Lattice Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relations on Semigroups
International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 Relations on Semigroups 1D.D.Padma Priya, 2G.Shobhalatha, 3U.Nagireddy, 4R.Bhuvana Vijaya 1 Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, Bangalore, India, Research scholar, Department of Mathematics, JNTUA- Anantapuram [email protected] 2Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] 3Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] 4Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, [email protected] Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. Keywords: Semigroup, binary relation, Equivalence and congruence relations. I. INTRODUCTION [1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup -
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
On Scattered Convex Geometries
ON SCATTERED CONVEX GEOMETRIES KIRA ADARICHEVA AND MAURICE POUZET Abstract. A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scat- tered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scat- teredness is established in convex geometries of relatively convex sets. 1. Introduction We call a pair X; φ of a non-empty set X and a closure operator φ 2X 2X on X a convex geometry[6], if it is a zero-closed space (i.e. ) and φ satisfies the anti-exchange axiom: ( ) ∶ → x A y and x∅ =A∅imply that y A x for all x y in X and all closed A X: ∈ ∪ { } ∉ ∉ ∪ { } The study of convex geometries in finite≠ case was inspired by their⊆ frequent appearance in mod- eling various discrete structures, as well as by their juxtaposition to matroids, see [20, 21]. More recently, there was a number of publications, see, for example, [4, 43, 44, 45, 48, 7] brought up by studies in infinite convex geometries. A convex geometry is called algebraic, if the closure operator φ is finitary. Most of interesting infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub- semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered set. -
Binary Relations and Functions
Harvard University, Math 101, Spring 2015 Binary relations and Functions 1 Binary Relations Intuitively, a binary relation is a rule to pair elements of a sets A to element of a set B. When two elements a 2 A is in a relation to an element b 2 B we write a R b . Since the order is relevant, we can completely characterize a relation R by the set of ordered pairs (a; b) such that a R b. This motivates the following formal definition: Definition A binary relation between two sets A and B is a subset of the Cartesian product A×B. In other words, a binary relation is an element of P(A × B). A binary relation on A is a subset of P(A2). It is useful to introduce the notions of domain and range of a binary relation R from a set A to a set B: • Dom(R) = fx 2 A : 9 y 2 B xRyg Ran(R) = fy 2 B : 9 x 2 A : xRyg. 2 Properties of a relation on a set Given a binary relation R on a set A, we have the following definitions: • R is transitive iff 8x; y; z 2 A :(xRy and yRz) =) xRz: • R is reflexive iff 8x 2 A : x Rx • R is irreflexive iff 8x 2 A : :(xRx) • R is symmetric iff 8x; y 2 A : xRy =) yRx • R is asymmetric iff 8x; y 2 A : xRy =):(yRx): 1 • R is antisymmetric iff 8x; y 2 A :(xRy and yRx) =) x = y: In a given set A, we can always define one special relation called the identity relation. -
Advanced Discrete Mathematics Mm-504 &
1 ADVANCED DISCRETE MATHEMATICS M.A./M.Sc. Mathematics (Final) MM-504 & 505 (Option-P3) Directorate of Distance Education Maharshi Dayanand University ROHTAK – 124 001 2 Copyright © 2004, Maharshi Dayanand University, ROHTAK All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Maharshi Dayanand University ROHTAK – 124 001 Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028 3 Contents UNIT 1: Logic, Semigroups & Monoids and Lattices 5 Part A: Logic Part B: Semigroups & Monoids Part C: Lattices UNIT 2: Boolean Algebra 84 UNIT 3: Graph Theory 119 UNIT 4: Computability Theory 202 UNIT 5: Languages and Grammars 231 4 M.A./M.Sc. Mathematics (Final) ADVANCED DISCRETE MATHEMATICS MM- 504 & 505 (P3) Max. Marks : 100 Time : 3 Hours Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks. Unit I Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations). -
Slides by Akihisa
Complete non-orders and fixed points Akihisa Yamada1, Jérémy Dubut1,2 1 National Institute of Informatics, Tokyo, Japan 2 Japanese-French Laboratory for Informatics, Tokyo, Japan Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST Introduction • Interactive Theorem Proving is appreciated for reliability • But it's also engineering tool for mathematics (esp. Isabelle/jEdit) • refactoring proofs and claims • sledgehammer • quickcheck/nitpick(/nunchaku) • We develop an Isabelle library of order theory (as a case study) ⇒ we could generalize many known results, like: • completeness conditions: duality and relationships • Knaster-Tarski fixed-point theorem • Kleene's fixed-point theorem Order A binary relation ⊑ • reflexive ⟺ � ⊑ � • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � • partial order ⟺ reflexive + transitive + antisymmetric Order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes "x ⊑ x" • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � locale transitive = ... assumes "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z" • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � locale antisymmetric = ... assumes "x ⊑ y ⟹ y ⊑ x ⟹ x = y" • partial order ⟺ reflexive + transitive + antisymmetric locale partial_order = reflexive + transitive + antisymmetric Quasi-order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes -
Semiring Orders in a Semiring -.:: Natural Sciences Publishing
Appl. Math. Inf. Sci. 6, No. 1, 99-102 (2012) 99 Applied Mathematics & Information Sciences An International Journal °c 2012 NSP Natural Sciences Publishing Cor. Semiring Orders in a Semiring Jeong Soon Han1, Hee Sik Kim2 and J. Neggers3 1 Department of Applied Mathematics, Hanyang University, Ahnsan, 426-791, Korea 2 Department of Mathematics, Research Institute for Natural Research, Hanyang University, Seoal, Korea 3 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U.S.A Received: Received May 03, 2011; Accepted August 23, 2011 Published online: 1 January 2012 Abstract: Given a semiring it is possible to associate a variety of partial orders with it in quite natural ways, connected with both its additive and its multiplicative structures. These partial orders are related among themselves in an interesting manner is no surprise therefore. Given particular types of semirings, e.g., commutative semirings, these relationships become even more strict. Finally, in terms of the arithmetic of semirings in general or of some special type the fact that certain pairs of elements are comparable in one of these orders may have computable and interesting consequences also. It is the purpose of this paper to consider all these aspects in some detail and to obtain several results as a consequence. Keywords: semiring, semiring order, partial order, commutative. The notion of a semiring was first introduced by H. S. they are equivalent (see [7]). J. Neggers et al. ([5, 6]) dis- Vandiver in 1934, but implicitly semirings had appeared cussed the notion of semiring order in semirings, and ob- earlier in studies on the theory of ideals of rings ([2]). -
On Tarski's Axiomatization of Mereology
On Tarski’s Axiomatization of Mereology Neil Tennant Studia Logica An International Journal for Symbolic Logic ISSN 0039-3215 Volume 107 Number 6 Stud Logica (2019) 107:1089-1102 DOI 10.1007/s11225-018-9819-3 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Nature B.V.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Neil Tennant On Tarski’s Axiomatization of Mereology Abstract. It is shown how Tarski’s 1929 axiomatization of mereology secures the re- flexivity of the ‘part of’ relation. This is done with a fusion-abstraction principle that is constructively weaker than that of Tarski; and by means of constructive and relevant rea- soning throughout. We place a premium on complete formal rigor of proof. Every step of reasoning is an application of a primitive rule; and the natural deductions themselves can be checked effectively for formal correctness. Keywords: Mereology, Part of, Reflexivity, Tarski, Axiomatization, Constructivity. -
GALOIS THEORY for ARBITRARY FIELD EXTENSIONS Contents 1
GALOIS THEORY FOR ARBITRARY FIELD EXTENSIONS PETE L. CLARK Contents 1. Introduction 1 1.1. Kaplansky's Galois Connection and Correspondence 1 1.2. Three flavors of Galois extensions 2 1.3. Galois theory for algebraic extensions 3 1.4. Transcendental Extensions 3 2. Galois Connections 4 2.1. The basic formalism 4 2.2. Lattice Properties 5 2.3. Examples 6 2.4. Galois Connections Decorticated (Relations) 8 2.5. Indexed Galois Connections 9 3. Galois Theory of Group Actions 11 3.1. Basic Setup 11 3.2. Normality and Stability 11 3.3. The J -topology and the K-topology 12 4. Return to the Galois Correspondence for Field Extensions 15 4.1. The Artinian Perspective 15 4.2. The Index Calculus 17 4.3. Normality and Stability:::and Normality 18 4.4. Finite Galois Extensions 18 4.5. Algebraic Galois Extensions 19 4.6. The J -topology 22 4.7. The K-topology 22 4.8. When K is algebraically closed 22 5. Three Flavors Revisited 24 5.1. Galois Extensions 24 5.2. Dedekind Extensions 26 5.3. Perfectly Galois Extensions 27 6. Notes 28 References 29 Abstract. 1. Introduction 1.1. Kaplansky's Galois Connection and Correspondence. For an arbitrary field extension K=F , define L = L(K=F ) to be the lattice of 1 2 PETE L. CLARK subextensions L of K=F and H = H(K=F ) to be the lattice of all subgroups H of G = Aut(K=F ). Then we have Φ: L!H;L 7! Aut(K=L) and Ψ: H!F;H 7! KH : For L 2 L, we write c(L) := Ψ(Φ(L)) = KAut(K=L): One immediately verifies: L ⊂ L0 =) c(L) ⊂ c(L0);L ⊂ c(L); c(c(L)) = c(L); these properties assert that L 7! c(L) is a closure operator on the lattice L in the sense of order theory. -
Mathematical Tools MPRI 2–6: Abstract Interpretation, Application to Verification and Static Analysis
Mathematical Tools MPRI 2{6: Abstract Interpretation, application to verification and static analysis Antoine Min´e CNRS, Ecole´ normale sup´erieure course 1, 2012{2013 course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 1 / 44 Order theory course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 2 / 44 Partial orders Partial orders course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 3 / 44 Partial orders Partial orders Given a set X , a relation v2 X × X is a partial order if it is: 1 reflexive: 8x 2 X ; x v x 2 antisymmetric: 8x; y 2 X ; x v y ^ y v x =) x = y 3 transitive: 8x; y; z 2 X ; x v y ^ y v z =) x v z. (X ; v) is a poset (partially ordered set). If we drop antisymmetry, we have a preorder instead. course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 4 / 44 Partial orders Examples of posets (Z; ≤) is a poset (in fact, completely ordered) (P(X ); ⊆) is a poset (not completely ordered) (S; =) is a poset for any S course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 5 / 44 Partial orders Examples of posets (cont.) Given by a Hasse diagram, e.g.: g e f g v g c d f v f ; g e v e; g b d v d; f ; g c v c; e; f ; g b v b; c; d; e; f ; g a a v a; b; c; d; e; f ; g course 1, 2012{2013 Mathematical Tools Antoine Min´e p. -
The Poset of Closure Systems on an Infinite Poset: Detachability and Semimodularity Christian Ronse
The poset of closure systems on an infinite poset: Detachability and semimodularity Christian Ronse To cite this version: Christian Ronse. The poset of closure systems on an infinite poset: Detachability and semimodularity. Portugaliae Mathematica, European Mathematical Society Publishing House, 2010, 67 (4), pp.437-452. 10.4171/PM/1872. hal-02882874 HAL Id: hal-02882874 https://hal.archives-ouvertes.fr/hal-02882874 Submitted on 31 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Portugal. Math. (N.S.) Portugaliae Mathematica Vol. xx, Fasc. , 200x, xxx–xxx c European Mathematical Society The poset of closure systems on an infinite poset: detachability and semimodularity Christian Ronse Abstract. Closure operators on a poset can be characterized by the corresponding clo- sure systems. It is known that in a directed complete partial order (DCPO), in particular in any finite poset, the collection of all closure systems is closed under arbitrary inter- section and has a “detachability” or “anti-matroid” property, which implies that the collection of all closure systems is a lower semimodular complete lattice (and dually, the closure operators form an upper semimodular complete lattice). After reviewing the history of the problem, we generalize these results to the case of an infinite poset where closure systems do not necessarily constitute a complete lattice; thus the notions of lower semimodularity and detachability are extended accordingly. -
Formal Contexts, Formal Concept Analysis, and Galois Connections
Formal Contexts, Formal Concept Analysis, and Galois Connections Jeffrey T. Denniston Austin Melton Department of Mathematical Sciences Departments of Computer Science and Mathematical Sciences Kent State University Kent State University Kent, Ohio, USA 44242 Kent, Ohio, USA 44242 [email protected] [email protected] Stephen E. Rodabaugh College of Science, Technology, Engineering, Mathematics (STEM) Youngstown State University Youngstown, OH, USA 44555-3347 [email protected] Formal concept analysis (FCA) is built on a special type of Galois connections called polarities. We present new results in formal concept analysis and in Galois connections by presenting new Galois connection results and then applying these to formal concept analysis. We also approach FCA from the perspective of collections of formal contexts. Usually, when doing FCA, a formal context is fixed. We are interested in comparing formal contexts and asking what criteria should be used when determining when one formal context is better than another formal context. Interestingly, we address this issue by studying sets of polarities. 1 Formal Concept Analysis and Order-Reversing Galois Connections We study formal concept analysis (FCA) from a “larger” perspective than is commonly done. We em- phasize formal contexts. For example, we are interested in questions such as if we are working with a given formal context K , that is, we are working with a set of objects G, a set of properties M, and a relation R ⊂ G×M, what do we do if we want to replace K with a better formal context. Of course, this raises the question: what makes one formal context better than another formal context.