Classification and Evolution of the Burrowing Sea Anemones

Total Page:16

File Type:pdf, Size:1020Kb

Classification and Evolution of the Burrowing Sea Anemones ZOOSYSTEMATICA ROSSICA ISSN 2410-0226 Zoological Institute, Russian Academy of Sciences, St Petersburg ▪ https://www.zin.ru/journals/zsr/ [ onl ine] 0320-9180 Vol. 29(2): 213–237 ▪ Published online 20 October 2020 ▪ DOI 10.31610/zsr/2020.29.2.213 [ print] RESEARCH ARTICLE Classification and evolution of the burrowing sea anemones (Anthozoa: Actiniaria: Athenaria): a review of the past and current views Классификация и эволюция закапывающихся актиний (Anthozoa: Actiniaria: Athenaria): обзор прежних и современных представлений N.Yu. Ivanova Н.Ю. Иванова Natalia Yu. Ivanova, Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia. E-mail: [email protected] Abstract. The opinions of systematists about the classification and evolution of burrowing sea anemones have repeatedly changed over the long-term study of Actiniaria. Four stages can be distinguished over the course of the classification history. Each system was characterised by the use of mainly one particular fea- ture. These features were: (1) characters of the external morphology, (2) arrangement of the mesenteries, (3) presence or absence of the basilar muscles and (4) molecular markers. The views on the origin and the evolution of the burrowing sea anemones were also altered more than once, that led to the emergence of several hypotheses. The burrowing sea anemones were considered as a primitive group or, on the contrary, as more advanced descendants of large hexamerous actinians. Резюме. Представления исследователей о классификации и эволюции закапывающихся актиний неоднократно менялись в течение длительного времени изучения Actiniaria. В процессе формирования классификации можно выделить четыре этапа. Каждый из них характеризовался использованием в основном одного признака, на который опирались авторы при построении своей системы. К этим признакам следует отнести: (1) черты внешнего строения, (2) распо- ложение мезентериев, (3) наличие или отсутствие базилярных мускулов и (4) молекуляр- ные маркеры. Представления о происхождении и эволюции закапывающихся актиний также неоднократно изменялись, что привело к появлению нескольких гипотез. Закапывающиеся морские анемоны рассматривались в качестве примитивной группы или, наоборот, как более продвинутые потомки крупных гексамерных актиний. Key words: burrowing anemones, comparative morpho-anatomical analysis, taxonomic characters, clas- sification, evolution, Athenaria Ключевые слова: закапывающиеся актинии, сравнительный морфо-анатомический анализ, таксономические признаки, классификация, эволюция, Athenaria ZooBank Article LSID: urn:lsid:zoobank.org:pub:2B001412-4B70-4E12-BB97-54D620F6D12F Introduction huge amount of work in an attempt to build a nat- ural classification that reflected the evolution of The classification of the burrowing sea anemo- this group. The first researchers (Milne-Edwards nes has a long history dating back more than 150 & Haime, 1857; Gosse, 1858, 1860) relied main- years. During this time, researchers conducted a ly on the external features of the burrowing sea © 2020 Zoological Institute RAS and the Author(s) N.Yu. Ivanova. Classification and evolution of the burrowing sea anemones anemones to arrive at a classification. Later it be- to represent a polyphyletic group (Hand, 1966; came clear that anatomical characters were more Schmidt, 1972, 1974). stable and reliable characters (Hertwig, 1882; Following the contemporary trend in the nat- McMurrich, 1893). ural sciences, many specialists had high hopes of The transition to a classification based on in- solving the difficult problems of phylogeny and sys- ternal features was associated with a detailed tematics based on molecular genetic studies. Un- study of the successive development of the mes- fortunately, as evident from the new higher-level enteries by Hertwig & Hertwig (1879). It became classification for Actiniaria proposed by Rodríguez soon clear, however, that relying solely on the ar- et al. (2014), these issues are still far from being rangement of the mesenteries led to the union of resolved. Firstly, that classification yields a com- unrelated polyps and to the separation of close- bination of completely dissimilar forms. For exam- ly related forms (Beneden, 1897). According to ple, the edwardsians and the endocoelantheans are Carlgren (1898, 1900, 1905), the most important placed in one order: apart from sequence similarity, feature in classifying the burrowing sea anemones however, these sea anemones have no other common is the absence of the basilar muscles. Over time, his features in either structure or biology. Secondly, system was improved, developed, and published in placing some burrowing sea anemones, which lack the monograph “A survey of the Ptychodactiaria, acontia, together with the thenarian polyps that Corallimorpharia and Actiniaria” (1949). Carl- possess them, in the superfamily Metridioidea, was gren’s (1949) classification was universally accept- explained by loss of the acontia. Thirdly, when us- ed and was used by all researchers until recently. ing one set of markers, the position of many genera In the second half of the 20th century, however, in the scheme reflected a particular phylogenetic Carlgren’s system was increasingly though not to relationship, whereas using other markers yielded reflect the phylogeny of Actiniaria, and the bur- a quite different result. That cast doubt on the ap- rowing sea anemones were ultimately considered plicability of the method itself. Fig 1. Early sea anemone division based on characters of their external morphology. a, burrowing sea anemones, elongated forms with a rounded aboral end or physa; b, large attached sea anemones with a well-developed, flat, adhesive and muscular pedal disc. After Gosse (1860). 214 ( Zoosystematica Rossica, Vol. 29, No. 2, pp. 213–237 N.Yu. Ivanova. Classification and evolution of the burrowing sea anemones 1. Development of classification of 1.2. Transition to the classification based the burrowing sea anemones on internal features: the succession of arising mesenteries 1.1. Classification based on external morphological features The system of all Anthozoa, including the sea anemones, was later based on features of the inter- The taxonomists of the mid-19th century re- nal organization of the polyp (McMurrich, 1893). lied on external features to construct the classi- fication of sea anemones. They separated the bur- Haime (1854) was the first to point out the impor- rowing forms from the remaining representatives tance of anatomical features, but only Hertwig & based on their elongated body shape and absence Hertwig (1879) began to use them in constructing of a pedal disc (Fig. 1a, b). Milne-Edwards & their classification. Having traced the formation Haime (1857) placed these anemones inside of the of mesenteries in the sea anemones, the zoanthids, subfamily Actininae in section “Actinines pivo- and the octocorals, Hertwig & Hertwig (1879) tantes”, defining them as “species whose base is considered that the arrangement of mesenteries very small and body is very elongated” (Fig. 2). In and the development of their muscles (but not constructing his system, Gosse (1860) also relied their number as Ehrenberg (1834) and Haeckel on the presence or absence of a sticky pedal disc. (1866) believed) should be regarded as the most Accordingly, he isolated the worm-like anemones important taxonomic characters. along with the cerianthids from other anemones Hertwig & Hertwig (1879) and many subse- in the family Ilyanthidae (Gosse, 1858). Verrill quent researchers demonstrated that, in the early (1864) was among the first zoologists to draw at- stages of development, sea anemones are bilateral- tention to internal features of the polyp, indicating ly symmetrical animals. This is underlined by the the number of mesenteries (“internal lamellae”) in presence of eight primary mesenteries, which are a description of the species. Nonetheless, as diag- symmetrical with respect to the plane of a flat- nostic features for distinguishing genera and fami- tened pharynx. First, in anemone larvae, two lies, Verrill mainly used external features: body ventro-lateral mesenteries are formed to the right shape, surface structure, tentacles number, etc. and left of the flattened pharynx, making up the Klunzinger (1877) also used the elongated body bilateral pair (“couple”) (Fig. 3a). They divide the and rounded or pointed proximal end of the body body cavity into a smaller part located on the con- without a well-differentiated pedal disc as diag- ventionally ventral side, and a large portion on the nostic characteristics. conventionally dorsal side. The next mesenteries Fig 2. The position of burrowing sea anemones (in bold) in Milne-Edwards & Haime’s (1857) classification of coral polyps. ( Zoosystematica Rossica, Vol. 29, No. 2, pp. 213–237 215 N.Yu. Ivanova. Classification and evolution of the burrowing sea anemones Figs 3–6. The succession of arising mesenteries, schematic transversal section. 3, the first type;a , the first cou- ple (ventro-lateral mesenteries); b, the second couple (dorsal directive mesenteries); c, the third couple (ventral directive mesenteries); d, the fourth couple (dorso-lateral mesenteries); 4, the second type; a, the first couple (ven- tro-lateral mesenteries); b, the second couple (dorso-lateral mesenteries); c, the third couple (ventral directive mesenteries); d, the fourth couple (dorsal directive mesenteries); 5, Edwardsia stage; 6, arising of the fifth and sixth couples of lateral mesenteries.
Recommended publications
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • The Sea Anemone Exaiptasia Diaphana (Actiniaria: Aiptasiidae) Associated to Rhodoliths at Isla Del Coco National Park, Costa Rica
    The sea anemone Exaiptasia diaphana (Actiniaria: Aiptasiidae) associated to rhodoliths at Isla del Coco National Park, Costa Rica Fabián H. Acuña1,2,5*, Jorge Cortés3,4, Agustín Garese1,2 & Ricardo González-Muñoz1,2 1. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Funes 3250. 7600 Mar del Plata. Argentina, [email protected], [email protected], [email protected]. 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 3. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica. 4. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica, [email protected] 5. Estación Científica Coiba (Coiba-AIP), Clayton, Panamá, República de Panamá. * Correspondence Received 16-VI-2018. Corrected 14-I-2019. Accepted 01-III-2019. Abstract. Introduction: The sea anemones diversity is still poorly studied in Isla del Coco National Park, Costa Rica. Objective: To report for the first time the presence of the sea anemone Exaiptasia diaphana. Methods: Some rhodoliths were examined in situ in Punta Ulloa at 14 m depth, by SCUBA during the expedition UCR- UNA-COCO-I to Isla del Coco National Park on 24th April 2010. Living anemones settled on rhodoliths were photographed and its external morphological features and measures were recorded in situ. Results: Several indi- viduals of E. diaphana were observed on rodoliths and we repeatedly observed several small individuals of this sea anemone surrounding the largest individual in an area (presumably the founder sea anemone) on rhodoliths from Punta Ulloa.
    [Show full text]
  • Of Oceanactis Diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis
    JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2003, 8, 93--101 New Record of Oceanactis diomedeae (Cnidaria: Actiniaria: Oractiidae) and Systematic Position of the Genera Oceanactis and Oractis N. P. Sanamyan Klrimchatka institute ofEcology and Environment, Ptxrtyzanskqya a Petrqpavlovsk-Ktzmchatslty, 683000, Russia E-niaiL' na([email protected] (Received 1 February 2002; Accepted 10 November 2002) The small, deep-water sea anemone Oceanactis diomedeae (McMurrich, 1893) is recorded for the first time since it was first described, living in muddy habitats of the Sea of Okhotsk. The genus Oceanactis Moseley, 1877 is considered synonymous with Oractts McMurrich, 1893 and is the only genus belonging to the family Oractiidae Riemann-ZUrneck, 2000. The invagina- "glandular tions of the oral dise or sacs", unique to the Oractiidae, are de- scribed and their possible function is discussed. Key Words: Actiniaria. Oractiidae, sea anemones, Sea of Okhotsk, taxon- omy. Introduction were Several specimens of Oceanactis diomedeae (McMurrich, 1893) found among other sea anemones collected in the Sea of Okhotsk. This species was de- scribed as Oractis diomedeae McMurrich, 1893 from several specimens collected in California (McMurrich 1893), The taxonomic status of Oractis McMurrich, 1893 was not clear for a long time: initially described as a fbrm related to Gonactinia Sars, 1851 (Gonactiniidae), it was referred to the Andresiidae by Carlgren (1931) and later to the Haloclavidae by Carlgren (1949). Stephenson (1935: 30) pointed out that Oractis is an unusual form, not fitting readily into any family. He considered "may it to be related to the Halcampoididae or it be an immature or aberrant Ilyan- thid." Recently Riemann-ZUrneck (2000) established a new family Oractiidae and described a second species belonging to this genus, Oractis bursijt?ra Riemann- ZUrneck, 20oo, based on a single specimen from the central Arctic deep sea in- (Amundsen Basin, 3ooOm).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Toxin-Like Neuropeptides in the Sea Anemone Nematostella Unravel Recruitment from the Nervous System to Venom
    Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom Maria Y. Sachkovaa,b,1, Morani Landaua,2, Joachim M. Surma,2, Jason Macranderc,d, Shir A. Singera, Adam M. Reitzelc, and Yehu Morana,1 aDepartment of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; bSars International Centre for Marine Molecular Biology, University of Bergen, 5007 Bergen, Norway; cDepartment of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223; and dBiology Department, Florida Southern College, Lakeland, FL 33801 Edited by Baldomero M. Olivera, University of Utah, Salt Lake City, UT, and approved September 14, 2020 (received for review May 31, 2020) The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a to a target receptor in the nervous system of the prey or predator powerful model for characterizing the evolution of genes func- interfering with transmission of electric impulses. For example, tioning in venom and nervous systems. Although venom has Nv1 toxin from Nematostella inhibits inactivation of arthropod evolved independently numerous times in animals, the evolution- sodium channels (12), while ShK toxin from Stichodactyla heli- ary origin of many toxins remains unknown. In this work, we pin- anthus is a potassium channel blocker (13). Nematostella’snem- point an ancestral gene giving rise to a new toxin and functionally atocytes produce multiple toxins with a 6-cysteine pattern of the characterize both genes in the same species. Thus, we report a ShK toxin (7, 9). The ShKT superfamily is ubiquitous across sea case of protein recruitment from the cnidarian nervous to venom anemones (14); however, its evolutionary origin remains unknown.
    [Show full text]
  • The Genome of Aiptasia and the Role of Micrornas in Cnidarian- Dinoflagellate Endosymbiosis Dissertation by Sebastian Baumgarten
    The Genome of Aiptasia and the Role of MicroRNAs in Cnidarian- Dinoflagellate Endosymbiosis Dissertation by Sebastian Baumgarten In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia © February 2016 Sebastian Baumgarten All rights reserved 2 EXAMINATION COMMITTEE APPROVALS FORM Committee Chairperson: Christian R. Voolstra Committee Member: Manuel Aranda Committee Member: Arnab Pain Committee Member: John R. Pringle 3 To my Brother in Arms 4 ABSTRACT The Genome of Aiptasia and the Role of MicroRNAs in Cnidarian- Dinoflagellate Endosymbiosis Sebastian Baumgarten Coral reefs form marine-biodiversity hotspots of enormous ecological, economic, and aesthetic importance that rely energetically on a functional symbiosis between the coral animal and a photosynthetic alga. The ongoing decline of corals worldwide due to anthropogenic influences heightens the need for an experimentally tractable model system to elucidate the molecular and cellular biology underlying the symbiosis and its susceptibility or resilience to stress. The small sea anemone Aiptasia is such a model organism and the main aims of this dissertation were 1) to assemble and analyze its genome as a foundational resource for research in this area and 2) to investigate the role of miRNAs in modulating gene expression during the onset and maintenance of symbiosis. The genome analysis has revealed numerous features of interest in relation to the symbiotic lifestyle, including the evolution of transposable elements and taxonomically restricted genes, linkage of host and symbiont metabolism pathways, a novel family of putative pattern-recognition receptors that might function in host-microbe interactions and evidence for horizontal gene transfer within the animal-alga pair as well as with the associated prokaryotic microbiome.
    [Show full text]
  • A Sea Anemone, <I>Edwardsia Meridionalls</I> Sp. Nov., From
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Williams, R. B., 1981. A sea anemone, Edwardsia meridionalis sp. Nov., from Antarctica and a preliminary revision of the genus Edwardsia de Quatrefages, 1841 (Coelenterata: Actiniaria). Records of the Australian Museum 33(6): 325–360. [28 February 1981]. doi:10.3853/j.0067-1975.33.1981.271 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia A SEA ANEMONE, EDWARDSIA MERIDIONALlS SP. NOV., FROM ANTARCTICA AND A PRELIMINARY REVISION OF THE GENUS EDWARDSIA DE QUATREFAGES, 1841 (COELENTERATA: ACTINIARIA). R. B. WllLIAMS 2 Carrington Place, Tring, Herts., HP23 SLA, England SUMMARY A newly recognized sea anemone, Edwardsia meridionalis sp. nov., from McMurdo Sound, Antarctica is described and compared with other Edwardsia species. Its habitat and geographical distribution are described. The generic name Edwardsia de Quatrefages, 1841 and the familial name Edwardsiidae Andres, 1881 are invalid. A summary of a proposal made to the International Commission on Zoological Nomenclature to conserve these names is given. The genus Edwardsia is defined and its known synonyms are given. A review of the published descriptions found of nominal Edwardsia species revealed many nomina nuda, nomina dubia, synonyms and homonyms. The remaining nomina clara comprize forty currently accepted nominal species, which are listed with their known synonyms and geographical distributions. The following nomenclatural changes are instituted: E. carlgreni nom. novo is proposed as a replacement name for E.
    [Show full text]
  • Coquet to St Mary's Rmcz Summary Site Report V5
    Coquet to St Mary’s rMCZ Post-survey Site Report Contract Reference: MB0120 Report Number: 36 Version 5 September 2015 Project Title: Marine Protected Areas Data and Evidence Co-ordination Programme Report No 36. Title: Coquet to St Mary’s rMCZ Post-survey Site Report Defra Project Code: MB0120 Defra Contract Manager: Carole Kelly Funded by: Department for Environment, Food and Rural Affairs (Defra) Marine Science and Evidence Unit Marine Directorate Nobel House 17 Smith Square London SW1P 3JR Authorship Clare Fitzsimmons Newcastle University [email protected] Fabrice Stephenson Newcastle University [email protected] Paula Lightfoot Newcastle University [email protected] Acknowledgements We thank Chris Barrio Frojan and Markus Diesing from Cefas for reviewing earlier drafts of this report. Disclaimer: The content of this report does not necessarily reflect the views of Defra, nor is Defra liable for the accuracy of information provided, or responsible for any use of the report’s content. Although the data provided in this report have been quality assured, the final products - e.g. habitat maps – may be subject to revision following any further data provision or once they have been used in SNCB advice or assessments. Cefas Document Control Title: Coquet to St Mary’s rMCZ Post-survey Site Report Submitted to: Marine Protected Areas Survey Co-ordination & Evidence Delivery Group Date submitted: September 2015 Project Manager: David Limpenny Report compiled by: Clare Fitzsimmons, Fabrice Stephenson and
    [Show full text]
  • Diversity and Distribution of Sea-Anemones (Cnidaria : Actiniaria) in the Estuaries and Mangroves of Odisha, India
    ISSN 0375-1511 Rec. zool. Surv. India: 113(Part-3): 113-118,2013 DIVERSITY AND DISTRIBUTION OF SEA-ANEMONES (CNIDARIA : ACTINIARIA) IN THE ESTUARIES AND MANGROVES OF ODISHA, INDIA SANTANU MITRA* AND J.G. PATTANAYAK Zoological Survey of India 27, J. L. Nehru Road, Kolkata-700 016, West Bengal, India * [email protected] INTRODUCTION anemone Paracondylactis sinensis (Carlgren) was Actiniarians, popularly called as 'Sea­ collected by digging the sandy mud 20-25 cm around the specimens up to depth of about 70-120 Anemones', belongs to the phylum Cnidaria form cm depending on the size of the anemone. The an important group of intertidal invertebrate animals were detached from the substratum by distinguished by their habit, habitat and beautiful lifting the basal disc manually and narcotized colouration. This group was not elaborately with 1 % formalin for the period of 6-8 hours. The studied from India. However Annandale (1907 & narcotized anemones with fully expanded 1915), Carlgren (1925 & 1949), Parulekar (1968 & condition were preserved in 10% formalin for 1990), Seshyia and Cuttress (1971), Misra (1975 & further studies. 1976) and Bairagi (1998, 2001) worked on this SYSTEMATIC ACCOUNTS group and a total 40 species of sea anemones belongs to 33 genera and 17 families so far Phylum CNIDARIA Class ANTHOZOA recorded from India. During the recent faunal Subclass HEXACORALLIA survey (2010-2011) of Estuaries and Mangrove Order ACTINIARIA fringed coastal districts of Odisha, the authors Family EDW ARDSIIDAE encountered a quite good number of specimens of 1. Edwardsia jonesii Seshaiya & Cuttress, 1969 this group. After proper identification these 2. Edwardsia tinctrix Annandale, 1915 reveals 5 species belonging to 4 genera and 3 Family HALIACTIIDAE families.
    [Show full text]
  • Antennapeachia Jambio (Cnidaria: Actiniaria: Haloclavidae), the Second Species of Genus Antennapeachia, with Revision of the Diagnosis of the Genus
    Species Diversity 22: 109–115 25 November 2017 DOI: 10.12782/sd.22_109 Antennapeachia jambio (Cnidaria: Actiniaria: Haloclavidae), the Second Species of Genus Antennapeachia, with Revision of the Diagnosis of the Genus Takato Izumi1,4, Toshihiko Fujita1,2, and Kensuke Yanagi3 1 Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan 3 Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba 299-5242, Japan 4 Corresponding author (Received 8 December 2016; Accepted 11 July 2017) http://zoobank.org/DDD14619-4742-4EE9-9675-127654BE19F5 A new species of sea anemone, Antennapeachia jambio sp. nov., was collected off Jogashima, central Japan. The pres- ence of a single, strong siphonoglyph and physa-like aboral end, and the absence of the sphincter muscle classify this sea anemone within the family Haloclavidae. Two antenna tentacles and non-paired microcnemes categorize it into genus An- tennapeachia, where only Antennapeachia setouchi Izumi and Yanagi, 2016 was included. However, unlike A. setouchi, A. jambio has two more marginal tentacles and two macrocnemes between ventral directives and ventro-lateral mesenteries. On the basis of details of these new characters of Antennapeachia, the diagnosis of the genus was revised to accommodate both species. Key Words: Sea anemone, Haloclavidae, Antennapeachia, revising genus, new species, Japan, Pacific, R/V Rinkai-Maru. (2016) stated that the genus Antennapeachia has two pairs of Introduction mesenteries consisting of a macrocneme and a microcneme between ventral directives and ventro-lateral mesenteries Haloclavidae is a family of sea anemones included in the based on A.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]