An Introduction to the Theory of Lattice Ý Jinfang Wang £

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Theory of Lattice Ý Jinfang Wang £ An Introduction to the Theory of Lattice Ý Jinfang Wang £ Graduate School of Science and Technology, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan May 11, 2006 £ Fax: 81-43-290-3663. E-Mail addresses: [email protected] Ý Partially supported by Grand-in-Aid 15500179 of the Japanese Ministry of Education, Science, Sports and Cul- ture. 1 1 Introduction A lattice1 is a partially ordered set (or poset), in which all nonempty finite subsets have both a supremum (join) and an infimum (meet). Lattices can also be characterized as algebraic structures that satisfy certain identities. Since both views can be used interchangeably, lattice theory can draw upon applications and methods both from order theory and from universal algebra. Lattices constitute one of the most prominent representatives of a series of “lattice-like” structures which admit order-theoretic as well as algebraic descriptions, such as semilattices, Heyting algebras, and Boolean algebras. 2 Semilattice A semilattice is a partially ordered set within which either all binary sets have a supremum (join) or all binary sets have an infimum (meet). Consequently, one speaks of either a join-semilattice or a meet-semilattice. Semilattices may be regarded as a generalization of the more prominent concept of a lattice. In the literature, join-semilattices sometimes are sometimes additionally required to have a least element (the join of the empty set). Dually, meet-semilattices may include a greatest element. 2.1 Definitions Semilattices as posets Ë µ Ü DEFINITION 2.1 (MEET-SEMILATTICE). A poset ´ is a meet-semilattice if for all elements Ë Ü Ý and Ý of , the greatest lower bound (meet) of the set exists. Ë µ Ü Ý Ë Dually, we define a poset ´ as a join-semilattice, if for all elements and of , the least Ü Ý upper bound (join) of the set exists. Ý Ü Ý Ü Ý The join and meet of Ü and are denoted by and , respectively. Clearly, and define binary operations on semilattices. By induction, it is easy to see that the existence of binary suprema implies the existence of all non-empty finite suprema. The same holds true for infima. Ë µ Semilattices as algebraic structures. Consider an algebraic structure given by ´ , being a binary operation. Ë µ DEFINITION 2.2 (MEET-SEMILATTICE). A poset ´ is a meet-semilattice if the following iden- Ý Þ Ë tities hold for all elements Ü, , and in : ´Ý Þ µ´Ü Ý µ Þ Ü (associativity) Ý Ý Ü Ü (commutativity) Ü Ü Ü (idempotency) 1The term ”lattice” derives from the shape of the Hasse diagrams that result from depicting the orders. 2 ´Ë µ In this case, is called meet. A join-semilattice is an algebraic structure , where the meet satisfies the same axioms as above, the difference in notation being only for convenience, usually for dual interpretations in specific applications. Ë µ ´Ë µ Definition 2.2 says that ´ is a semilattice if is an idempotent, commutative semi- group. Sometimes it is desirable to consider meet-, join-semilattices with greatest (least) elements, Ë ½µ which are defined as idempotent, commutative monoids. Explicitly, ´ are meet-semilattices Ë µ with greatestelements if ´ are meet-semilattices and in addition we have Ü ½Ü ¾ Ë ´Ë ¼µ ´Ë µ for all Ü . Similarly, are join-semilattices with least elements if are join- semilattices and Ü ¼Ü ¾ Ë for all Ü . Equivalence of both definitions. An order-theoretic meet-semilattice gives rise to a binary ´Ë µ operation , and is a meet-semilattice in the algebraic sense as well. This is because (1) the Ü Ü Ü Ü Ü reflexitivity Ü implies that is a lower bound of . That is the greatest lower bound ÝÜ Ü Ü follows from the fact that there does not exist Ý with which is a lower bound of . That Ü Ü Ü Ý Ü Ý is, the idempotency law Ü holds. (2) Since the greatest lower bound of is Ý Ü Ü Ý Ý Ü also the greatest lower bound of , implying the commutativity law . (3) For Ü ´Ý Þ µ Ü Ý Þ Û Ü associativity, since Û is the greatest lower boud of and ,wehave and Ý Þ Ý Þ Ý Ý Þ Þ Û Ý Û Þ Û . Since , by transitivity we have . It follows that Ü Ý Û Þ Û ´Ü Ý µ Þ Û ´Ü Ý µ Þ Û and , hence . Similarly we can show that , hence ´Ý Þ µ´Ü Ý µ Þ the associativity law Ü . Ë µ Conversely, if ´ is a meet-semilattice in the algebraic sense, then we can define Ý Ü Ü Ý Ü iff Ý Ë for all elements Ü and in . Now can check that (a) this relation does define a partial ordering in ´Ë µ ´Ë µ Ë , (b) gives wrise to a meet-semilattice, and (c) the smeet-semilattice coincide with Ë µ the meet-semilattice ´ . Ü Ü Ü Ü Ü Ý Ý Ü (a) The idempotency Ü implies that refelexitivity .If then Ü Ý Ý Ý Ü Ü Ý Ý Ü Ü Ý Ü . Thus commutativity implies anti-symmetry .For Ý Ý Þ Ü Ü Ý Ý Ý Þ transitivity, suppose that Ü . Then we have and . So transitivity Þ Ü Ü Þ Ü , that is , follows Ü Ü Ý Ü ´Ý Þ µ´Ü Ý µ Þ µÜ Þ from assoiativity. This proves that is a partial order. Ë µ Ü Ý ¾ Ë (b) To show that ´ is a meet-semilattice, we show that for any there exists a greatest lower bound in Ë . By the idempotency and associativity, we have Ü Ü ´Ü Ý µ ´Ü ܵ Ý Ü Ý 3 Ü Ý Ý Ü Ý Ü Ý Ü Ý implying Ü . Similarly, .So is a lower bound of . Further, for any Ü Ý Þ Ü Þ Ý Þ Þ Ü Þ Þ Ý lower boud Þ of we have ,or , implying Þ Þ Ü ´Þ ܵ Ý Þ ´Ü Ý µ Ü Ý Ü Ý Ü Ý by associativity. Hence Þ ,so is the (unique) greatest lower bound of . This Ë µ proves that ´ is a meet-semilattice. Ý Ü Ý (c) We have seen in (b) that Ü is the unique greatest lower bound of , showing that Ë µ ´Ë µ the meet-semilattice ´ coincides with the original semi-lattice . Hence, the two definitions can be used in an entirely interchangeable way, depending on which of them appears to be more convenient for a particular purpose. A dual conclusion holds for join- semilattices. 2.2 Morphisms of semilattices Ë µ ´Ì µ Given two join-semilattices ´ and , a homomorphisms of (join-) semilattices is a func- Ë Ì tion with the property that ´Ü Ý µ ´Üµ ´Ý µ That is, is a homomorphism of the two semigroups. If the join-semilattices are furthermore equipped with a least element ¼, then should also be a morphism of monoids, i.e. one additionally requires that ´¼µ ¼ In the order-theoretical formulation, these conditions just state that a homomorphism of join- semilattices is a function that preserves binary joins and in the latter case also least elements. The conditions for homomorphisms of meet-semilattices are the obvious duals of these definitions. Note that any homomorphism of (both join- and meet-) semilattices is necessarily monotone with respect to the associated ordering relation, that is Ü Ý µ ´Üµ ´Ý µ Or equivalently Ü Ü Ý µ ´Üµ ´Üµ ´Ý µ This follows from ´Üµ ´Ý µ ´Ü Ý µ ´Üµ 2.3 Free semilattices 3 Lattices Lattices can be characterized both as posets and as algebraic structures. Both approaches are equivalent. 4 3.1 Lattices as posets Ä µ Ü Ý Ä DEFINITION 3.1 (LATTICE). A poset ´ is a lattice if for all elements and of , the set Ü Ý has both a least upper bound (join,orsupremum) and a greatest lower bound (meet,or infimum). Ý Ü Ý Ü Ý The join and meet of Ü and are denoted by and , respectively. Because joins and meets are assumed to exist in a lattice, and are binary operations. The definition is equivalent to requiring Ä to be both a meet- and a join-semilattice. References [1] Donnellan, Thomas, 1968. Lattice Theory. Pergamon. [2] Gratzer, G., 1971. Lattice Theory: First concepts and distributive lattices. W. H. Freeman. [3] Davey, B.A., and H. A. Priestley, 2002. Introduction to Lattices and Order. Cambridge Uni- versity Press. [4] Garrett Birkhoff, 1967. Lattice Theory, 3rd ed. Vol. 25 of American Mathematical Society Colloquium Publications. American Mathematical Society. [5] Johnstone, P.T., 1982. Stone spaces. Cambridge Studies in Advanced Mathematics 3. Cam- bridge University Press. 5.
Recommended publications
  • On the Lattice Structure of Quantum Logic
    BULL. AUSTRAL. MATH. SOC. MOS 8106, *8IOI, 0242 VOL. I (1969), 333-340 On the lattice structure of quantum logic P. D. Finch A weak logical structure is defined as a set of boolean propositional logics in which one can define common operations of negation and implication. The set union of the boolean components of a weak logical structure is a logic of propositions which is an orthocomplemented poset, where orthocomplementation is interpreted as negation and the partial order as implication. It is shown that if one can define on this logic an operation of logical conjunction which has certain plausible properties, then the logic has the structure of an orthomodular lattice. Conversely, if the logic is an orthomodular lattice then the conjunction operation may be defined on it. 1. Introduction The axiomatic development of non-relativistic quantum mechanics leads to a quantum logic which has the structure of an orthomodular poset. Such a structure can be derived from physical considerations in a number of ways, for example, as in Gunson [7], Mackey [77], Piron [72], Varadarajan [73] and Zierler [74]. Mackey [77] has given heuristic arguments indicating that this quantum logic is, in fact, not just a poset but a lattice and that, in particular, it is isomorphic to the lattice of closed subspaces of a separable infinite dimensional Hilbert space. If one assumes that the quantum logic does have the structure of a lattice, and not just that of a poset, it is not difficult to ascertain what sort of further assumptions lead to a "coordinatisation" of the logic as the lattice of closed subspaces of Hilbert space, details will be found in Jauch [8], Piron [72], Varadarajan [73] and Zierler [74], Received 13 May 1969.
    [Show full text]
  • ON F-DERIVATIONS from SEMILATTICES to LATTICES
    Commun. Korean Math. Soc. 29 (2014), No. 1, pp. 27–36 http://dx.doi.org/10.4134/CKMS.2014.29.1.027 ON f-DERIVATIONS FROM SEMILATTICES TO LATTICES Yong Ho Yon and Kyung Ho Kim Abstract. In this paper, we introduce the notion of f-derivations from a semilattice S to a lattice L, as a generalization of derivation and f- derivation of lattices. Also, we define the simple f-derivation from S to L, and research the properties of them and the conditions for a lattice L to be distributive. Finally, we prove that a distributive lattice L is isomorphic to the class SDf (S,L) of all simple f-derivations on S to L for every ∧-homomorphism f : S → L such that f(x0) ∨ f(y0) = 1 for ∼ some x0,y0 ∈ S, in particular, L = SDf (S,L) for every ∧-homomorphism f : S → L such that f(x0) = 1 for some x0 ∈ S. 1. Introduction In some of the literature, authors investigated the relationship between the notion of modularity or distributivity and the special operators on lattices such as derivations, multipliers and linear maps. The notion and some properties of derivations on lattices were introduced in [10, 11]. Sz´asz ([10, 11]) characterized the distributive lattices by multipliers and derivations: a lattice is distributive if and only if the set of all meet- multipliers and of all derivations coincide. In [5] it was shown that every derivation on a lattice is a multiplier and every multiplier is a dual closure. Pataki and Sz´az ([9]) gave a connection between non-expansive multipliers and quasi-interior operators.
    [Show full text]
  • Lattice-Ordered Loops and Quasigroupsl
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOIJRNALOFALGEBRA 16, 218-226(1970) Lattice-Ordered Loops and Quasigroupsl TREVOREVANS Matkentatics Department, Emory University, Atlanta, Georgia 30322 Communicated by R. H, Brwk Received April 16, 1969 In studying the effect of an order on non-associativesystems such as loops or quasigroups, a natural question to ask is whether some order condition which implies commutativity in the group case implies associativity in the corresponding loop case. For example, a well-known theorem (Birkhoff, [1]) concerning lattice ordered groups statesthat if the descendingchain condition holds for the positive elements,then the 1.0. group is actually a direct product of infinite cyclic groups with its partial order induced in the usual way by the linear order in the factors. It is easy to show (Zelinski, [6]) that a fully- ordered loop satisfying the descendingchain condition on positive elements is actually an infinite cyclic group. In this paper we generalize this result and Birkhoff’s result, by showing that any lattice-ordered loop with descending chain condition on its positive elements is associative. Hence, any 1.0. loop with d.c.c. on its positive elements is a free abelian group. More generally, any lattice-ordered quasigroup in which bounded chains are finite, is isotopic to a free abelian group. These results solve a problem in Birkhoff’s Lattice Theory, 3rd ed. The proof uses only elementary properties of loops and lattices. 1. LATTICE ORDERED LOOPS We will write loops additively with neutral element0.
    [Show full text]
  • On Scattered Convex Geometries
    ON SCATTERED CONVEX GEOMETRIES KIRA ADARICHEVA AND MAURICE POUZET Abstract. A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scat- tered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scat- teredness is established in convex geometries of relatively convex sets. 1. Introduction We call a pair X; φ of a non-empty set X and a closure operator φ 2X 2X on X a convex geometry[6], if it is a zero-closed space (i.e. ) and φ satisfies the anti-exchange axiom: ( ) ∶ → x A y and x∅ =A∅imply that y A x for all x y in X and all closed A X: ∈ ∪ { } ∉ ∉ ∪ { } The study of convex geometries in finite≠ case was inspired by their⊆ frequent appearance in mod- eling various discrete structures, as well as by their juxtaposition to matroids, see [20, 21]. More recently, there was a number of publications, see, for example, [4, 43, 44, 45, 48, 7] brought up by studies in infinite convex geometries. A convex geometry is called algebraic, if the closure operator φ is finitary. Most of interesting infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub- semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered set.
    [Show full text]
  • Noncommutative Unique Factorization Domainso
    NONCOMMUTATIVE UNIQUE FACTORIZATION DOMAINSO BY P. M. COHN 1. Introduction. By a (commutative) unique factorization domain (UFD) one usually understands an integral domain R (with a unit-element) satisfying the following three conditions (cf. e.g. Zariski-Samuel [16]): Al. Every element of R which is neither zero nor a unit is a product of primes. A2. Any two prime factorizations of a given element have the same number of factors. A3. The primes occurring in any factorization of a are completely deter- mined by a, except for their order and for multiplication by units. If R* denotes the semigroup of nonzero elements of R and U is the group of units, then the classes of associated elements form a semigroup R* / U, and A1-3 are equivalent to B. The semigroup R*jU is free commutative. One may generalize the notion of UFD to noncommutative rings by taking either A-l3 or B as starting point. It is obvious how to do this in case B, although the class of rings obtained is rather narrow and does not even include all the commutative UFD's. This is indicated briefly in §7, where examples are also given of noncommutative rings satisfying the definition. However, our principal aim is to give a definition of a noncommutative UFD which includes the commutative case. Here it is better to start from A1-3; in order to find the precise form which such a definition should take we consider the simplest case, that of noncommutative principal ideal domains. For these rings one obtains a unique factorization theorem simply by reinterpreting the Jordan- Holder theorem for right .R-modules on one generator (cf.
    [Show full text]
  • Advanced Discrete Mathematics Mm-504 &
    1 ADVANCED DISCRETE MATHEMATICS M.A./M.Sc. Mathematics (Final) MM-504 & 505 (Option-P3) Directorate of Distance Education Maharshi Dayanand University ROHTAK – 124 001 2 Copyright © 2004, Maharshi Dayanand University, ROHTAK All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Maharshi Dayanand University ROHTAK – 124 001 Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028 3 Contents UNIT 1: Logic, Semigroups & Monoids and Lattices 5 Part A: Logic Part B: Semigroups & Monoids Part C: Lattices UNIT 2: Boolean Algebra 84 UNIT 3: Graph Theory 119 UNIT 4: Computability Theory 202 UNIT 5: Languages and Grammars 231 4 M.A./M.Sc. Mathematics (Final) ADVANCED DISCRETE MATHEMATICS MM- 504 & 505 (P3) Max. Marks : 100 Time : 3 Hours Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks. Unit I Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations).
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • The Structure of Residuated Lattices
    The Structure of Residuated Lattices Kevin Blount and Constantine Tsinakis May 23, 2002 Abstract A residuated lattice is an ordered algebraic structure L = hL, ∧, ∨, · , e, \ , / i such that hL, ∧, ∨i is a lattice, hL, ·, ei is a monoid, and \ and / are binary operations for which the equivalences a · b ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c hold for all a, b, c ∈ L. It is helpful to think of the last two operations as left and right division and thus the equivalences can be seen as “di- viding” on the right by b and “dividing” on the left by a. The class of all residuated lattices is denoted by RL. The study of such objects originated in the context of the theory of ring ideals in the 1930’s. The collection of all two-sided ideals of a ring forms a lattice upon which one can impose a natural monoid structure making this object into a residuated lattice. Such ideas were investi- gated by Morgan Ward and R. P. Dilworth in a series of important papers [15], [16],[45], [46], [47] and [48] and also by Krull in [33]. Since that time, there has been substantial research regarding some specific classes of residuated structures, see for example [1], [9], [26] and [38], but we believe that this is the first time that a general structural the- ory has been established for the class RL as a whole. In particular, we develop the notion of a normal subalgebra and show that RL is an “ideal variety” in the sense that it is an equational class in which con- gruences correspond to “normal” subalgebras in the same way that ring congruences correspond to ring ideals.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • Algebraic Structures Lecture 18 Thursday, April 4, 2019 1 Type
    Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages Algebraic structures Lecture 18 Thursday, April 4, 2019 In abstract algebra, algebraic structures are defined by a set of elements and operations on those ele- ments that satisfy certain laws. Some of these algebraic structures have interesting and useful computa- tional interpretations. In this lecture we will consider several algebraic structures (monoids, functors, and monads), and consider the computational patterns that these algebraic structures capture. We will look at Haskell, a functional programming language named after Haskell Curry, which provides support for defin- ing and using such algebraic structures. Indeed, monads are central to practical programming in Haskell. First, however, we consider type constructors, and see two new type constructors. 1 Type constructors A type constructor allows us to create new types from existing types. We have already seen several different type constructors, including product types, sum types, reference types, and parametric types. The product type constructor × takes existing types τ1 and τ2 and constructs the product type τ1 × τ2 from them. Similarly, the sum type constructor + takes existing types τ1 and τ2 and constructs the product type τ1 + τ2 from them. We will briefly introduce list types and option types as more examples of type constructors. 1.1 Lists A list type τ list is the type of lists with elements of type τ. We write [] for the empty list, and v1 :: v2 for the list that contains value v1 as the first element, and v2 is the rest of the list. We also provide a way to check whether a list is empty (isempty? e) and to get the head and the tail of a list (head e and tail e).
    [Show full text]
  • Thermodynamic Properties of Coupled Map Lattices 1 Introduction
    Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements.
    [Show full text]
  • Completely Representable Lattices
    Completely representable lattices Robert Egrot and Robin Hirsch Abstract It is known that a lattice is representable as a ring of sets iff the lattice is distributive. CRL is the class of bounded distributive lattices (DLs) which have representations preserving arbitrary joins and meets. jCRL is the class of DLs which have representations preserving arbitrary joins, mCRL is the class of DLs which have representations preserving arbitrary meets, and biCRL is defined to be jCRL ∩ mCRL. We prove CRL ⊂ biCRL = mCRL ∩ jCRL ⊂ mCRL =6 jCRL ⊂ DL where the marked inclusions are proper. Let L be a DL. Then L ∈ mCRL iff L has a distinguishing set of complete, prime filters. Similarly, L ∈ jCRL iff L has a distinguishing set of completely prime filters, and L ∈ CRL iff L has a distinguishing set of complete, completely prime filters. Each of the classes above is shown to be pseudo-elementary hence closed under ultraproducts. The class CRL is not closed under elementary equivalence, hence it is not elementary. 1 Introduction An atomic representation h of a Boolean algebra B is a representation h: B → ℘(X) (some set X) where h(1) = {h(a): a is an atom of B}. It is known that a representation of a Boolean algebraS is a complete representation (in the sense of a complete embedding into a field of sets) if and only if it is an atomic repre- sentation and hence that the class of completely representable Boolean algebras is precisely the class of atomic Boolean algebras, and hence is elementary [6]. arXiv:1201.2331v3 [math.RA] 30 Aug 2016 This result is not obvious as the usual definition of a complete representation is thoroughly second order.
    [Show full text]