Lecture 4. Algebra, Continued Section 2: Lattices and Boolean Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scott Spaces and the Dcpo Category
SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology. -
Section 8.6 What Is a Partial Order?
Announcements ICS 6B } Regrades for Quiz #3 and Homeworks #4 & Boolean Algebra & Logic 5 are due Today Lecture Notes for Summer Quarter, 2008 Michele Rousseau Set 8 – Ch. 8.6, 11.6 Lecture Set 8 - Chpts 8.6, 11.1 2 Today’s Lecture } Chapter 8 8.6, Chapter 11 11.1 ● Partial Orderings 8.6 Chapter 8: Section 8.6 ● Boolean Functions 11.1 Partial Orderings (Continued) Lecture Set 8 - Chpts 8.6, 11.1 3 What is a Partial Order? Some more defintions Let R be a relation on A. The R is a partial order iff R is: } If A,R is a poset and a,b are A, reflexive, antisymmetric, & transitive we say that: } A,R is called a partially ordered set or “poset” ● “a and b are comparable” if ab or ba } Notation: ◘ i.e. if a,bR and b,aR ● If A, R is a poset and a and b are 2 elements of A ● “a and b are incomparable” if neither ab nor ba such that a,bR, we write a b instead of aRb ◘ i.e if a,bR and b,aR } If two objects are always related in a poset it is called a total order, linear order or simple order. NOTE: it is not required that two things be related under a partial order. ● In this case A,R is called a chain. ● i.e if any two elements of A are comparable ● That’s the “partial” of it. ● So for all a,b A, it is true that a,bR or b,aR 5 Lecture Set 8 - Chpts 8.6, 11.1 6 1 Now onto more examples… More Examples Let Aa,b,c,d and let R be the relation Let A0,1,2,3 and on A represented by the diagraph Let R0,01,1, 2,0,2,2,2,33,3 The R is reflexive, but We draw the associated digraph: a b not antisymmetric a,c &c,a It is easy to check that R is 0 and not 1 c d transitive d,cc,a, but not d,a Refl. -
[Math.NT] 1 Nov 2006
ADJOINING IDENTITIES AND ZEROS TO SEMIGROUPS MELVYN B. NATHANSON Abstract. This note shows how iteration of the standard process of adjoining identities and zeros to semigroups gives rise naturally to the lexicographical ordering on the additive semigroups of n-tuples of nonnegative integers and n-tuples of integers. 1. Semigroups with identities and zeros A binary operation ∗ on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ S. A semigroup is a nonempty set with an associative binary operation ∗. The semigroup is abelian if a ∗ b = b ∗ a for all a,b ∈ S. The trivial semigroup S0 consists of a single element s0 such that s0 ∗ s0 = s0. Theorems about abstract semigroups are, in a sense, theorems about the pure process of multiplication. An element u in a semigroup S is an identity if u ∗ a = a ∗ u = a for all a ∈ S. If u and u′ are identities in a semigroup, then u = u ∗ u′ = u′ and so a semigroup contains at most one identity. A semigroup with an identity is called a monoid. If S is a semigroup that is not a monoid, that is, if S does not contain an identity element, there is a simple process to adjoin an identity to S. Let u be an element not in S and let I(S,u)= S ∪{u}. We extend the binary operation ∗ from S to I(S,u) by defining u ∗ a = a ∗ u = a for all a ∈ S, and u ∗ u = u. Then I(S,u) is a monoid with identity u. -
On Scattered Convex Geometries
ON SCATTERED CONVEX GEOMETRIES KIRA ADARICHEVA AND MAURICE POUZET Abstract. A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scat- tered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scat- teredness is established in convex geometries of relatively convex sets. 1. Introduction We call a pair X; φ of a non-empty set X and a closure operator φ 2X 2X on X a convex geometry[6], if it is a zero-closed space (i.e. ) and φ satisfies the anti-exchange axiom: ( ) ∶ → x A y and x∅ =A∅imply that y A x for all x y in X and all closed A X: ∈ ∪ { } ∉ ∉ ∪ { } The study of convex geometries in finite≠ case was inspired by their⊆ frequent appearance in mod- eling various discrete structures, as well as by their juxtaposition to matroids, see [20, 21]. More recently, there was a number of publications, see, for example, [4, 43, 44, 45, 48, 7] brought up by studies in infinite convex geometries. A convex geometry is called algebraic, if the closure operator φ is finitary. Most of interesting infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub- semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered set. -
Advanced Discrete Mathematics Mm-504 &
1 ADVANCED DISCRETE MATHEMATICS M.A./M.Sc. Mathematics (Final) MM-504 & 505 (Option-P3) Directorate of Distance Education Maharshi Dayanand University ROHTAK – 124 001 2 Copyright © 2004, Maharshi Dayanand University, ROHTAK All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Maharshi Dayanand University ROHTAK – 124 001 Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028 3 Contents UNIT 1: Logic, Semigroups & Monoids and Lattices 5 Part A: Logic Part B: Semigroups & Monoids Part C: Lattices UNIT 2: Boolean Algebra 84 UNIT 3: Graph Theory 119 UNIT 4: Computability Theory 202 UNIT 5: Languages and Grammars 231 4 M.A./M.Sc. Mathematics (Final) ADVANCED DISCRETE MATHEMATICS MM- 504 & 505 (P3) Max. Marks : 100 Time : 3 Hours Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks. Unit I Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations). -
An Elementary Approach to Boolean Algebra
Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved. -
Arxiv:1811.03543V1 [Math.LO]
PREDICATIVE WELL-ORDERING NIK WEAVER Abstract. Confusion over the predicativist conception of well-ordering per- vades the literature and is responsible for widespread fundamental miscon- ceptions about the nature of predicative reasoning. This short note aims to explain the core fallacy, first noted in [9], and some of its consequences. 1. Predicativism Predicativism arose in the early 20th century as a response to the foundational crisis which resulted from the discovery of the classical paradoxes of naive set theory. It was initially developed in the writings of Poincar´e, Russell, and Weyl. Their central concern had to do with the avoidance of definitions they considered to be circular. Most importantly, they forbade any definition of a real number which involves quantification over all real numbers. This version of predicativism is sometimes called “predicativism given the nat- ural numbers” because there is no similar prohibition against defining a natural number by means of a condition which quantifies over all natural numbers. That is, one accepts N as being “already there” in some sense which is sufficient to void any danger of vicious circularity. In effect, predicativists of this type consider un- countable collections to be proper classes. On the other hand, they regard countable sets and constructions as unproblematic. 2. Second order arithmetic Second order arithmetic, in which one has distinct types of variables for natural numbers (a, b, ...) and for sets of natural numbers (A, B, ...), is thus a good setting for predicative reasoning — predicative given the natural numbers, but I will not keep repeating this. Here it becomes easier to frame the restriction mentioned above in terms of P(N), the power set of N, rather than in terms of R. -
Learning Binary Relations and Total Orders
Learning Binary Relations and Total Orders Sally A Goldman Ronald L Rivest Department of Computer Science MIT Lab oratory for Computer Science Washington University Cambridge MA St Louis MO rivesttheorylcsmitedu sgcswustledu Rob ert E Schapire ATT Bell Lab oratories Murray Hill NJ schapireresearchattcom Abstract We study the problem of learning a binary relation b etween two sets of ob jects or b etween a set and itself We represent a binary relation b etween a set of size n and a set of size m as an n m matrix of bits whose i j entry is if and only if the relation holds b etween the corresp onding elements of the twosetsWe present p olynomial prediction algorithms for learning binary relations in an extended online learning mo del where the examples are drawn by the learner by a helpful teacher by an adversary or according to a uniform probability distribution on the instance space In the rst part of this pap er we present results for the case that the matrix of the relation has at most k rowtyp es We present upp er and lower b ounds on the number of prediction mistakes any prediction algorithm makes when learning such a matrix under the extended online learning mo del Furthermore we describ e a technique that simplies the pro of of exp ected mistake b ounds against a randomly chosen query sequence In the second part of this pap er we consider the problem of learning a binary re lation that is a total order on a set We describ e a general technique using a fully p olynomial randomized approximation scheme fpras to implement a randomized -
Completely Representable Lattices
Completely representable lattices Robert Egrot and Robin Hirsch Abstract It is known that a lattice is representable as a ring of sets iff the lattice is distributive. CRL is the class of bounded distributive lattices (DLs) which have representations preserving arbitrary joins and meets. jCRL is the class of DLs which have representations preserving arbitrary joins, mCRL is the class of DLs which have representations preserving arbitrary meets, and biCRL is defined to be jCRL ∩ mCRL. We prove CRL ⊂ biCRL = mCRL ∩ jCRL ⊂ mCRL =6 jCRL ⊂ DL where the marked inclusions are proper. Let L be a DL. Then L ∈ mCRL iff L has a distinguishing set of complete, prime filters. Similarly, L ∈ jCRL iff L has a distinguishing set of completely prime filters, and L ∈ CRL iff L has a distinguishing set of complete, completely prime filters. Each of the classes above is shown to be pseudo-elementary hence closed under ultraproducts. The class CRL is not closed under elementary equivalence, hence it is not elementary. 1 Introduction An atomic representation h of a Boolean algebra B is a representation h: B → ℘(X) (some set X) where h(1) = {h(a): a is an atom of B}. It is known that a representation of a Boolean algebraS is a complete representation (in the sense of a complete embedding into a field of sets) if and only if it is an atomic repre- sentation and hence that the class of completely representable Boolean algebras is precisely the class of atomic Boolean algebras, and hence is elementary [6]. arXiv:1201.2331v3 [math.RA] 30 Aug 2016 This result is not obvious as the usual definition of a complete representation is thoroughly second order. -
On Birkhoff's Common Abstraction Problem
F. Paoli On Birkho®'s Common C. Tsinakis Abstraction Problem Abstract. In his milestone textbook Lattice Theory, Garrett Birkho® challenged his readers to develop a \common abstraction" that includes Boolean algebras and lattice- ordered groups as special cases. In this paper, after reviewing the past attempts to solve the problem, we provide our own answer by selecting as common generalization of BA and LG their join BA_LG in the lattice of subvarieties of FL (the variety of FL-algebras); we argue that such a solution is optimal under several respects and we give an explicit equational basis for BA_LG relative to FL. Finally, we prove a Holland-type representation theorem for a variety of FL-algebras containing BA _ LG. Keywords: Residuated lattice, FL-algebra, Substructural logics, Boolean algebra, Lattice- ordered group, Birkho®'s problem, History of 20th C. algebra. 1. Introduction In his milestone textbook Lattice Theory [2, Problem 108], Garrett Birkho® challenged his readers by suggesting the following project: Develop a common abstraction that includes Boolean algebras (rings) and lattice ordered groups as special cases. Over the subsequent decades, several mathematicians tried their hands at Birkho®'s intriguing problem. Its very formulation, in fact, intrinsically seems to call for reiterated attempts: unlike most problems contained in the book, for which it is manifest what would count as a correct solution, this one is stated in su±ciently vague terms as to leave it open to debate whether any proposed answer is really adequate. It appears to us that Rama Rao puts things right when he remarks [28, p. -
Semilattice Sums of Algebras and Mal'tsev Products of Varieties
Mathematics Publications Mathematics 5-20-2020 Semilattice sums of algebras and Mal’tsev products of varieties Clifford Bergman Iowa State University, [email protected] T. Penza Warsaw University of Technology A. B. Romanowska Warsaw University of Technology Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ math_pubs/215. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Semilattice sums of algebras and Mal’tsev products of varieties Abstract The Mal’tsev product of two varieties of similar algebras is always a quasivariety. We consider when this quasivariety is a variety. The main result shows that if V is a strongly irregular variety with no nullary operations, and S is a variety, of the same type as V, equivalent to the variety of semilattices, then the Mal’tsev product V ◦ S is a variety. It consists precisely of semilattice sums of algebras in V. We derive an equational basis for the product from an equational basis for V. However, if V is a regular variety, then the Mal’tsev product may not be a variety. We discuss examples of various applications of the main result, and examine some detailed representations of algebras in V ◦ S. -
Order Relations and Functions
Order Relations and Functions Problem Session Tonight 7:00PM – 7:50PM 380-380X Optional, but highly recommended! Recap from Last Time Relations ● A binary relation is a property that describes whether two objects are related in some way. ● Examples: ● Less-than: x < y ● Divisibility: x divides y evenly ● Friendship: x is a friend of y ● Tastiness: x is tastier than y ● Given binary relation R, we write aRb iff a is related to b by relation R. Order Relations “x is larger than y” “x is tastier than y” “x is faster than y” “x is a subset of y” “x divides y” “x is a part of y” Informally An order relation is a relation that ranks elements against one another. Do not use this definition in proofs! It's just an intuition! Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 1 ≤ 5 and 5 ≤ 8 Properties of Order Relations x ≤ y 1 ≤ 5 and 5 ≤ 8 1 ≤ 8 Properties of Order Relations x ≤ y 42 ≤ 99 and 99 ≤ 137 Properties of Order Relations x ≤ y 42 ≤ 99 and 99 ≤ 137 42 ≤ 137 Properties of Order Relations x ≤ y x ≤ y and y ≤ z Properties of Order Relations x ≤ y x ≤ y and y ≤ z x ≤ z Properties of Order Relations x ≤ y x ≤ y and y ≤ z x ≤ z Transitivity Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 1 ≤ 1 Properties of Order Relations x ≤ y 42 ≤ 42 Properties of Order Relations x ≤ y 137 ≤ 137 Properties of Order Relations x ≤ y x ≤ x Properties of Order Relations x ≤ y x ≤ x Reflexivity Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 19 ≤ 21 Properties of Order Relations x ≤ y 19 ≤ 21 21 ≤ 19? Properties of Order Relations x ≤ y 19 ≤ 21 21 ≤ 19? Properties of Order Relations x ≤ y 42 ≤ 137 Properties of Order Relations x ≤ y 42 ≤ 137 137 ≤ 42? Properties of Order Relations x ≤ y 42 ≤ 137 137 ≤ 42? Properties of Order Relations x ≤ y 137 ≤ 137 Properties of Order Relations x ≤ y 137 ≤ 137 137 ≤ 137? Properties of Order Relations x ≤ y 137 ≤ 137 137 ≤ 137 Antisymmetry A binary relation R over a set A is called antisymmetric iff For any x ∈ A and y ∈ A, If xRy and y ≠ x, then yRx.