other authors, data from the other sources of literature and elsewhere used for writing the paper have been referenced. Gaganmeet Singh Dhir .................................... (signature, date) Student’s code: 156480 Student’s e-mail address: [email protected] Supervisor: Associate Professor Tõnn Talpsepp The thesis conforms to the requirements set for the master’s theses .............................................................. (signature, date) Chairman of defence committee: Permitted to defence .............................................................. (Title, name, signature, date) TABLE OF CONTENTS ABSTRACT........................................................................................................................ 4 INTRODUCTION............................................................................................................. 5 1. LITERATURE............................................................................................................... 8 1.1. Traditional versus Behavioural Finance...................................................................... 8 1.2. Herd Behaviour in Financial Markets......................................................................... 10 1.3. Previous literature on Demographic and Socio-Economic herding........................... 12 2. METHODOLOGY AND DATA............................................................................. 18 2.1. Prior models to detect herding.................................................................................... 18 2.2. Research Design......................................................................................................... 20 2.3. Data and descriptive statistics..................................................................................... 21 2.3.1. Data.................................................................................................................... 21 2.3.2. Descriptive statistics.......................................................................................... 22 3. EMPIRICAL RESULTS............................................................................................ 28 3.1. Herding by Gender..................................................................................................... 28 3.2. Herding by Age.......................................................................................................... 32 3.3. Herding by Education................................................................................................. 34 3.3.1. Herding by level of degree.................................................................................. 34 3.3.2. Herding by type of degree................................................................................... 37 3.3.3. Herding by grade in mathematics....................................................................... 39 3.3.4. Herding by grade in English language................................................................ 41 3.3.5. Herding by grade in Native language.................................................................. 42 3.4. Discussion................................................................................................................... 44 CONCLUSION................................................................................................................. 47 REFERENCES.................................................................................................................. 50 APPENDICES................................................................................................................... 56 2 Appendix A: Tables........................................................................................................... 56 Table 1: T-test of gender influence.............................................................................. 56 Table 2: ANOVA single factor test for age influence................................................. 57 Table 3: ANOVA single factor test of level of degree influence................................ 58 Table 4: ANOVA single factor test of degree type influence..................................... 59 Table 5: ANOVA single factor test of Mathematics influence................................... 60 Table 6: ANOVA single factor test of English language influence............................ 61 Table 7: ANOVA single factor test of Native language influence.............................. 62 Table 8: Descriptive analysis of stocks (Gender influence) ....................................... 63 Table 9: Descriptive analysis of market (Gender influence) ...................................... 63 Table 10: Descriptive analysis of stocks (Age influence) .......................................... 64 Table 11: Descriptive analysis of market (Age influence) ......................................... 64 Table 12: Descriptive analysis of stocks (Degree level influence) ............................ 65 Table 13: Descriptive analysis of market (Degree level influence) ........................... 65 Table 14: Descriptive analysis of stocks (Degree type influence) ............................. 66 Table 15: Descriptive analysis of market (Degree type influence) ............................ 66 Table 16: Descriptive analysis of stocks (Mathematics influence) ............................ 67 Table 17: Descriptive analysis of market (Mathematics influence) ........................... 67 Table 18: Descriptive analysis of stocks (English language influence) ..................... 68 Table 19: Descriptive analysis of market (English language influence) .................... 68 Table 20: Descriptive analysis of stocks (Native language influence) ....................... 69 Table 21: Descriptive analysis of market (Native language influence) ...................... 69 3 ABSTRACT The study investigates the influence of demographics (educational background) and socioeconomic personality traits (age and gender) on the herding behaviour of individual investors in Estonian stock market. The study is deemed to be extremely beneficial for the individual investors along with financial advisors. The study would help financial advisors to know the extent of behavioural bias (herding) present in the Estonian stock market and they could advise the investors in a better manner to mitigate the tendency to herd. The study is based on the quarterly stock transactions of Estonian investors from January 2004 to December 2012. To measure the extent of herding the study follows Frey, Herbst and Walter (2007) (FHW indicator) that measures herding as the excessive dispersion of the transactions (Buying/Selling) on the similar side for the stocks. The herding measures are calculated for each stock as well as for the whole market for all the 36 quarters. The stock wide herding measures suggest that there is a clear difference in the attitudes of gender groups towards different stocks and industries. Other than that for most of the stocks, people with age group of 30 to 40 herd less than the other age groups in the study. There is also a significant influence of educational parameters (level of degree, type of degree, grades in Mathematics, grades in English language and grades in Native language) on the herding behaviour of groups for each stock. Furthermore, the market wide results show the degree of relative difference in the herding measures of the groups which is analysed through statistical tests. It also shows the influence of 2007-2008 financial crises on the herding behaviour of Estonian investors. The analysis put forward interesting observations that serves as an asset to the existing literature in Behavioural finance. Keywords: Behavioural Finance, Herd Behaviour, Demographic Characteristics, Socioeconomic Characteristics, FHW herding measure, Tallinn (Estonian) Stock Exchange. 4 INTRODUCTION Human behaviour is a result of psychological and external factors (Endler and Magnusson, 1976). Maital in 1986 suggested that individual traits, risk tolerance, return, information perception and sentiments affect the behaviour of investors. According to the prospect theory given by Kahneman and Tversky in 1979, the decisions of an investor gets affected by the introduction of uncertain conditions. In the quest of generating profit, they start looking out for information from other sources or follow the advice of a professional investor. The prospect theory says that the investors tend to vary their actual decisions from rationality because of the changing psychological mind-set of the investor. Behavioural finance names one such behavioural bias of the investors as herding. Herding behaviour is understood as an act of irrational decision making by an investor where the individual follows a group of investors and values the group’s decision more over the available information. This often leads to extreme fluctuation in the stock market. Herding has a tendency to drive away the prices from their actual values. The herding behaviour is known to happen because of investors abandoning their own private information and following the action of others. Herding is seen
Recommended publications
  • Ipo Underpricing and Aftermarket Performance
    Running head: IPO UNDERPRICING AND AFTERMARKET PERFORMANCE IPO UNDERPRICING AND AFTERMARKET PERFORMANCE IN OMX BALTIC A Thesis Presented to the Faculty of ISM University of Management and Economics in Partial Fulfillment of the Requirements for the Degree of Master in Financial Economics By Kęstutis Ivanauskas May 2015 IPO UNDERPRICING AND AFTERMARKET PERFORMANCE 2 Abstract This thesis analyzes the phenomena of IPO underpricing and subsequent aftermarket performance as well as factors influencing this type of behavior of new equity issues in Nasdaq OMX Baltic during the period of 2004-2014. The aim of this analysis is to provide new knowledge about the IPO market behavior in the Baltic countries. The analysis uses descriptive statistical techniques to estimate the magnitude of the IPO underpricing, Buy and Hold Abnormal Returns method for the comparison of IPO performance to benchmark portfolios, and regression analysis for the testing of possible explanatory variables influencing IPO underpricing. It was found that new issues floated on Nasdaq OMX Baltic tended to be underpriced by an average of 7.54%. A statically significant explanatory model was created which established the relationship between IPO underpricing and factors influencing this behavior, of which proceeds raised during the IPO proved to be the strongest negative influence on IPO underpricing. Finally, while not statistically significant, it was found that after high first day returns new issues were underperforming their size matched equally weighted benchmark portfolios by -3.62% during the 1 year holding period and -0.08% during the 3 year holding period. Keywords: IPO underpricing, IPO underperformance, Nasdaq OMX Baltic, Baltic states IPO UNDERPRICING AND AFTERMARKET PERFORMANCE 3 Table of Contents List of Figures ................................................................................................................................
    [Show full text]
  • Selected Companies Monthly.Xlsx
    STOCK MARKETS OF THE BALTIC STATES Selection of Listed Companies as of 31-January-2015 NASDAQ OMX Tallinn Ticker Name Market Market 3M AVG 3M AVG Trading Last Chg% Chg% Low High Industry Subgroup Beta 3 3M Chg% Cap Cap % 1 Traded Traded Activity 2 Price 3M 1YR 52w 52w vs. Bench mEUR Value EUR Value % TAL1T TALLINK GROUP AS 524,2 29,2% 169 430 25,9% Up 0,78 19,9 -13,6 0,59 0,91 Transport-Marine 1,5 12,6 TVEAT AS TALLINNA VESI-A EQUITY 282,0 15,7% 70 855 10,8% Up 14,10 9,3 12,8 12,30 14,50 Water 0,6 2,0 OEG1T OLYMPIC ENTERTAINMENT GROUP 273,2 15,2% 108 761 16,6% Up 1,80 -1,6 -4,8 1,66 2,06 Gambling (Non-Hotel) 1,2 -9,0 TKM1T TALLINNA KAUBAMAJA AS 222,0 12,4% 55 687 8,5% Down 5,45 9,0 3,8 4,79 5,53 Retail-Hypermarkets 0,7 1,7 MRK1T AS MERKO EHITUS 138,1 7,7% 23 385 3,6% Up 7,80 11,4 3,3 6,70 7,93 Building&Construct-Misc 0,8 4,1 PKG1T AS PRO KAPITAL GRUPP 135,3 7,5% 4 261 0,7% Up 2,50 -3,8 14,2 2,07 2,73 Real Estate Mgmnt/Servic 0,4 -11,2 SFG1T SILVANO FASHION GROUP-A SHS 48,8 2,7% 42 453 6,5% Up 1,25 -23,5 -44,0 1,18 2,27 Retail-Apparel/Shoe 1,2 -30,8 HAE1T AS HARJU ELEKTER 47,7 2,7% 16 293 2,5% Down 2,74 5,4 -3,5 2,52 2,85 Electronic Compo-Misc 0,6 -1,9 NCN1T NORDECON AS 33,7 1,9% 5 852 0,9% Down 1,04 2,0 -1,0 0,93 1,09 Building-Heavy Construct 0,7 -5,4 EEG1T EKSPRESS GRUPP AS 33,7 1,9% 2 863 0,4% Down 1,13 8,7 0,0 0,79 1,16 Publishing-Newspapers 0,8 1,3 PRF1T PRFOODS AS 26,3 1,5% 4 294 0,7% Down 0,68 -2,9 -9,3 0,61 0,77 Food-Misc/Diversified 0,8 -10,2 BLT1T AS BALTIKA 19,1 1,1% 2 678 0,4% Up 0,47 -8,6 -21,5 0,41 0,63 Retail-Apparel/Shoe 1,1 -15,9 ARC1T ARCO VARA AS 6,2 0,3% 4 204 0,6% Down 1,01 5,2 -25,4 0,82 1,39 Real Estate Oper/Develop 1,1 -2,1 SKN1T SKANO GROUP AS 3,7 0,2% 1 137 0,2% Down 0,83 -12,5 -31,4 0,81 1,28 Home Furnishings 0,8 -19,9 TPD1T AS TRIGON PROPERTY DEVELOPME 2,2 0,1% 638 0,1% Up 0,50 21,7 -2,0 0,40 0,52 Real Estate Oper/Develop 0,6 14,3 NASDAQ OMX Riga Ticker Name Market Market 3M AVG 3M AVG Trading Last Chg% Chg% Low High Industry Subgroup Beta 3 3M Chg% Cap Cap % 1 Traded Traded Activity 2 Price 3M 1YR 52w 52w vs.
    [Show full text]
  • Herd Behavior in the NASDAQ OMX Baltic Stock Market
    Herd Behavior in the NASDAQ OMX Baltic Stock Market Department of Economics: NEKP03 Master Thesis Authors: Donjeta Berisha, Agnese Pavlovska Supervisors: Hossein Asgharian, Lu Liu May 2015 2015 Herd Behavior in the NASDAQ OMX Baltic Stock Market Abstract This thesis investigates whether the stock market in the Baltic countries exhibit herd behavior during the period 2006-2014. A quantitative approach is used to see if investors show group oriented mentality in Estonia, Latvia, and Lithuania, and in the Baltics as whole. This is further complemented with a qualitative approach. The quantitative part is based on a market wide approach. The models proposed by Chang et al. (2000), Chiang and Zheng (2010) and Philippas et al. (2013) are used as major guidelines. Apart from testing herd behavior in the Baltic markets under different market conditions, the role of the US market is examined. In addition, the impact of investors’ sentiment on herd behavior is tested. We find supportive evidence for herding formation mostly in Tallinn and Riga. Overall, Vilnius shows the least amount of herd behavior. When considering up and down days and substantial up and down days, we find mixed results. Notably, we do not find evidence of herding during the crisis in 2008. Further on, evidence suggests that investors in the Baltics are influenced by the US, but they do not herd around the US market. Deterioration of investors' sentiment is found to be related with herd behavior. Investors in Tallinn and Riga exhibit herd behavior when they are anxious about future market conditions. However, this relationship is not observed during turbulent periods.
    [Show full text]
  • Ülevaade Tallinna Börsi Emitentide Ühingujuhtimisest Ja Hea Ühingujuhtimise Tava Aruannetest
    ÜLEVAADE TALLINNA BÖRSI EMITENTIDE ÜHINGUJUHTIMISEST JA HEA ÜHINGUJUHTIMISE TAVA ARUANNETEST aastal 2017 Sisukord Hea Ühingujuhtimise Tava 3 Emitentide HÜT-i järgimise põhimõtted 4 HÜT-i aruannete täitmise kokkuvõte 6 I Aktsionäri õiguste teostamine ja üldkoosoleku läbiviimine 7 II Juhatus 14 Koosseis 14 Juhatuse liikmete tasustamine 15 Huvide konflikt 18 III Nõukogu 21 Ülesanded 21 Koosseis 21 Nõukogu liikmete tasustamine 22 Huvide konflikt 23 IV Juhatuse ja nõukogu koostöö 26 V Teabe avaldamine 27 VI Finantsaruandlus ja auditeerimine 31 Mitmekesisuspoliitika 37 Olulised muudatused ühingujuhtimise valdkonnas 39 2 / 39 Hea Ühingujuhtimise Tava Käesolev Finantsinspektsiooni ülevaade käsitleb börsiemitentide ühingujuhtimise aruandeid, mis on koostatud 2017. majandusaasta kohta. Varasemalt koostatud ülevaated aastate 2006 ja 2007, 2008, 2009 ning 2010 ja 2011 kohta on kättesaadavad Finantsinspektsiooni veebilehel www.fi.ee. Hea Ühingujuhtimise Tava (edaspidi HÜT) koondab soovituslikud juhised äriühingu juhtimise paremaks korraldamiseks, ning on mõeldud täitmiseks eelkõige emitentidele, kelle poolt emiteeritud hääleõigust andvad väärtpaberid on võetud kauplemisele väärtpaberiturule. HÜT-i juhised on täitmiseks soovituslikud, kuid raamatupidamise seaduse (edaspidi RPS) § 242 sätestab reguleeritud turul kaubeldavate aktsiate emitendi kohustuse avaldada majandusaasta aruande tegevusaruandes eraldiseisva alajaotisena ühingujuhtimise aruande, mis annab asjakohast informatsiooni ühingus rakendatavate juhtimispõhimõtete kohta. Tulenevalt RPS § 242
    [Show full text]
  • Assessing Organizational Efficiency Under Macroeconomic Uncertainty in Decision Support Systems
    www.mruni.eu Sergei Kornilov DOCTORAL DISSERTATION ASSESSING ORGANIZATIONAL EFFICIENCY UNDER MACROECONOMIC UNCERTAINTY IN DECISION SUPPORT SYSTEMS: ENSEMBLE METHODS IN MACHINE LEARNING WITH TWO-STAGE NONPARAMETRIC EFFICIENCY MODELS SOCIAL SCIENCES, ECONOMICS (S 004) VILNIUS, 2020 MYKOLAS ROMERIS UNIVERSITY Sergei Kornilov ASSESSING ORGANIZATIONAL EFFICIENCY UNDER MACROECONOMIC UNCERTAINTY IN DECISION SUPPORT SYSTEMS: ENSEMBLE METHODS IN MACHINE LEARNING WITH TWO-STAGE NONPARAMETRIC EFFICIENCY MODELS Doctoral Dissertation Social Sciences, Economics (S 004) Vilnius, 2020 This dissertation was prepared during the period 2011-2017 at Tallinn University of Technology (Estonia) and during the period 2019-2020 at Mykolas Romeris University under the doctoral pro- gram right conferred to Vytautas Magnus University, ISM University of Management and Economics, Mykolas Romeris University and Šiauliai University on 22 February 2019 by the Order No. V-160 of the Minister of Education, Science and Sport of the Republic of Lithuania. Dissertation is defended on a non-resident basis. Scientific consultant: Prof. Dr. Asta Vasiliauskaitė (Mykolas Romeris University, Social Sciences, Economics S 004). Scientific supervisor at Tallinn University of Technology in 2011-2017: Prof. Dr. Tatjana Põlajeva (Tallinn University of Technology, Estonia, Social Sciences, Economics S 004). The doctoral dissertation is defended at the Council of Economics of Vytautas Magnus University, ISM University of Management and Economics, Mykolas Romeris University and Šiauliai University: Chairperson: Prof. Dr. Violeta Pukelienė (Vytautas Magnus University, Social Sciences, Economics S 004) Members: Prof. Dr. Natalja Lace (Riga Technical University, Latvia, Social Sciences, Economics S 004); Prof. Habil. Dr. Žaneta Simanavičienė (Mykolas Romeris University, Social Sciences, Economics S 004); Assoc. Prof. Dr. Sigita Urbonienė (Vytautas Magnus University, Natural Sciences, Mathematics N 001); Assoc.
    [Show full text]
  • Digital Maturity and Corporate Performance: the Case of the Baltic States
    Journal of Open Innovation: Technology, Market, and Complexity Article Digital Maturity and Corporate Performance: The Case of the Baltic States Yulia Eremina, Natalja Lace * and Julija Bistrova Engineering Economics and Management, Riga Technical University, LV-1048 Riga, Latvia * Correspondence: [email protected] Received: 23 June 2019; Accepted: 7 August 2019; Published: 9 August 2019 Abstract: Enterprise digitalization is a way for companies to make their processes more efficient, to enhance their marketing strategies, and improve their competitive moat within the global competitive landscape. To see how fast Baltic companies are adapting to digitalization trend and, therefore, how good they are at keeping or improving their competitive advantage, we have developed a digital maturity assessment methodology, which was applied to the listed enterprises in Estonia, Latvia, and Lithuania. This methodology allowed us to detect certain digital maturity trends, such as the significant growth of the attention paid towards concepts related to ‘process automation’. Further, it was clear that many companies are concerned with online business, which can be well-seen from the analyzed annual reports. Additionally, we have compared the level and dynamics of the company’s digital maturity to its financial and market performance. We have concluded that, although there is a positive relationship between several financial indicators (e.g., sales growth), it is too early to see the positive effect of digital maturity on a company’s stock performance. Keywords: digitalization; digital maturity; Baltic equity; corporate performance; total return 1. Introduction Digitalization is inevitable due to the rapid development of technologies. Today, every individual, business, and government has become a part of the new digital era [1,2].
    [Show full text]
  • IMMATERIAALNE PÕHIVARA: RAAMATUPIDAMISLIK KÄSITLUS Magistritöö
    TALLINNA TEHNIKAÜLIKOOL Majandusteaduskond Majandusarvestuse instituut Finantsarvestuse õppetool Kairi Leppenen IMMATERIAALNE PÕHIVARA: RAAMATUPIDAMISLIK KÄSITLUS Magistritöö Juhendajad: lektor Monika Nikitina-Kalamäe professor Jaan Alver Tallinn 2014 SISUKORD ABSTRAKT ............................................................................................................................... 4 SISSEJUHATUS ........................................................................................................................ 5 1. IMMATERIAALSE VARA KAJASTAMISE ÜLDPÕHIMÕTTED .................................. 8 1.1 Immateriaalse vara mõiste, olemus ja liigitamine .......................................................... 8 1.2 Immateriaalse vara esmane ja edasine kajastamine ASC 350 alusel ............................ 14 1.3 Immateriaalse vara esmane ja edasine kajastamine IAS 38 alusel ............................... 18 1.4 Immateriaalse vara esmane ja edasine kajastamine RTJ 5 alusel ................................. 24 1.5 Enam tuntud immateriaalsed varaobjektid ................................................................... 27 2. IMMATERIAALSE VARA VÄÄRTUSE MÕÕTMINE JA HINDAMINE ..................... 34 2.1 Immateriaalse vara väärtuse mõõtmise ja hindamise olulisus ...................................... 34 2.2 Peamised probleemid immateriaalse vara väärtuse mõõtmisel ja hindamisel .............. 41 2.3 Tuntumad mõõtmismeetodid ........................................................................................ 44 2.3.1 Otsese
    [Show full text]
  • Linnahallile Ulatasid Abikäe Üleaedsed Gi Valesti Teinud
    || || , . , , @. , ▼ – , % Arco Vara , −,% Nordecon , +,% Baltic Horizon Fund , −,% Nordic Fibreboard , − AJANDUS24. Baltika , +,% PRFoods , −,% Coop Pank , −,% Pro Kapital Grupp , −,% POSTEES.EE EfTEN Fund III , −,% Silvano Fashion , −,% 1300 Ekspress Grupp , −,% Tallink Grupp , +,% Harju Elekter , −,% Tallinna Kaubamaja , +,% LHV Group , −,% Tallinna Sadam , −,% Linda Nektar , − Tallinna Vesi , −,% Merko Ehitus , − Trigon Property , − Politsei kuulab üle ÜHISFIRMA LOOMINE. Aastaid tühjana seisnud linnahall saab korda, Tallink ja linn Swedbanki eksjuhi saavad oma reisisadama ning sinna viiv transport läheb maa alla. ■ Rootsi majanduskuritegusid uuriv politseiüksus kuulab aprilli alguses rahapesu asjus üle Swedbanki endise tegevjuhi Birgitte Bonneseni. Rootsi väljaande Svenska Dagbladeti allikate väitel antakse Bonnese- nile ülekuulamisel teada, et teda kahtlustatakse kuri- teos. Möödunud aasta märtsis pangast vallandatud tegevjuht on varem öelnud, et Swedbank pole mida- Linnahallile ulatasid abikäe üleaedsed gi valesti teinud. Swedbanki nõukogu vallandas Bir- gitte Bonneseni, kuna panga 15 suurimat aktsionäri võisid saada ebaseaduslikku siseteavet panga võima- liku seotuse kohta rahapesuga, enne kui seda kajas- tati Rootsi meedias. PM reporter reporter Eestlaste laenukontor kaebab Kosovo riigi kohtusse ümme aastat tühja- ■ Seoses eestlaste finantstehnoloogia ettevõtte na seisnud Tallinna IuteCrediti tegevusloa ootamatu tühistamisega Ko- linnahallile ulatasid sovo keskpanga poolt ilma ammendavate selgitus- ootamatult abikäe
    [Show full text]
  • A COMPARATIVE ANALYSIS of CAPM and FAMA-FRENCH MODEL APPLICATION in the BALTIC STOCK MARKET a Thesis Presented to the Faculty O
    A COMPARATIVE ANALYSIS OF CAPM AND FAMA-FRENCH MODEL APPLICATION IN THE BALTIC STOCK MARKET A Thesis Presented to the Faculty of Finance Programme at ISM University of Management and Economics in Partial Fulfillment of the Requirements for the Degree of Bachelor of Finance by Jakub Gustav Vujčik Advised by Dokt. Dmitrij Katkov December 2020 Vilnius ANALYSIS OF CAPM AND FAMA-FRENCH MODEL APPLICATION 2 Summary Vujčik, J.G. A Comparative Analysis of CAPM and Fama-French Model Application in the Baltic Stock Market. Final Bachelor Thesis. Finance studies: Vilnius, ISM University of Management and Economics, 2020. This Bachelor thesis investigates two asset pricing models' applicability in the Baltic stock market: CAPM and the Fama-French three-factor model. The research aims to find and compare the relationship between the stock returns and market risk premium, size, and value factors under the respective models. The Baltic stock market presents many challenges in estimating a company's expected returns due to inefficiency and the lack of comparable peers. Therefore, one of the main objectives is to determine whether any particular methodology has a higher explanatory power. The study analyses the data of companies currently listed on the Nasdaq Baltic stock exchange with at least three years of operating history. The analysis uses the average 36-months returns of every company to estimate the betas of each factor. The adjusted R-squared coefficient of determination serves as a proxy for measuring expected returns' replication by the models. The research produces a mixed outcome. Although the adjusted R-squared measures are higher in the Fama-French three- factor model, both asset pricing methodologies have significant statistical data issues related to residuals' normality, heteroskedasticity, and misspecification.
    [Show full text]
  • Börs Toomas Toolil Õnnestus SEB Kaudu Arco Vara Aktsiaid Osta Vahetult Enne Olulise Info Avalikustamist 8–11
    Uudis 4–5 Allar Jõks 15 Rikkad 12–13 Puhkepäev Maadevahetuse Seadus Guido Kundla, kohtuetendus peab säästuketi erakonna ni- loojate ” väiksem veli mekirjas kan- Nädala-Nädalavahetus dideerinu kam- vahetus paania kulusid Uudis 6 osaks erakon- Põhi käes? na kuludest. Kukkuda pole majandusel Kuum tango Endine õiguskantsler ei ole hollandlaste nõus prokuratuuri tõlgendusega enam kuhugi AINUS AJALEHT, MIDA TASUB PRAEGU LUGEDA Antropovi-Rahumägi valimiskam- paania rahastamise juhtumis. taktikepi all | 13.–15. november 2009 | nr 203 (3923) | 25 kr | tabamusToomas Tooli üllatav Börs Toomas Toolil õnnestus SEB kaudu Arco Vara aktsiaid osta vahetult enne olulise info avalikustamist 8–11 Foto: Toomas Huik/Postimees/Scanpix aripaev.ee Kas töötus jõudis kolmandas kvartalis haripunkti? loe täna kell 9 Äripäev 13. november 2009 toimetaja Ülo Toomsalu, tel 667 0137, e-post [email protected] 52 PÄEVA PILK NÄDALALE NÄDALA FOTO RÕÕMUSTAB Väike seltskond, aga pool miljardit Vaid paar Eesti Telekomi töötajat osaleb allhankepro- Tagasi pole vaja! jektis, mis toob ettevõttele pool miljardit krooni ekspor- dikäivet aastast. Eesti Tele- kom tõstab end suurimate eksportööride sekka. Maadevahetajad käivad kohtu vahet Algas üks Eesti suurimaid kohtuprotsesse, mille finaa- lis saame teada, kes on pa- hategija ja kes mitte. Euribor langeb jätkuvalt Eraisikud saavad kokkuhoi- du 2,2 miljardit krooni ja et- tevõtted ligikaudu 2 miljar- dit krooni. See on hea lohu- tus palkade langusele ja ka- sumite vähenemisele. KURVASTAB Nordecon tuleviku suhtes pessimist Investoreid ja analüütikuid heade kvartalitulemustega üllatanud Nordiconi juhid on ehitusturu tuleviku suhtes pessimistlikud. Rasked ajad kestavad ka järgmisel aas- tal ja ehitussektor pole põh- jast läbi käinud. Majanduslangus Rocca al Mare kaubanduskeskuses avati kingapood Shu.
    [Show full text]
  • Table of Contents
    1 TABLE OF CONTENTS Welcome to the Baltic market 4 Stability & growth - the Baltic premium play 5 Highest standards show a sustainable path 9 Latest developments at NASDAQ OMX Baltic 12 An in-depth look at NASDAQ OMX Baltic 14 Baltic aggregate market statistics 28 New instruments on NASDAQ OMX Baltic 30 The Baltic economies 32 Overview of taxation in the Baltic countries 36 Company profiles 41 NASDAQ OMX Baltic Main List 66 NASDAQ OMX Baltic Secondary List TOP 30 68 Baltic Fund List 70 Baltic Bond List 72 NASDAQ OMX Baltic members 73 Market data vendors 74 Contacts 76 2 Andrus Alber Daiga Auziņa-Melalksne Arminta Saladžienė Henrik Elfving Chairman of the NASDAQ OMX Chairman of the NASDAQ OMX Chairman of the NASDAQ OMX NASDAQ OMX Vice President, Tallinn Management Board Riga Management Board Vilnius Management Board Baltic & Armenian markets WELCOME TO THE BALTIC MARKET Welcome to the 2011 guide to the NASDAQ OMX Baltic Securities Market. We hope that - as with previ- ous editions - with its wealth of facts and figures it will become a firm favorite on your bookshelf or work desk, and the first thing you reach for when pondering a new investment. Though clear challenges remain in the global financial system, so do opportunities for the well- informed investor, which is why the NASDAQ OMX Baltic exchanges are working hard to continually improve their information flows and open up a region that is now being acknowledged worldwide as a place where flexible and prudent money-management can make a real difference: witness Estonia’s successful Eurozone entry, Latvia as an example of effective austerity, and Lithuania’s clever use of the markets to fund its own way back to economic recovery.
    [Show full text]
  • Selected Companies Monthly.Xlsx
    STOCK MARKETS OF THE BALTIC STATES Selection of Listed Companies as of 30-November-2014 NASDAQ OMX Tallinn Ticker Name Market Market 3M AVG 3M AVG Trading Last Chg% Chg% Low High Industry Subgroup Beta 3 3M Chg% Cap Cap % 1 Traded Traded Activity 2 Price 3M 1YR 52w 52w vs. Bench mEUR Value EUR Value % TAL1T TALLINK GROUP AS 471,7 27,4% 85 295 23,1% Up 0,70 -1,4 -26,7 0,59 0,96 Transport-Marine 1,5 -0,5 OEG1T OLYMPIC ENTERTAINMENT GROUP 276,3 16,0% 158 658 43,0% Down 1,82 -5,7 -4,2 1,75 2,06 Gambling (Non-Hotel) 1,2 -4,8 TVEAT AS TALLINNA VESI 264,0 15,3% 77 646 21,0% Down 13,20 3,1 17,9 11,20 13,60 Water 0,5 4,1 TKM1T TALLINNA KAUBAMAJA AS 204,5 11,9% 48 607 13,2% Down 5,02 -0,2 -4,4 4,79 5,48 Retail-Hypermarkets 0,7 0,7 PKG1T AS PRO KAPITAL GRUPP 133,6 7,8% 7 325 2,0% Down 2,47 0,0 7,4 2,07 2,73 Real Estate Mgmnt/Servic 0,5 0,9 MRK1T AS MERKO EHITUS 124,1 7,2% 15 390 4,2% Up 7,01 -1,4 -2,2 6,70 7,99 Building&Construct-Misc 0,8 -0,5 SFG1T SILVANO FASHION GROUP 64,4 3,7% 49 175 13,3% Down 1,65 10,7 -36,5 1,41 2,61 Retail-Apparel/Shoe 1,1 11,7 HAE1T AS HARJU ELEKTER 46,1 2,7% 14 010 3,8% Up 2,65 1,1 -2,2 2,52 2,85 Electronic Compo-Misc 0,6 2,1 NCN1T NORDECON AS 33,0 1,9% 4 936 1,3% Up 1,02 2,0 -4,7 0,93 1,09 Building-Heavy Construct 0,6 2,9 EEG1T EKSPRESS GRUPP AS 31,9 1,8% 5 380 1,5% Down 1,07 1,9 -9,3 0,79 1,18 Publishing-Newspapers 0,8 2,9 PRF1T PRFOODS AS 26,8 1,6% 9 229 2,5% Down 0,69 6,6 -2,3 0,61 0,77 Food-Misc/Diversified 0,7 7,6 BLT1T AS BALTIKA 20,6 1,2% 2 261 0,6% Down 0,51 1,0 -7,8 0,41 0,63 Retail-Apparel/Shoe 1,1 1,9 JRV1T
    [Show full text]