Learning Binary Relations and Total Orders

Total Page:16

File Type:pdf, Size:1020Kb

Learning Binary Relations and Total Orders Learning Binary Relations and Total Orders Sally A Goldman Ronald L Rivest Department of Computer Science MIT Lab oratory for Computer Science Washington University Cambridge MA St Louis MO rivesttheorylcsmitedu sgcswustledu Rob ert E Schapire ATT Bell Lab oratories Murray Hill NJ schapireresearchattcom Abstract We study the problem of learning a binary relation b etween two sets of ob jects or b etween a set and itself We represent a binary relation b etween a set of size n and a set of size m as an n m matrix of bits whose i j entry is if and only if the relation holds b etween the corresp onding elements of the twosetsWe present p olynomial prediction algorithms for learning binary relations in an extended online learning mo del where the examples are drawn by the learner by a helpful teacher by an adversary or according to a uniform probability distribution on the instance space In the rst part of this pap er we present results for the case that the matrix of the relation has at most k rowtyp es We present upp er and lower b ounds on the number of prediction mistakes any prediction algorithm makes when learning such a matrix under the extended online learning mo del Furthermore we describ e a technique that simplies the pro of of exp ected mistake b ounds against a randomly chosen query sequence In the second part of this pap er we consider the problem of learning a binary re lation that is a total order on a set We describ e a general technique using a fully p olynomial randomized approximation scheme fpras to implement a randomized ver sion of the halving algorithm We apply this technique to the problem of learning a total order using a fpras for counting the numb er of extensions of a partial order to obtain a p olynomial prediction algorithm that with high probabilitymakes at most This pap er prepared with all authors were at MIT Lab oratory for Computer Science with supp ort from NSF grant DCR ARO GrantDAALK DARPAContract NJ and a grant from the Siemens Corp oration S Goldman currently receives supp ort from a GE Foundation Junior Faculty Grant and NSF Grant CCR Preliminary versions of this pap er app eared in the Pro ceedings of the th IEEE Symp osium on Foundations of Computer Science Octob er and as MIT Lab oratory for Computer Science Technical Memo MITLCSTM May n lg n lg elgn mistakes when an adversary selects the query sequence We also consider the case that a teacher or the learner selects the query sequence Keywords Machine Learning Computational Learning Theory Online Learning Mistakeb ounded Learning Binary Relations Total Orders Fully Polynomial Ran domized Approximation Schemes Intro duction In many domains it is imp ortant to acquire information ab out a relation b etween two sets For example one may wish to learn a haspart relation b etween a set of animals and a set of attributes We are motivated by the problem of designing a prediction algorithm to learn such a binary relation when the learner has limited prior information ab out the predicate forming the relation While one could mo del such problems as concept learning they are fundamentally dierent problems In concept learning there is a single set of ob jects and the learners task is to classify these ob jects whereas in learning a binary relation there are two sets of ob jects and the learners task is to learn the predicate relating the two sets Observe that the problem of learning a binary relation can b e viewed as a concept learning problem by letting the instances b e all ordered pairs of ob jects from the two sets However the ways in which the problem may b e structured are quite dierent when the true task is to learn a binary relation as opp osed to a classication rule That is instead of a rule that denes which ob jects b elong to the target concept the predicate denes a relationship b etween pairs of ob ject A binary relation is dened b etween twosetsofobjects Throughout this pap er we assume that one set has cardinality n and the other has cardinality mWe also assume that for all p ossible pairings of ob jects the predicate relating the two sets of variables is either true or false Before dening a prediction algorithm we rst discuss our representation of a binary relation Throughout this pap er we represent the relation as an n m binary matrix where an entry contains the value of the predicate for the corresp onding elements Since the predicate is binaryvalued all entries in this matrix are either false or true The twodimensional structure arises from the fact that we are learning a binary relation For the sake of comparison wenowbrieymention other p ossible representations One could represent the relation as a table with two columns where eachentry in the rst column is an item from the rst set and eachentry in the second column is an item from the second set The rows of the table consist of the subset of the p otential nm pairings for whichthe predicate is true One could also represent the relation as a bipartite graph with n vertices in one vertex set and m vertices in the other set An edge is placed b etween twovertices exactly when the predicate is true for corresp onding items Having intro duced our metho d for representing the problem wenow informally discuss the basic learning scenario The learner is rep eatedly given a pair of elements one from each set and asked to predict the corresp onding matrix entry After making its prediction the learner is told the correct value of the matrix entry The learner wishes to minimize the numb er of incorrect predictions it makes Since we assume that the learner must eventually make a prediction for each matrix entrythenumb er of incorrect predictions dep ends on the size of the matrix Unlike problems typically studied where the natural measure of the size of the learners problem is the size of an instance or example for this problem it is the size of the matrix Such concept classes with p olynomialsized instance spaces are uninteresting in Valiants probably approximately correct PAC mo del of learning In this mo del instances are cho sen randomly from an arbitrary unknown probability distribution on the instance space A concept class is PAClearnable if the learner after seeing a numb er of instances that is p oly nomial in the problem size can output a hyp othesis that is correct on all but an arbitrarily small fraction of the instances with high probabilityFor concepts whose instance space has cardinality p olynomial in the problem size by asking to see enough instances the learner can see almost all of the probabilityweight of the instance space Thus it is not hard to show that these concept classes are trivially PAClearnable One goal of our research is to build a framework for studying such problems To study learning algorithms for these concept classes we extend the basic mistakebound mo del to the cases that a helpful teacher or the learner selects the query sequence in addition to the cases where instances are chosen byanadversary or according to a prob ability distribution on the instance space Previously helpful teachers have b een used to provide counterexamples to conjectured concepts or to break up the concept into smaller subconcepts In our framework the teacher only selects the presentation order for the instances If the learner is to haveany hop e of doing b etter than random guessing there must b e some structure in the relation Furthermore since there are so manyways to structure a binary relation wegive the learner some prior knowledge ab out the nature of this structure Not surprisingly the learning task dep ends greatly on the prior knowledge provided One way to imp ose structure is to restrict one set of ob jects to haverelatively few typ es For example a circus may contain many animals but only a few dierent sp ecies In the rst part of this pap er we study the case where the learner has a priori knowledge that there are a limited number of ob ject typ es Namelywe restrict the matrix representing the relation to have at most k distinct rowtyp es Tworows are of the same typ e if they agree in all columns We dene a k binaryrelation to b e a binary relation for which the corresp onding matrix has at most k rowtyp es This restriction is satised whenever there are only k typ es of ob jects in the set of n ob jects b eing considered in the relation The learner receives no other knowledge ab out the predicate forming the relation With this restriction weprove that any prediction algorithm makes at least km nb lgkc k blgkc mistakes in the worst case for anyxed against any query sequence Sofor weget k km n blg k c on the numb er of mistakes made byany prediction alower b ound of algorithm If computational eciency is not a concern the halving algorithm makes at most km n k lg k mistakes against any query sequence The halving algorithm predicts according to the ma jority of the feasible relations or concepts and thus each mistake halves the numb er of remaining relations We present an ecient algorithm making at most kmn k blg k c mistakes in the case that the learner cho oses the query sequence We provea tightmistakeboundof km n k k in the case that the helpful teacher selects the query sequence When the adversary selects the query sequence we present an ecient algorithm for k that makes at most m n mistakes and for arbitrary k we presentanecient algorithm making at most q k m mistakes We proveany algorithm makes at least kmn k blg k c mistakes km n in the case that an adversary selects the query sequence and use the existence
Recommended publications
  • Scott Spaces and the Dcpo Category
    SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology.
    [Show full text]
  • Section 8.6 What Is a Partial Order?
    Announcements ICS 6B } Regrades for Quiz #3 and Homeworks #4 & Boolean Algebra & Logic 5 are due Today Lecture Notes for Summer Quarter, 2008 Michele Rousseau Set 8 – Ch. 8.6, 11.6 Lecture Set 8 - Chpts 8.6, 11.1 2 Today’s Lecture } Chapter 8 8.6, Chapter 11 11.1 ● Partial Orderings 8.6 Chapter 8: Section 8.6 ● Boolean Functions 11.1 Partial Orderings (Continued) Lecture Set 8 - Chpts 8.6, 11.1 3 What is a Partial Order? Some more defintions Let R be a relation on A. The R is a partial order iff R is: } If A,R is a poset and a,b are A, reflexive, antisymmetric, & transitive we say that: } A,R is called a partially ordered set or “poset” ● “a and b are comparable” if ab or ba } Notation: ◘ i.e. if a,bR and b,aR ● If A, R is a poset and a and b are 2 elements of A ● “a and b are incomparable” if neither ab nor ba such that a,bR, we write a b instead of aRb ◘ i.e if a,bR and b,aR } If two objects are always related in a poset it is called a total order, linear order or simple order. NOTE: it is not required that two things be related under a partial order. ● In this case A,R is called a chain. ● i.e if any two elements of A are comparable ● That’s the “partial” of it. ● So for all a,b A, it is true that a,bR or b,aR 5 Lecture Set 8 - Chpts 8.6, 11.1 6 1 Now onto more examples… More Examples Let Aa,b,c,d and let R be the relation Let A0,1,2,3 and on A represented by the diagraph Let R0,01,1, 2,0,2,2,2,33,3 The R is reflexive, but We draw the associated digraph: a b not antisymmetric a,c &c,a It is easy to check that R is 0 and not 1 c d transitive d,cc,a, but not d,a Refl.
    [Show full text]
  • [Math.NT] 1 Nov 2006
    ADJOINING IDENTITIES AND ZEROS TO SEMIGROUPS MELVYN B. NATHANSON Abstract. This note shows how iteration of the standard process of adjoining identities and zeros to semigroups gives rise naturally to the lexicographical ordering on the additive semigroups of n-tuples of nonnegative integers and n-tuples of integers. 1. Semigroups with identities and zeros A binary operation ∗ on a set S is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ S. A semigroup is a nonempty set with an associative binary operation ∗. The semigroup is abelian if a ∗ b = b ∗ a for all a,b ∈ S. The trivial semigroup S0 consists of a single element s0 such that s0 ∗ s0 = s0. Theorems about abstract semigroups are, in a sense, theorems about the pure process of multiplication. An element u in a semigroup S is an identity if u ∗ a = a ∗ u = a for all a ∈ S. If u and u′ are identities in a semigroup, then u = u ∗ u′ = u′ and so a semigroup contains at most one identity. A semigroup with an identity is called a monoid. If S is a semigroup that is not a monoid, that is, if S does not contain an identity element, there is a simple process to adjoin an identity to S. Let u be an element not in S and let I(S,u)= S ∪{u}. We extend the binary operation ∗ from S to I(S,u) by defining u ∗ a = a ∗ u = a for all a ∈ S, and u ∗ u = u. Then I(S,u) is a monoid with identity u.
    [Show full text]
  • Arxiv:1811.03543V1 [Math.LO]
    PREDICATIVE WELL-ORDERING NIK WEAVER Abstract. Confusion over the predicativist conception of well-ordering per- vades the literature and is responsible for widespread fundamental miscon- ceptions about the nature of predicative reasoning. This short note aims to explain the core fallacy, first noted in [9], and some of its consequences. 1. Predicativism Predicativism arose in the early 20th century as a response to the foundational crisis which resulted from the discovery of the classical paradoxes of naive set theory. It was initially developed in the writings of Poincar´e, Russell, and Weyl. Their central concern had to do with the avoidance of definitions they considered to be circular. Most importantly, they forbade any definition of a real number which involves quantification over all real numbers. This version of predicativism is sometimes called “predicativism given the nat- ural numbers” because there is no similar prohibition against defining a natural number by means of a condition which quantifies over all natural numbers. That is, one accepts N as being “already there” in some sense which is sufficient to void any danger of vicious circularity. In effect, predicativists of this type consider un- countable collections to be proper classes. On the other hand, they regard countable sets and constructions as unproblematic. 2. Second order arithmetic Second order arithmetic, in which one has distinct types of variables for natural numbers (a, b, ...) and for sets of natural numbers (A, B, ...), is thus a good setting for predicative reasoning — predicative given the natural numbers, but I will not keep repeating this. Here it becomes easier to frame the restriction mentioned above in terms of P(N), the power set of N, rather than in terms of R.
    [Show full text]
  • Order Relations and Functions
    Order Relations and Functions Problem Session Tonight 7:00PM – 7:50PM 380-380X Optional, but highly recommended! Recap from Last Time Relations ● A binary relation is a property that describes whether two objects are related in some way. ● Examples: ● Less-than: x < y ● Divisibility: x divides y evenly ● Friendship: x is a friend of y ● Tastiness: x is tastier than y ● Given binary relation R, we write aRb iff a is related to b by relation R. Order Relations “x is larger than y” “x is tastier than y” “x is faster than y” “x is a subset of y” “x divides y” “x is a part of y” Informally An order relation is a relation that ranks elements against one another. Do not use this definition in proofs! It's just an intuition! Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 1 ≤ 5 and 5 ≤ 8 Properties of Order Relations x ≤ y 1 ≤ 5 and 5 ≤ 8 1 ≤ 8 Properties of Order Relations x ≤ y 42 ≤ 99 and 99 ≤ 137 Properties of Order Relations x ≤ y 42 ≤ 99 and 99 ≤ 137 42 ≤ 137 Properties of Order Relations x ≤ y x ≤ y and y ≤ z Properties of Order Relations x ≤ y x ≤ y and y ≤ z x ≤ z Properties of Order Relations x ≤ y x ≤ y and y ≤ z x ≤ z Transitivity Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 1 ≤ 1 Properties of Order Relations x ≤ y 42 ≤ 42 Properties of Order Relations x ≤ y 137 ≤ 137 Properties of Order Relations x ≤ y x ≤ x Properties of Order Relations x ≤ y x ≤ x Reflexivity Properties of Order Relations x ≤ y Properties of Order Relations x ≤ y 19 ≤ 21 Properties of Order Relations x ≤ y 19 ≤ 21 21 ≤ 19? Properties of Order Relations x ≤ y 19 ≤ 21 21 ≤ 19? Properties of Order Relations x ≤ y 42 ≤ 137 Properties of Order Relations x ≤ y 42 ≤ 137 137 ≤ 42? Properties of Order Relations x ≤ y 42 ≤ 137 137 ≤ 42? Properties of Order Relations x ≤ y 137 ≤ 137 Properties of Order Relations x ≤ y 137 ≤ 137 137 ≤ 137? Properties of Order Relations x ≤ y 137 ≤ 137 137 ≤ 137 Antisymmetry A binary relation R over a set A is called antisymmetric iff For any x ∈ A and y ∈ A, If xRy and y ≠ x, then yRx.
    [Show full text]
  • CS 103X: Discrete Structures Homework Assignment 1
    CS 103X: Discrete Structures Homework Assignment 1 Due January 18, 2007 Exercise 1 (5 points). If 2A ⊆ 2B, what is the relation between A and B? Solution Recall that 2A is the set of all subsets of A, including A itself. The condition tells us that every subset of A is also a subset of B, and in particular A itself is a subset of B. So A ⊆ B. Exercise 2 (5 points). Prove or give a counterexample: If A ⊂ B and A ⊂ C, then A ⊂ B ∩ C. Solution Since ⊂ denotes the “proper subset” relation, this will not hold whenever A = B ∩ C. E.g. take A = {1, 2}, B = {1, 2, 3, 4}, C = {1, 2, 5, 6}. Exercise 3 (10 points). Prove or give a counterexample for each of the following: (a) If A ⊆ B and B ⊆ C, then A ⊆ C. (b) If A ∈ B and B ∈ C, then A ∈ C. Solution (a) Consider any element a ∈ A. Since A ⊆ B, every element of A is also an element of B, so a ∈ B. By the same reasoning, a ∈ C since B ⊆ C. Thus every element of A is an element of C, so A ⊆ C. (b) Let A = {1}, B = {1, {1}}, and C = {{1, {1}}, 3, {4}}. These sets satisfy A ∈ B and B ∈ C, but A/∈ C. Exercise 4 (20 points). Let A be a set with m elements and B be a set with n elements, and assume m < n. For each of the following sets, give upper and lower bounds on their cardinality and provide sufficient conditions for each bound to hold with equality.
    [Show full text]
  • Partial Orders CSE235 Partial Orders
    Partial Orders CSE235 Partial Orders Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.6 of Rosen 1 / 1 [email protected] Partial Orders I Motivating Introduction Partial Orders CSE235 Consider the recent renovation of Avery Hall. In this process several things had to be done. Remove Asbestos Replace Windows Paint Walls Refinish Floors Assign Offices Move in Office-Furniture. 2 / 1 Partial Orders II Motivating Introduction Partial Orders CSE235 Clearly, some things had to be done before others could even begin—Asbestos had to be removed before anything; painting had to be done before the floors to avoid ruining them, etc. On the other hand, several things could have been done concurrently—painting could be done while replacing the windows and assigning office could have been done at anytime. Such a scenario can be nicely modeled using partial orderings. 3 / 1 Partial Orderings I Definition Partial Orders CSE235 Definition A relation R on a set S is called a partial order if it is reflexive, antisymmetric and transitive. A set S together with a partial ordering R is called a partially ordered set or poset for short and is denoted (S, R) Partial orderings are used to give an order to sets that may not have a natural one. In our renovation example, we could define an ordering such that (a, b) ∈ R if a must be done before b can be done. 4 / 1 Partial Orderings II Definition Partial Orders CSE235 We use the notation a 4 b to indicate that (a, b) ∈ R is a partial order and a ≺ b when a 6= b.
    [Show full text]
  • 3 Limits of Sequences and Filters
    3 Limits of Sequences and Filters The Axiom of Choice is obviously true, the well-ordering theorem is obviously false; and who can tell about Zorn’s Lemma? —Jerry Bona (Schechter, 1996) Introduction. Chapter 2 featured various properties of topological spaces and explored their interactions with a few categorical constructions. In this chapter we’ll again discuss some topological properties, this time with an eye toward more fine-grained ideas. As introduced early in a study of analysis, properties of nice topological spaces X can be detected by sequences of points in X. We’ll be interested in some of these properties and the extent to which sequences suffice to detect them. But take note of the adjective “nice” here. What if X is any topological space, not just a nice one? Unfortunately, sequences are not well suited for characterizing properties in arbitrary spaces. But all is not lost. A sequence can be replaced with a more general construction—a filter—which is much better suited for the task. In this chapter we introduce filters and highlight some of their strengths. Our goal is to spend a little time inside of spaces to discuss ideas that may be familiar from analysis. For this reason, this chapter contains less category theory than others. On the other hand, we’ll see in section 3.3 that filters are a bit like functors and hence like generalizations of points. This perspective thus gives us a coarse-grained approach to investigating fine-grained ideas. We’ll go through some of these basic ideas—closure, limit points, sequences, and more—rather quickly in sections 3.1 and 3.2.
    [Show full text]
  • Ordered Sets
    Ordered Sets Motivation When we build theories in political science, we assume that political agents seek the best element in an appropriate set of feasible alternatives. Voters choose their favorite candidate from those listed on the ballot. Citizens may choose between exit and voice when unsatisfied with their government. Consequently, political science theory requires that we can rank alternatives and identify the best element in various sets of choices. Sets whose elements can be ranked are called ordered sets. They are the subject of this lecture. Relations Given two sets A and B, a binary relation is a subset R ⊂ A × B. We use the notation (a; b) 2 R or more often aRb to denote the relation R holding for an ordered pair (a; b). This is read \a is in the relation R to b." If R ⊂ A × A, we say that R is a relation on A. Example. Let A = fAustin, Des Moines, Harrisburgg and let B = fTexas, Iowa, Pennsylvaniag. Then the relation R = f(Austin, Texas), (Des Moines, Iowa), (Harrisburg, Pennsylvania)g expresses the relation \is the capital of." Example. Let A = fa; b; cg. The relation R = f(a; b); (a; c); (b; c)g expresses the relation \occurs earlier in the alphabet than." We read aRb as \a occurs earlier in the alphabet than b." 1 Properties of Binary Relations A relation R on a nonempty set X is reflexive if xRx for each x 2 X complete if xRy or yRx for all x; y 2 X symmetric if for any x; y 2 X, xRy implies yRx antisymmetric if for any x; y 2 X, xRy and yRx imply x = y transitive if xRy and yRz imply xRz for any x; y; z 2 X Any relation which is reflexive and transitive is called a preorder.
    [Show full text]
  • Partial Order Relations
    Partial Order Relations We defined three properties of relations: reflexivity, symmetry and transitivity. A fourth property of relations is anti-symmetry. Definition of Antisymmetry:: Let R be a relation on a set A, R is antisymmetric if , and only if, for all a and b in A, if a R b and b R a then a=b. Testing for Antisymmetry of finite Relations: Let R1 and R2 be the relations on {0, 1, 2} defined as follows: a- R1= { (0,2 ), (1, 2), (2, 0)} b- R2 = { (0,0), (0, 1), (0, 2), (1, 1), (1, 2)} Draw a directed graph for R1 and R2 and indicate which relation is antisymmetric? a- R1 is not antisymmetric b- R2 is antisymmetric Testing for Antisymmetry of “Divides” relations. Let R1 be the “divides” relation on the set of all positive integers, and let R2 be the “divides” relation on the set of all integers. + For all a, b ∈ Z , a R1 b ⇔ a | b For all a, b ∈ Z, a R2 b ⇔ a | b a- Is R1 antisymmetric ? Prove or give a counterexample b- Is R2 antisymmetric ? Prove or give a counter example. Solution: -R1 is antisymmetric -R2 is not antisymmetric Partial Order Relations: Let R be a binary relation defined on a set A. R is a partial order relation if, and only if, R is reflexive, antisymmetric and transitive. Two fundamental partial order relations are the “less than or equal to” relation on a set of real numbers and the “subset” relation on a set of sets. The “Subset” Relation: Let A be any collection of sets and define the subset relation ⊆ on A as follows: For all U, V ∈ A U ⊆ V ⇔ for all x, if x ∈ U then x ∈ V.
    [Show full text]
  • Relations and Partial Orders
    “mcs-ftl” — 2010/9/8 — 0:40 — page 213 — #219 7 Relations and Partial Orders A relation is a mathematical tool for describing associations between elements of sets. Relations are widely used in computer science, especially in databases and scheduling applications. A relation can be defined across many items in many sets, but in this text, we will focus on binary relations, which represent an association between two items in one or two sets. 7.1 Binary Relations 7.1.1 Definitions and Examples Definition 7.1.1. Given sets A and B, a binary relation R A B from1 A W ! to B is a subset of A B. The sets A and B are called the domain and codomain of R, respectively. We commonly use the notation aRb or a R b to denote that .a; b/ R. 2 A relation is similar to a function. In fact, every function f A B is a rela- W ! tion. In general, the difference between a function and a relation is that a relation might associate multiple elements ofB with a single element ofA, whereas a func- tion can only associate at most one element of B (namely, f .a/) with each element a A. 2 We have already encountered examples of relations in earlier chapters. For ex- ample, in Section 5.2, we talked about a relation between the set of men and the set of women where mRw if man m likes woman w. In Section 5.3, we talked about a relation on the set of MIT courses where c1Rc2 if the exams for c1 and c2 cannot be given at the same time.
    [Show full text]
  • A Relation R on a Set a Is a Partial Order Iff R
    4. PARTIAL ORDERINGS 43 4. Partial Orderings 4.1. Definition of a Partial Order. Definition 4.1.1. (1) A relation R on a set A is a partial order iff R is • reflexive, • antisymmetric, and • transitive. (2) (A, R) is called a partially ordered set or a poset. (3) If, in addition, either aRb or bRa, for every a, b ∈ A, then R is called a total order or a linear order or a simple order. In this case (A, R) is called a chain. (4) The notation a b is used for aRb when R is a partial order. Discussion The classic example of an order is the order relation on the set of real numbers: aRb iff a ≤ b, which is, in fact, a total order. It is this relation that suggests the notation a b, but this notation is not used exclusively for total orders. Notice that in a partial order on a set A it is not required that every pair of elements of A be related in one way or the other. That is why the word partial is used. 4.2. Examples. Example 4.2.1. (Z, ≤) is a poset. Every pair of integers are related via ≤, so ≤ is a total order and (Z, ≤) is a chain. Example 4.2.2. If S is a set then (P (S), ⊆) is a poset. Example 4.2.3. (Z, |) is a poset. The relation a|b means “a divides b.” Discussion Example 4.2.2 better illustrates the general nature of a partial order. This partial order is not necessarily a total order; that is, it is not always the case that either A ⊆ B or B ⊆ A for every pair of subsets of S.
    [Show full text]