Monitoring Stem Cell Research

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Stem Cell Research MMMOOONNNIIITTTOOORRRIIINNNGGG SSSTTTEEEMMM CCCEEELLLLLL RRREEESSSEEEAAARRRCCCHHH MONITORING STEM CELL RESEARCH A Report of The President’s Council on Bioethics Washington, D.C. January 2004 www.bioethics.gov v CONTENTS LETTER OF TRANSMITTAL TO THE PRESIDENT ix MEMBERS OF THE PRESIDENT’S COUNCIL ON BIOETHICS xiii COUNCIL STAFF AND CONSULTANTS xv PREFACE xvii 1 INTRODUCTION 1 I. WHAT ARE STEM CELLS, AND WHY IS THERE CONTENTION ABOUT THEM? 2 II. BROADER ETHICAL ISSUES 5 III. TYPES OF STEM CELLS: AN INTRODUCTION 7 A. EMBRYONIC STEM (ES) CELLS 8 B. EMBRYONIC GERM (EG) CELLS 9 C. ADULT (OR NON-EMBRYONIC) STEM CELLS 10 D. CORD BLOOD STEM CELLS 11 IV. TERMINOLOGY 12 V. ABOUT THE REPORT 15 ENDNOTES 20 2 CURRENT FEDERAL LAW AND POLICY 21 I. A BRIEF HISTORY OF THE EMBRYO RESEARCH FUNDING DEBATE 22 II. THE PRESENT POLICY 28 III. MORAL FOUNDATION OF THE POLICY 30 IV. THE SIGNIFICANCE OF FEDERAL FUNDING 37 V. IMPLEMENTATION OF THE PRESENT POLICY 41 VI. CONCLUSION 47 ENDNOTES 49 PRE-PUBLICATION VERSION vi CONTENTS 3 RECENT DEVELOPMENTS IN THE ETHICAL AND POLICY DEBATES 53 I. THE NATURE OF THE MORAL ARGUMENT 54 II. THE MORAL AIMS OF POLICY 58 A. THE IMPORTANCE OF RELIEVING SUFFERING 58 B. FREEDOM TO CONDUCT RESEARCH 60 C. THE MORAL STANDING OF HUMAN EMBRYOS 62 III. THE CHARACTER OF THE POLICY 63 A. ARBITRARY 63 B. UNSUSTAINABLE 64 C. INCONSISTENT 67 IV. THE MORAL STANDING OF HUMAN EMBRYOS 74 A. CONTINUITY AND DISCONTINUITY 75 1. THE CASE FOR CONTINUITY. 76 2. THE CASE FOR MEANINGFUL DISCONTINUITY AND DEVELOPING MORAL STATUS. 78 B. SPECIAL CASES AND EXCEPTIONS 83 1. IVF “SPARES.” 84 2. NATURAL EMBRYO LOSS. 87 3. PREDICTION OF NON-VIABILITY OF EMBRYOS. 89 4. CREATION OF NON-VIABLE EMBRYO-LIKE ARTIFACTS. 90 V. SOCIETAL SIGNIFICANCE AND PUBLIC RESPONSIBILITY 93 VI. CONCLUSION 96 ENDNOTES 98 4 RECENT DEVELOPMENTS IN STEM CELL RESEARCH AND THERAPY 109 I. STEM CELLS AND THEIR DERIVATIVES 110 II. REPRODUCIBLE RESULTS USING STEM CELL PREPARATIONS AND THEIR DERIVATIVES 115 A. INITIAL STEM CELL PREPARATIONS CAN CONTAIN MULTIPLE CELL TYPES 116 B. GENETICALLY HOMOGENEOUS STEM CELLS THROUGH SINGLE CELL CLONING 117 C. EXPANSION IN VITRO, PRESERVATION, AND STORAGE 117 D. CHROMOSOME CHANGES 118 PRE-PUBLICATION VERSION CONTENTS vii E. DEVELOPMENTAL HETEROGENEITY OF STEM CELL PREPARATIONS 119 F. MICROBIAL CONTAMINATION 119 III. MAJOR EXAMPLES OF HUMAN STEM CELLS 121 A. HUMAN ADULT STEM CELLS 121 1. HUMAN MESENCHYMAL STEM CELLS. 121 2. MULTIPOTENT ADULT PROGENITOR CELLS (MAPCS). 123 3. HUMAN NEURAL STEM CELLS. 123 4. ADULT STEM CELLS FROM OTHER SOURCES. 125 B. HUMAN EMBRYONIC STEM CELLS 125 1. HUMAN EMBRYONIC STEM CELLS (ESCS). 125 2. EMBRYONIC GERM CELLS. 127 3. EMBRYONIC STEM CELLS FROM CLONED. EMBRYOS (CLONED ESCS). 127 IV. BASIC RESEARCH USING HUMAN STEM CELLS 129 V. HUMAN STEM CELLS AND THE TREATMENT OF DISEASE 130 A. WILL STEM CELL-BASED THERAPIES BE LIMITED BY IMMUNE REJECTION? 131 B. CASE STUDY: STEM CELLS IN THE FUTURE TREATMENT OF TYPE-1 DIABETES? 132 1. THE DISEASE AND ITS CAUSES. 132 2. CURRENT THERAPY CHOICES AND OUTCOMES. 134 3. STEM CELL THERAPY FOR TYPE-1 DIABETES? 134 C. THERAPEUTIC APPLICATIONS OF MESENCHYMAL STEM CELLS (MSCS) 137 VI. PRIVATE SECTOR ACTIVITY 138 VII. PRELIMINARY CONCLUSIONS 138 ENDNOTES 140 GLOSSARY OF TERMS 145 APPENDIX A. NOTES ON EARLY HUMAN DEVELOPMENT 155 STAFF OF THE PRESIDENT’S COUNCIL ON BIOETHICS APPENDIX B. REMARKS BY THE PRESIDENT ON STEM CELL RESEARCH, AUGUST 9, 2001 181 PRESIDENT GEORGE W. BUSH APPENDIX C. BUSH ADMINISTRATION NIH GUIDELINES FOR EMBRYONIC STEM CELL FUNDING 187 PRE-PUBLICATION VERSION viii CONTENTS APPENDIX D. CLINTON ADMINISTRATION GUIDELINES FOR EMBRYONIC STEM CELL FUNDING 189 COMMISSIONED PAPERS APPENDIX E. LEGISLATORS AS LOBBYISTS: PROPOSED STATE REGULATION OF EMBRYONIC STEM CELL RESEARCH, THERAPEUTIC CLONING AND REPRODUCTIVE CLONING 197 LORI B. ANDREWS, J.D. APPENDIX F. THE MEANING OF FEDERAL FUNDING 225 PETER BERKOWITZ, J.D., PH.D. APPENDIX G. REPORT ON THE ETHICS OF STEM CELL RESEARCH 237 PAUL LAURITZEN, PH.D. APPENDIX H. HUMAN EMBRYONIC GERM CELLS: JUNE 2001-JULY 2003, THE PUBLISHED RECORD 273 JOHN GEARHART, PH.D. APPENDIX I. CURRENT PROGRESS IN HUMAN EMBRYONIC STEM CELL RESEARCH 279 TENNEILLE E. LUDWIG, PH.D. AND JAMES A. THOMSON, PH.D. APPENDIX J. MULTIPOTENT ADULT PROGENITOR CELLS: AN UPDATE 295 CATHERINE M. VERFAILLIE, M.D. APPENDIX K. ADULT STEM CELLS 309 DAVID A. PRENTICE, PH.D. APPENDIX L. STEM CELLS AND TISSUE REGENERATION: LESSONS FROM RECIPIENTS OF SOLID ORGAN TRANSPLANTATION 349 SILVIU ITESCU, M.D. APPENDIX M. POTENTIAL USE OF CELLULAR THERAPY FOR PATIENTS WITH HEART DISEASE 367 SILVIU ITESCU, M.D. APPENDIX N. THE BIOLOGY OF NUCLEAR CLONING AND THE POTENTIAL OF EMBRYONIC STEM CELLS FOR TRANSPLANTATION THERAPY 387 RUDOLF JAENISCH, M.D. PRE-PUBLICATION VERSION LETTER OF TRANSMITTAL TO THE PRESIDENT OF THE UNITED STATES The President’s Council on Bioethics 1801 Pennsylvania Avenue N.W., Suite 700 Washington, D.C. 20006 January 14, 2004 The President The White House Washington, D.C. Dear Mr. President: I am pleased to present to you Monitoring Stem Cell Research, a report of the President’s Council on Bioethics. Over the past two years, in keeping with your stated intention, the Council has been monitoring developments in stem cell research, as it proceeds under the implementation of the administration’s policy. We have consulted widely, heard presentations, and commissioned review essays (included as appendices in this volume) on all aspects of the topic— scientific, ethical, and legal. Our desire has been both to understand what is going on in the laboratory and to consider for ourselves the various arguments made in the ongoing debates about the ethics of stem cell research and the wisdom of the current policy. Although both the policy and the research are still in their infancy, the Council is now ready to give you and the American people an update on this important area of research. PRE-PUBLICATION VERSION x LETTER OF TRANSMITTAL TO THE PRESIDENT Because this field and the current policy are so young, this report can be no more than an “update.” It summarizes some of the more interesting and significant developments since August 2001, both in the basic science and medical applications of stem cell research and in the related ethical, legal, and policy discussions. It does not attempt to be a definitive or comprehensive study of the whole topic. It contains no proposed guidelines and regulations, nor indeed any specific recommendations for public policy. Rather, it seeks to shed light on where we are now—ethically, legally, scientifically, and medically—in order that you, the Congress, and the nation may be better informed as we all consider where we should go in the future. The report has four basic aims, three of them the subjects of independent chapters devoted to their themes. First, we have sought to clarify and explain the current federal policy regarding stem cell research and to make clear the legal, ethical, and prudential foundations on which the policy rests: the desire to promote important biomedical research without endorsing, funding, or creating incentives for the future destruction of human embryos. We have also sought to describe how that policy is being implemented, especially by the National Institutes of Health. Many of these matters have not been well understood or accurately represented in public discussions since August 2001, and we hope that the clarifications introduced in this report will enable future discussions and debates to be better informed. Second, we have tried to provide an overview of the ethical and policy debates surrounding stem cell research in the past two years. As you already know quite well, these are immensely difficult and challenging matters, with the obligations owed to nascent human life pitted against the obligations to seek knowledge that might someday alleviate much human suffering. Not surprisingly, arguments continue PRE-PUBLICATION VERSION LETTER OF TRANSMITTAL TO THE PRESIDENT xi on all aspects of the moral and political debate. We have sought to present the arguments and counter-arguments, faithfully and accurately, so that all may learn what is at stake and where the debate now stands. Third, we have monitored recent scientific developments in human stem cell research, embryonic and adult, basic and applied. Our goal in the report is to enable (especially non- scientific) readers to appreciate the reasons for the excitement over stem cell research, the complexities of working with stem cells, some early intriguing research and therapeutic findings, and the difficult road that must be traveled before we can reap therapeutic and other benefits from this potentially highly fertile field of research. The other three specific goals have been informed by a fourth and overarching goal: to convey the moral and social importance of the issue at hand and to demonstrate how people of different backgrounds, ethical beliefs, and policy preferences can reason together about it. We want everyone to understand that biomedical research, being a human activity, must always be regarded as a moral endeavor, to be governed not only by the goals of gaining knowledge and relieving suffering, but also by the obligation to safeguard the inherent freedom and dignity of human life. Throughout the Council’s deliberations and in this monitoring report, Council members have tried to acknowledge the strengths and importance of opinions and concerns held by people with whom they disagree. We have aspired to be careful and fair in our approach, precise in our use of language, accurate in presenting data and arguments, and thoughtful in our laying out of the various issues that remain before us. Above all, we want all parties to these debates to understand that their opponents, too, have something vital to defend, not only for themselves but for all of us.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Human Anatomy Bio 11 Embryology “Chapter 3”
    Human Anatomy Bio 11 Embryology “chapter 3” Stages of development 1. “Pre-” really early embryonic period: fertilization (egg + sperm) forms the zygote gastrulation [~ first 3 weeks] 2. Embryonic period: neurulation organ formation [~ weeks 3-8] 3. Fetal period: growth and maturation [week 8 – birth ~ 40 weeks] Human life cycle MEIOSIS • compare to mitosis • disjunction & non-disjunction – aneuploidy e.g. Down syndrome = trisomy 21 • visit http://www.ivc.edu/faculty/kschmeidler/Pages /sc-mitosis-meiosis.pdf • and/or http://www.ivc.edu/faculty/kschmeidler/Pages /HumGen/mit-meiosis.pdf GAMETOGENESIS We will discuss, a bit, at the end of the semester. For now, suffice to say that mature males produce sperm and mature females produce ova (ovum; egg) all of which are gametes Gametes are haploid which means that each gamete contains half the full portion of DNA, compared to somatic cells = all the rest of our cells Fertilization restores the diploid state. Early embryonic stages blastocyst (blastula) 6 days of human embryo development http://www.sisuhospital.org/FET.php human early embryo development https://opentextbc.ca/anatomyandphysiology/chapter/28- 2-embryonic-development/ https://embryology.med.unsw.edu.au/embryology/images/thumb/d/dd/Model_human_blastocyst_development.jpg/600px-Model_human_blastocyst_development.jpg Good Sites To Visit • Schmeidler: http://www.ivc.edu/faculty/kschmeidler/Pages /sc_EMBRY-DEV.pdf • https://embryology.med.unsw.edu.au/embryol ogy/index.php/Week_1 • https://opentextbc.ca/anatomyandphysiology/c hapter/28-2-embryonic-development/
    [Show full text]
  • Embryology Team 435
    EMBRYOLOGY TEAM 435 [email protected] Development of skeletal and muscular system Objectives At the end of the lecture, students should be able to : o List the different parts of mesoderm and the different divisions of somites. o Differentiate bones according to their embryological origin and mode of ossification. o Describe the ossification of long bones. o Describe the main steps for development of limbs. o Differentiate muscles according to their embryological origin. Important . Extra Embryo Amniotic cavity Embryo Yolk sac INTRAEMBRYONIC MESODERM Proliferates between Ectoderm & Endoderm EXCEPT in the central axis of embryo where NOTOCHORD is found Intraembryonic mesoderm differentiates into 3 parts Lateral mesoderm: divided by Intermediate Paraxial mesoderm: mesoderm on each side of notoc intraembryonic coelom into hord divided into unites (Somites) Somatic Splanchnic mesoderm mesoderm (between endoderm & (between ectoderm & coelom) coelom) INTRAEMBRYONIC MESODERM Cont. Paraxial mesoderm Differentiated into units each unit called Somite dermatome Sclerotome Myotome Form skin medial to the notochord Triangular in shape and it has two sides. lateral to the notochord. forms the axial skeleton except skull Hypaxial Epaxial medial to the sclerotome Most lateral side The notochord will form the CNS ( brain and spinal cord ) , the spin al cord will be surrounded by the Forms the muscles Forms the muscles vertebral column. The vertebral of body walls of the back column with the ribs and the (abdominal wall and (extensors of sternum forms
    [Show full text]
  • Mesoderma Differenciálódása
    Differentiation of mesoderm Dr. Bódi Ildikó 2019.12.04. 36. Germ cells, fertilization, cleavage (the division of cells in the early embryo) 37. Blastulation, implantation, decidua 38. Development of the embryo shield, ectoderm, endoderm and mesoderm 2 weeks The two-layer embryo shield: epibast and hypoblast Extra-embryonic Coelom Coelom = embryonic body cavity Implantation and gastrulation Gastrulation: The blastula continues to develop, eventually forming a structure called the gastrula. (three-plate embryo shield!!) The extraembryonic mesoderm appears Gastrulation THE DEVELOPMENT OF MESODERMA, DERIVATIVES OF GERM LAYERS (Weeks 3-8 of Development) The TRILAMINAR EMBRYO – 3rd week 1. Induction from the hypolblast cells 2. Proliferation of the epiblast cells 3. Caudal forms the primitive streak with primitive node and primitive groove Heart field (in deep) NEURAL ECTODERM Endoderm 4. The proliferated epiblast cells Epidermis migrate into the 2 layers Medial region of somites Lateral region of 5. Forming the mesoderm somites Intraembrional TRILAMINAR EMBRYO: mesoderm ectoderm, mesoderm, endoderm Stem cells Extraembrional mesoderm chorda dorsalis Parts of Mesoderm Paraxialis mesoderm - somita Intermedier mesoderm gononephrotom Parietalis mesoderm somatopleura splanchnopleura PARTS OF MESODERM AXIAL - green PARAXIAL-yellow INTERMEDIER - red LATERAL - blue •Paraxial mesoderm - somites - musculoskeletal structures •Intermediate mesoderm - urogenital (kidney and genital) •Lateral plate mesoderm - body wall, body cavities, cardiovascular and GIT structures •Paraxial mesoderm - somites - musculoskeletal structures •Intermediate mesoderm - urogenital (kidney and genital) •Lateral plate mesoderm - body wall, body cavities, cardiovascular and GIT structures Week 4Scanning electron micrograph of a cross-section of a human embryo at week 4 (stage 11). Note the mesoderm structures now present and their relative position and size within the embryo.
    [Show full text]
  • High-Yield Embryology 4
    LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page i Aptara Inc High-Yield TM Embryology FOURTH EDITION LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page ii Aptara Inc LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page iii Aptara Inc High-Yield TM Embryology FOURTH EDITION Ronald W. Dudek, PhD Professor Brody School of Medicine East Carolina University Department of Anatomy and Cell Biology Greenville, North Carolina LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page iv Aptara Inc Acquisitions Editor: Crystal Taylor Product Manager: Sirkka E. Howes Marketing Manager: Jennifer Kuklinski Vendor Manager: Bridgett Dougherty Manufacturing Manager: Margie Orzech Design Coordinator: Terry Mallon Compositor: Aptara, Inc. Copyright © 2010, 2007, 2001, 1996 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in China All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appear- ing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at lww.com (products and services).
    [Show full text]
  • Embryology Online Course Content
    Length of Lecture and Associated Behavioral Objectives Lecture # Lecture Title Contact Hours CEUs Lecturer Readings/Practice Participants will: Questions (in minutes) Lecture 1 Introduction to course/ 90 1.5 0.15 DJ Lowrie, PhD 1. Discuss basic concepts of genetics, including the cell Basic human cycle, trait inheritance, mitosis/meiosis, and crossing over. biology/Molecular Genetics 2. List the types of human tissue. 3. List the human organ system and basic properties of each. 4. Recite terms used to describe human anatomy Lecture 2 Weeks 1 and 2 of 90 1.5 0.15 DJ Lowrie, PhD 1. Describe the three germ layers of the embryo. Development 2. Explain gametogenesis and fertilization. 3. Describe the first week of human development. 4. Identify chromosomal anomalies and the techniques of assisted reproduction. 5. Describe early components of the embryo/placenta, including the amniotic cavity, the yolk sac, mesoderm, and the trophoblasts. Lecture 3 Weeks 3 and 4 of 105 1.75 0.175 DJ Lowrie, PhD 1. Describe gastrulation. Development/Teratology 2. Describe differentiation of intraembryonic mesoderm. 3. Describe the process and regulation of cell migration. 4. Describe the process of neurulation. 5. Explain somite differentiation. 6. List the steps involved in embryonic folding. 7. Describe the embryologic basis of neural tube defects. Lecture 4 Molecular Mechanism of 90 1.5 0.15 William Scott, PhD 1. List genes that control limb development and describe Limb Development their effects. 2. Describe different types of limb defects and associated syndromes. Lecture 5 Neural Tube Defects 90 1.5 0.15 Susan Wiley, 1.
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Body Cavities, Mesenteries & Diaphragm
    Body Cavities, Mesenteries & Diaphragm Speaker:陳玉怜 Peritoneal cavity Pleural cavity Pericardial cavity 3 week paraxial ectoderm mesoderm *extraembryonic * coelom *chorionic cavity lateral mesoderm (yolk sac) 18 day embryo lateral mesoderm * intraembryonic coelom: cardiogenic area & lateral mesoderm * * intraembryonic 20 day coelom *Intraembryonic coelom horseshoe-shaped cavity -Curve future pericardial cavity -Limbs future pleural & peritoneal cavities * intraembryonic coelom * Distal part of each limb -- at the lateral edges of the embryonic disc -- extraembryonic coelom * early in the 4th week Folding of the embryo Tail fold Head fold pericardial coelom Lateral fold Lateral fold * 22 d Intraembyonic coelom & Embryonic Foldings ~26 days * * dorsal mesentery ventral mesentery except where it is attached to caudal foregut (future stomach & proximal duodenum) ~28 days 19 D 20 D End of 4 week Embryonic body cavity • Somatic mesoderm parietal wall future parietal layer of peritoneum • Splanchnic mesoderm visceral wall future visceral layer of peritoneum Pericardioperitoneal Canal Pericardioperitoneal Canals ~24 days -- Each lies lateral to foregut (future esophagus) and dorsal to septum transversum (primordial central tendon of diaphragm). • In lateral wall of each pericardioperitoneal canal: -*cranial ridge: pleuropericardial fold pleuropericardial membrane (contain common cardinal veins) - caudal ridge: pleuroperitoneal fold pleuroperitoneal membrane (diaphragm) 5 wks 6 wks • During the 7th week, pleuropericardial membranes fuse with
    [Show full text]
  • Physiology Organphysiology from a Phenomenological Point of View About the Louis Bolk Institute
    BOLK’S COMPANIONS FOR THE STUDT OF MEDICINE We would questionnaire/ be interested to hear your www.kingfishergroup.nl/ opinion about this publication. You can let us know at http:// Physiology Point of View Point Organphysiology from a Phenomenological from Christina van Tellingen MD Tellingen van Christina INSTITUTE Physiology Organphysiology from a Phenomenological Point of View About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions, the Institute works together with the Kingfisher Foundation. Publication number GVO 04 ISBN/EAN: 978-90-74021-27-1 Price € 10 Postage € 7,50 KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: ©Louis Bolk Instituut, 2003, reprint 2012 Cover: www.fingerprint.nl Cover painting by Alexej von Javlensky, “Urform” (Archetypal form) BOLK FOR THE STUDY OF MEDICINE FOR THE STUDY Physiology ’S COMPANIONS Organ Physiology from a Phenomenological Point of View Christina van Tellingen MD About the Author Christina van Tellingen MD (1949) has been a general practitioner since 1982.
    [Show full text]
  • Embryonic Development of the Degu, Octodon Degus Mariana A
    Embryonic development of the degu, Octodon degus Mariana A. Rojas, M. A. Montenegro and B. Morales Department ofExperimental Morphology, University of Chile Medical School, Casilla 2988, Correo Central, Santiago, Chile Summary. Although the degu has a long gestation period (87 \m=+-\3 days) the pattern of development from mating to birth is similar to that of other rodents. However, each of the basic processes occurs more slowly than in myomorph rodents and the degu could therefore be useful for studies on embryonic development. Introduction The degù (Octodon degus; Family Octodontidae; Suborder Caviomorpha; Order Rodentia), sometimes also called the trumpet-tail mouse or mouse of the pircas (see Osgood, 1943), is one of the most common wild animals of the central region of Chile (28-58°S and 0-1800 m above sea level: Tamayo & Frassinetti, 1980), where the predominant vegetation is a matorral, an evergreen sclerophyllous scrub. The principal types of plants consist of a few basic life forms: evergreen sclerophyllous shrubs and trees such as Acacia caven, Muhlembeckia hastulata; drought-deciduous shrubs such as Trevoa trinervos and succulents (Montenegro, Hoffmann, Aljaro & Hoffmann, 1979). In the wild, the animals are diurnal (Yañez & Jaksic, 1978) and are probably seasonal breeders (Contreras & Bustos, 1977; Rojas, Rivera, Montenegro & Barros, 1977). There is a period of sexual inactivity from January until June (summer and autumn) and mating occurs between the end of June and early July (beginning of winter), coinciding with the shorter daylengths. The first parturitions mostly occur in September-October (spring) with second litters being born in December (summer), but a small number of females give birth in October and November (Rojas et al, 1977).
    [Show full text]
  • Bilaminar and Trilaminar Discs.Pdf
    Embryology Foundation block Brought to you by: Asma Al-Mohizea Basil Al-Suwaine Third lecture Development of bilaminar and trilaminar discs EMBRYOLOGY 3 1 Bilaminar disc: • Implantation is completed by the second week. • During the second week, the extra embryonic structures forming are: amniotic cavity, amnion, yolk sac, and connecting stalk. • The embryoblast changes to produce a bilaminar embryonic disc. • Changes to the embryoblast (inner layer mass) (embryonic pole) happen during implantation; bilaminar disc production. • The embryonic disc gives rise to the germ layers to form all tissues and organs of the embryo. • the inner cell mass is differentiated into two layers[A+B=bilaminar disc]: • A)Epiblast: high columnar cells. Adjacent to amniotic cavity. • B)hypoblast: small cuboidal cells. Adjacent to the yolk sac. Extraembryonic mesoderm: A loose connective tissue that arises from yolk sac. It surrounds the amnion and yolk sac. Extraembryonic coelom: Multiple vacant spaces appear within the mesoderm that fuse to form the coelom. It surrounds the amnion & yolk sac. EMBRYOLOGY 3 2 Checkpoint! Changes in bilaminar Gastrulation: germ cells? • The process through which the bilaminar is changed into trilaminar, as new tissue (secondary or intraembryonic mesoderm) appears between the ectoderm and the endoderm. • Characterized by: • Appearance of primitive streak [first sign]. • Development of prechordal plate. • Differentiation of three germ layers. Trilaminar disc: Trilaminar disc is formed of three layers: • 1)Embryonic ectoderm. Checkpoint:Formation of secondary embryonic mesoderm? • 2)Intraembryonic mesoderm • 3)Embryonic endoderm. •Primitive streak(Day 15-16): Thickened band in the caudal part of the dorsal aspect of the epiblast. A proliferation of cells.
    [Show full text]
  • EMBRYOLOGY: EARLY EMBRYO This Picture Shows the Three (3) Phases of Fertilization
    EMBRYOLOGY: EARLY EMBRYO This picture shows the three (3) phases of fertilization . Identify the three phases. What is capacitation? What does the process of capacitation involve? . What is acrosome reaction? The picture shows the oocyte completing its second meiotic division in preparation for fertilization . The nucleus of the oocyte will form a female pronucleus while the sperm nucleus will form the male proncleus. What will the two pronuclei form? The above pictures show the formation of the morula from a two- celled zygote. What is the name of the process by which the zygote divides? . What are the cells resulting from this division called? The picture shows the differentiation of the inner cell mass cells into the epiblast and hypoblast layers . The outer cell mass cells have differentiated into the inner cytotrophoblast and an outer syncytiotrophoblast. What is the significance of the syncytiotrophoblast layer? The picture shows the formation of the blastocyst cavity and the implantation of the blastocyst . What results in the formation of the blastocyst cavity? . By implanting, what type of nutrition is the embryo seeking? The picture shows the formation of lacunae in the syntrophoblast layer as well as the formation of the exocoelomic membrane . What is the significance of this layer? . What is found within the amniotic cavity? The picture shows the formation of the extra-embryonic mesoderm . What is the significance of this layer? . What stage of development is depicted on this picture? The picture shows the flow of blood maternal into the lacunae . What causes the maternal blood to flow into these lacunae? . What is the significance of this utero-placenta circulation? .
    [Show full text]