Downloads/Pbl-2017-Exploring-Future-Changes-In-Land-Use-And-Land-Condition-2076B 1.Pdf (Accessed on 17 December 2020)

Total Page:16

File Type:pdf, Size:1020Kb

Downloads/Pbl-2017-Exploring-Future-Changes-In-Land-Use-And-Land-Condition-2076B 1.Pdf (Accessed on 17 December 2020) remote sensing Review Imaging Spectroscopy for Conservation Applications Megan Seeley 1,2,* and Gregory P. Asner 1,2 1 School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287, USA; [email protected] 2 Center for Global Discovery and Conservation, Arizona State University, Tempe, AZ 85281, USA * Correspondence: [email protected] Abstract: As humans continue to alter Earth systems, conservationists look to remote sensing to monitor, inventory, and understand ecosystems and ecosystem processes at large spatial scales. Multispectral remote sensing data are commonly integrated into conservation decision-making frameworks, yet imaging spectroscopy, or hyperspectral remote sensing, is underutilized in conserva- tion. The high spectral resolution of imaging spectrometers captures the chemistry of Earth surfaces, whereas multispectral satellites indirectly represent such surfaces through band ratios. Here, we present case studies wherein imaging spectroscopy was used to inform and improve conservation decision-making and discuss potential future applications. These case studies include a broad array of conservation areas, including forest, dryland, and marine ecosystems, as well as urban applica- tions and methane monitoring. Imaging spectroscopy technology is rapidly developing, especially with regard to satellite-based spectrometers. Improving on and expanding existing applications of imaging spectroscopy to conservation, developing imaging spectroscopy data products for use by other researchers and decision-makers, and pioneering novel uses of imaging spectroscopy will greatly expand the toolset for conservation decision-makers. Keywords: imaging spectroscopy; conservation; forest; coral reef; methane; urban; drylands; hyperspectral Citation: Seeley, M.; Asner, G.P. 1. Introduction Imaging Spectroscopy for The Earth system is undergoing rapid change [1]. At the turn of the 21st century, Conservation Applications. Remote 75% of ice-free terrestrial surfaces were used by humans in some fashion [2]. From 1982 Sens. 2021, 13, 292. https://doi.org/ to 2016, tropical regions experienced net forest loss. While temperate and boreal regions 10.3390/rs13020292 experienced net forest gains during the same period [3], many temperate forests have shifted in composition due to current and historic anthropogenic activities [4]. Remaining Received: 18 December 2020 Accepted: 11 January 2021 unaltered forest regions are highly fragmented and at risk of deforestation and degradation. Published: 15 January 2021 Cropland expansion alone will remove an estimated 13.7% of the standing forest biomass and convert 3.8% of biodiversity hotspots by 2050 [5]. Marine regions are similarly affected. Publisher’s Note: MDPI stays neu- By 2070, over 70% of coral reefs will experience annual severe bleaching [6], and, in 2010, tral with regard to jurisdictional clai- 10,000–40,000 tons of plastic floated in ocean surface waters [7]. Keystone species both ms in published maps and institutio- on land and in the ocean are threatened by habitat loss and overharvesting. Exacerbating nal affiliations. these direct anthropogenic impacts on ecosystems is human-induced climate change. Many human and natural communities are already experiencing the consequences of changing precipitation patterns and increasing temperatures, and these issues will continue to worsen if human action continues as usual. As rates of deforestation and carbon dioxide levels rise, Copyright: © 2021 by the authors. Li- decision-makers and conservationists look to science for solutions. censee MDPI, Basel, Switzerland. While nearly half of published conservation biology research has focused on docu- This article is an open access article menting threats to biodiversity [8], an increasingly large subset of practitioners in this distributed under the terms and con- field is entrenched in conservation decision-making [9]. Remote sensing informs both ditions of the Creative Commons At- of these communities and is used to document land-use/land-cover changes [10] that tribution (CC BY) license (https:// creativecommons.org/licenses/by/ inform research and conservation decision-making [11–13]. The volume of remotely sensed 4.0/). data from commercial and governmental organizations allows Earth system monitoring Remote Sens. 2021, 13, 292. https://doi.org/10.3390/rs13020292 https://www.mdpi.com/journal/remotesensing Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 17 Remote Sens. 2021, 13, 292 2 of 17 research and conservation decision-making [11–13]. The volume of remotely sensed data from commercial and governmental organizations allows Earth system monitoring at un- precedentedat unprecedented spatiotemporal spatiotemporal scales, yet many scales, Earth yet manysystem Earth dimensions system cannot dimensions be directly cannot be measureddirectly with measured multispectral with multispectral satellites. Imaging satellites. spectroscopy Imaging offers spectroscopy a means to offers more a di- means to rectlymore measure directly many measure of these many dimensions of these dimensions by filling in by the filling gaps inin thethe gapselectromagnetic in the electromag- spectrum.netic spectrum. ImagingImaging spectroscopy spectroscopy is a process is a process of image of image formation formation from narrow from narrow wavelength wavelength in- in- tervals,tervals, referred referred to as to channels. as channels. These channels These channels are arranged are arranged in a way that in a capt wayures that a con- captures a tinuouscontinuous portion portion of the ofelectromagnetic the electromagnetic spectrum spectrum from the from visible the visible(400 nm) (400 to nm)shortwave to shortwave infraredinfrared (2500 (2500 nm), nm), in contrast in contrast to other to otherpassive passive remote remote sensing sensing platforms, platforms, such as Landsat such as Land- andsat Sentinel and Sentinel-2,-2, that have that wide have and wide spectrally and spectrally discontinuous discontinuous bands (Figure bands 1). Akin(Figure to la-1) . Akin boratoryto laboratory spectroscopy, spectroscopy, remote sensing remote based sensing on imaging based on spectroscopy imaging spectroscopy can directly meas- can directly uremeasure Earth system Earth characteristics system characteristics such as vegetation such as vegetationcanopy chemical canopy traits, chemical atmospheric traits, atmo- methane,spheric urban methane, surface urban composition, surface composition,and undersea andcoral undersea reefs. These coral and reefs. other Thesemeasure- and other mentsmeasurements or indicators or from indicators imaging from spectroscopy, imaging spectroscopy, unlike multispectral unlike multispectralimagery, are based imagery, are onbased the molecular on the molecularchemistry of chemistry Earth surfaces, of Earth which surfaces, is becoming which invaluable is becoming for conserva- invaluable for tionconservation issues. issues. FigureFigure 1. Bottom 1. Bottom-of-atmosphere-of-atmosphere reflectance reflectance spectra spectra(400 to 2500 (400 nm) to 2500from nm)(a) the from airborne (a) the visi- airborne visi- ble/infraredble/infrared imaging imaging spectrometer spectrometer (AVIRIS) (AVIRIS) and (b) and Sentinel (b) Sentinel-2.-2. While AVIRIS While data AVIRIS represent data represent224 224 contiguous,contiguous, equally equally sized sized bands bands (channels), (channels), Sentinel Sentinel-2-2 data dataare discrete are discrete representations representations of the ofelec- the electro- tromagnetic spectrum with variable bandwidths. magnetic spectrum with variable bandwidths. Imaging spectroscopy data are currently collected using aircraft, such as the Jet Pro- Imaging spectroscopy data are currently collected using aircraft, such as the Jet Propul- pulsion Lab’s airborne visible/infrared imaging spectrometer (AVIRIS), the National Eco- sion Lab’s airborne visible/infrared imaging spectrometer (AVIRIS), the National Ecologi- logical Observatory Network (NEON)’s Airborne Observation Platform, and Arizona cal Observatory Network (NEON)’s Airborne Observation Platform, and Arizona State State University’s Global Airborne Observatory (GAO). Such data, however, are part of theUniversity’s next frontier Global in spaceborne Airborne Earth Observatory observations. (GAO). To date, Such the data, only however,previous satellite are part- of the basednext imaging frontier s inpectrometer spaceborne for Earth civil societal observations. use was To the date, Hyperion the only instrument previous onboard satellite-based theimaging National spectrometer Aeronautics and for civilSpace societal Administration use was the(NASA)’s Hyperion Earth instrument Observing onboard-1 (EO-1) the Na- satellite.tional EO Aeronautics-1 was a technology and Space demonstration Administration and (NASA)’s has been Earthdeorbited. Observing-1 However, (EO-1) newer satellite. andEO-1 more was advanc a technologyed imaging demonstration spectrometers, and such has as been AVIRIS deorbited. and the However, GAO, are newerbeing re- and more designedadvanced for imagingEarth orbit. spectrometers, Once achieved, such spaceborne as AVIRIS imaging and the spectroscopy GAO, are being will redesignedbring a for wealthEarth of orbit. data that Once expands achieved, the opportunities spaceborne imaging for actionable spectroscopy science, such will bringas that a directed wealth of data to thatconservat expandsion solution the opportunities spaces. Here for we actionable describe science, how imaging such as spectroscopy
Recommended publications
  • Surface Reflectance and Sun-Induced Fluorescence
    remote sensing Article Surface Reflectance and Sun-Induced Fluorescence Spectroscopy Measurements Using a Small Hyperspectral UAS Roberto Garzonio *, Biagio Di Mauro, Roberto Colombo and Sergio Cogliati Remote Sensing of Environmental Dynamics Laboratory. Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; [email protected] (B.D.M.); [email protected] (R.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +39-02-6448-2848 Academic Editors: Jose Moreno and Prasad Thenkabail Received: 25 January 2017; Accepted: 9 May 2017; Published: 12 May 2017 Abstract: This study describes the development of a small hyperspectral Unmanned Aircraft System (HyUAS) for measuring Visible and Near-Infrared (VNIR) surface reflectance and sun-induced fluorescence, co-registered with high-resolution RGB imagery, to support field spectroscopy surveys and calibration and validation of remote sensing products. The system, namely HyUAS, is based on a multirotor platform equipped with a cost-effective payload composed of a VNIR non-imaging spectrometer and an RGB camera. The spectrometer is connected to a custom entrance optics receptor developed to tune the instrument field-of-view and to obtain systematic measurements of instrument dark-current. The geometric, radiometric and spectral characteristics of the instruments were characterized and calibrated through dedicated laboratory tests. The overall accuracy of HyUAS data was evaluated during a flight campaign in which surface reflectance was compared with ground-based reference measurements. HyUAS data were used to estimate spectral indices and far-red fluorescence for different land covers. RGB images were processed as a high-resolution 3D surface model using structure from motion algorithms.
    [Show full text]
  • Hyperspectral Imaging - a Technology Update
    Hyperspectral Imaging - a Technology Update A White Paper by Dr Nick Barnett, Pro-Lite Technology Ltd May 2021 classification, object segmentation and improved colour characterisation. Imaging spectroscopy is often divided into two categories: multispectral and hyperspectral. Multispectral cameras measure light in a small number (typically 3 to 15) of spectral bands whereas hyperspectral cameras collect a much larger number (up to several hundred) of distinct, yet contiguous bands across a wide spectral range. Traditionally, hyperspectral imaging has found Introduction applications in remote sensing and agriculture New developments in imager technology and in using scanning or push-broom cameras installed on computer processing power are rapidly enhancing satellites, aircraft, or UAVs. In recent times, consumer digital camera performance, leading to a developments in spectral imaging technology have wider adoption of imaging in everyday use. been evolving at a pace. Advances in high Additionally, image processing techniques based resolution sensors, electronics and optics are on artificial intelligence and machine learning are providing enhanced push-broom technologies as increasing the capabilities of cameras and smart well as enabling numerous other forms of spectral devices for tasks such as object detection based on imaging. Alternatives to push-broom systems colour and two-dimensional geometric data. include methods using tunable spectral filters as However, these conventional RGB-type cameras well as designs based on Fourier Transform only make use of a limited range of wavelengths in spectroscopy. There are also snapshot spectral the visible part of the spectrum, so are missing out imaging systems employing mosaic arrays of filters on a lot of the available spectral information.
    [Show full text]
  • Hyperspectral Imaging in Environmental Monitoring: a Review of Recent Developments and Technological Advances in Compact Field Deployable Systems
    Review Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems Mary B. Stuart 1, Andrew JS. McGonigle 2,3,4 and Jon R. Willmott 1,* 1 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK 2 Department of Geography, University of Sheffield, Sheffield S10 2TN, UK 3 School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia 4 Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia * Correspondence: [email protected] Received: 17 May 2019; Accepted: 9 July 2019; Published: 11 July 2019 Abstract: The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets. Keywords: hyperspectral; environmental monitoring; miniaturization; low-cost; field deployable 1.
    [Show full text]
  • Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles
    sensors Article Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles Alexander Jenal 1,2,* , Georg Bareth 2, Andreas Bolten 2, Caspar Kneer 1, Immanuel Weber 1 and Jens Bongartz 1 1 Application Center for Machine Learning and Sensor Technology, University of Applied Science Koblenz, 53424 Remagen, Germany; [email protected] (C.K.); [email protected] (I.W.); [email protected] (J.B.) 2 Institute of Geography, GIS & RS Group, University of Cologne, 50923 Cologne, Germany; [email protected] (G.B.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +49-2642-932-411 Received: 24 September 2019; Accepted: 11 December 2019; Published: 13 December 2019 Abstract: Short-wave infrared (SWIR) imaging systems with unmanned aerial vehicles (UAVs) are rarely used for remote sensing applications, like for vegetation monitoring. The reasons are that in the past, sensor systems covering the SWIR range were too expensive, too heavy, or not performing well enough, as, in contrast, it is the case in the visible and near-infrared range (VNIR). Therefore, our main objective is the development of a novel modular two-channel multispectral imaging system with a broad spectral sensitivity from the visible to the short-wave infrared spectrum (approx. 400 nm to 1700 nm) that is compact, lightweight and energy-efficient enough for UAV-based remote sensing applications. Various established vegetation indices (VIs) for mapping vegetation traits can then be set up by selecting any suitable filter combination. The study describes the selection of the individual components, starting with suitable camera modules, the optical as well as the control and storage parts.
    [Show full text]
  • Commercial Snapshot Spectral Imaging: the Art of the Possible
    MTR180488 MITRE TECHNICAL REPORT Commercial Snapshot Spectral Imaging: The Art of the Possible Sponsor: MITRE Innovation Program Dept. No.: P531 & T821 Project No.: 10MSRF18-ZL The views, opinions and/or finding contained in this report are those of The MITRE Cor- poration and should not be construed as an official government position, policy, or deci- sions, unless designated by other documen- tation. Approved for public release; Distribution unlimited. Public Release Case Number 18-3832. © 2019 The MITRE Corporation. All rights reserved. Michael West John Grossmann Chris Galvan McLean, VA September 2018 This page intentionally left blank. ii Abstract Advancements in snapshot multi- and hyper-spectral technology will soon make spectral imaging available to the consumer market. The first wave of products will be dominated by visible to near infrared (VNIR) cameras due to the maturity of Charged Coupled Device (CCD)/Complementary Metal Oxide Semiconductor (CMOS) imaging chip technology, which is used in everything from cell phone cameras to the Hubble Space Telescope. There is great potential for the law enforce- ment, war fighter, and intelligence communities to deploy compact spectral imaging on cell phones, dash cams, and small unmanned aerial vehicles (UAVs). These uses of VNIR imaging spec- troscopy go beyond the conventional ones, including agricultural and food safety applications that typically use VNIR spectroscopy. In this document we explore the “art of the possible” in VNIR imaging spectroscopy to enable material identification and characterization with low cost (i.e., non-scientific grade) commercial imagers. iii This page intentionally left blank. iv Executive Summary This report summarizes a study on the state-of-the-art and anticipated advancements in commercial snapshot spectral imaging.
    [Show full text]
  • The Compact High Resolution Imaging Spectrometer (CHRIS): the Future of Hyperspectral Satellite Sensors
    The Compact High Resolution Imaging Spectrometer (CHRIS): the future of hyperspectral satellite sensors. Imagery of Oostende coastal and inland waters Barbara Van Mola and Kevin Ruddicka a Management Unit of the North Sea Mathematical Models (MUMM), Royal Belgian Institute for Natural Sciences (RBINS), Gulledelle 100, B-1200 Brussels, email: [email protected], [email protected] ABSTRACT The gap between airborne imaging spectroscopy and traditional multi spectral satellite sensors is decreasing thanks to a new generation of satellite sensors of which CHRIS mounted on the small and low-cost PROBA satellite is the prototype. Although image acquisition and analysis are still in a test phase, the high spatial and spectral resolution and pointability have proved their potential. Because of the high resolution small features, which were before only visible on airborne images, become detectable. In particular coastal waters very close to the shore and inland waters become visible, opening up potential new application areas. This article gives a description of the CHRIS/PROBA system and compares it with a ocean color satellite sensors and airborne imaging spectrometers. A CHRIS image of the coastal waters of Oostende is used here to map suspended particulate matter. Analysis of imagery for an inland water body suggests that the near infrared (NIR) wavelengths are strongly affected by adjacency effects (environmental straylight). Keywords: CHRIS, PROBA, hyperspectral, satellite sensor, image spectroscopy, airborne, SPM, adjacency. 1 INTRODUCTION Water, sand, plants, phytoplankton, etc. differ in the way they reflect light of different wavelengths. The human eye perceives these differences as color and the color of water, therefore, differs according to which and how much material is suspended or dissolved in the water.
    [Show full text]
  • Adaptive Spectroscopy: Towards Adaptive Spectral Imaging
    Invited Paper Adaptive spectroscopy: Towards adaptive spectral imaging M.E. Gehm and J. Kinast University of Arizona Department of Electrical and Computer Engineering, Tucson, AZ, 85743 ABSTRACT Spectral imaging is an emerging tool for defense and security applications because it provides compositional information about the objects in a scene. The underlying task—measuring a 3-D dataset using a 2-D detector array—is challenging, and straightforward approaches to the problem can result in severe performance tradeoffs. While a number of ingenious (non-adaptive) solutions have been proposed that minimize these tradeoffs, the complexity of the sensing task suggests that adaptive approaches to spectral imaging are worth considering. As a first step towards this goal, we investigate adaptive spectroscopy and present initial results confirming dramatic cost/performance gains for a particular implementation. Keywords: spectral imaging, adaptive optics, computational sensing 1. INTRODUCTION Spectral imaging is a rapidly-expanding sensing modality for a variety of scientific and engineering applications primarily as a result of the supplementary information it provides about the chemical composition of the materials being imaged. While traditional imagers produce a two-dimensional spatial array of scalar values representing the intensity of a scene, a spectral imager produces a two-dimensional spatial array of vectors which contain the spectral information for the respective spatial locations. This data structure is known as the spectral datacube because of its three-dimensional nature. The addition of spectral data can provide valuable information in a variety of contexts ranging from defense and security applications1, 2 to biochemistry3, 4 to environmental monitoring,5, 6 to astrophysics.7 This manuscript discusses some fundamental challenges to traditional spectral imaging methods and describes a variety of computational sensing approaches that address these challenges.
    [Show full text]
  • The Enmap Spaceborne Imaging Spectroscopy Mission for Earth Observation
    Remote Sens. 2015, 7, 8830-8857; doi:10.3390/rs70708830 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Review The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation Luis Guanter 1;*, Hermann Kaufmann 1, Karl Segl 1, Saskia Foerster 1, Christian Rogass 1, Sabine Chabrillat 1, Theres Kuester 1, André Hollstein 1, Godela Rossner 2, Christian Chlebek 2, Christoph Straif 2, Sebastian Fischer 2, Stefanie Schrader 2, Tobias Storch 3, Uta Heiden 3, Andreas Mueller 3, Martin Bachmann 3, Helmut Mühle 3, Rupert Müller 3, Martin Habermeyer 3, Andreas Ohndorf 4, Joachim Hill 5, Henning Buddenbaum 5, Patrick Hostert 6, Sebastian van der Linden 6, Pedro J. Leitão 6, Andreas Rabe 6, Roland Doerffer 7, Hajo Krasemann 7, Hongyan Xi 7, Wolfram Mauser 8, Tobias Hank 8, Matthias Locherer 8, Michael Rast 9, Karl Staenz 10 and Bernhard Sang 11 1 Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Remote Sensing Section, Telegrafenberg A17, 14473 Potsdam, Germany; E-Mails: [email protected] (H.K.); [email protected] (K.S.); [email protected] (S.F.); [email protected] (C.R.); [email protected] (S.C.); [email protected] (T.K.); [email protected] (A.H.) 2 Space Administration, German Aerospace Center (DLR), Königswinterer Str. 522-524, 53227 Bonn, Germany; E-Mails: [email protected] (G.R.); [email protected] (C.C.); [email protected] (C.S.); sebastian.fi[email protected] (S.F.); [email protected] (S.S.) 3 Earth Observation Center (EOC), German Aerospace Center (DLR), Münchener Str.
    [Show full text]
  • Tutorial: Introduction to Hyperspectral Imaging
    I N T Introduction to Hyperspectral Imaging R O Introduction to T O H Y Hyperspectral P E R S P Imaging with TNTmips® page 1 Introduction to Hyperspectral Imaging Before Getting Started For much of the past decade, hyperspectral imaging has been an area of active research and development, and hyperspectral images have been available only to researchers. With the recent appearance of commercial airborne hyperspectral imaging systems, hyperspectral imaging is poised to enter the mainstream of remote sensing. Hyperspectral images will find many applications in resource management, agriculture, mineral exploration, and environmental monitoring. But effective use of hyperspectral images requires an understanding of the nature and limitations of the data and of various strategies for processing and interpret- ing it. This booklet aims to provide an introduction to the fundamental concepts in the field of hyperspectral imaging. Sample Data Some illustrations in this booklet show analysis results for a hyper- spectral scene of Cuprite, Nevada. This scene was acquired using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which is operated by the NASA Jet Propulsion Laboratory. The same scene is used in the exercises in the com- panion tutorial booklet Analyzing Hyperspectral Images. You can download this scene in the TNTmips Project File format (along with associated sample data) from the MicroImages web site. More Documentation This booklet is intended only as a general introduction to hyperspectral imaging. In TNTmips, hyperspectral images can be processed and analyzed using the Hyperspectral Analysis process (choose Image / Hyperspectral Analysis from the TNTmips menu). For an introduction to this process, consult the tutorial booklet entitled Analyzing Hyperspectral Images.
    [Show full text]
  • The Environmental Mapping and Analysis Program (Enmap) Mission: Preparing for Its Scientific Exploitation
    remote sensing Editorial Preface: The Environmental Mapping and Analysis Program (EnMAP) Mission: Preparing for Its Scientific Exploitation Saskia Foerster 1,*, Véronique Carrère 2, Michael Rast 3 and Karl Staenz 4 1 Section 1.4 Remote Sensing, Helmholtz Center Potsdam GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 Laboratoire de Planétologie et Géodynamique de Nantes, University of Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex 3, France; [email protected] 3 ESA-ESRIN, Via Galileo Galilei, 00044 Frascati, Italy; [email protected] 4 Alberta Terrestrial Imaging Centre and Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] * Correspondence: [email protected] Academic Editor: Prasad S. Thenkabail Received: 15 November 2016; Accepted: 15 November 2016; Published: 17 November 2016 Abstract: The imaging spectroscopy mission EnMAP aims to assess the state and evolution of terrestrial and aquatic ecosystems, examine the multifaceted impacts of human activities, and support a sustainable use of natural resources. Once in operation (scheduled to launch in 2019), EnMAP will provide high-quality observations in the visible to near-infrared and shortwave-infrared spectral range. The scientific preparation of the mission comprises an extensive science program. This special issue presents a collection of research articles, demonstrating the potential of EnMAP for various applications along with overview articles on the mission and software tools developed within its scientific preparation. Keywords: EnMAP; imaging spectroscopy; hyperspectral; Earth observation; satellite mission 1. Introduction Imaging spectroscopy has been demonstrated to be a powerful tool for numerous environmental applications [1–3].
    [Show full text]
  • Spectral Imaging for Remote Sensing Spectral Imaging for Remote Sensing
    • SHAW AND BURKE Spectral Imaging for Remote Sensing Spectral Imaging for Remote Sensing Gary A. Shaw and Hsiao-hua K. Burke ■ Spectral imaging for remote sensing of terrestrial features and objects arose as an alternative to high-spatial-resolution, large-aperture satellite imaging systems. Early applications of spectral imaging were oriented toward ground-cover classification, mineral exploration, and agricultural assessment, employing a small number of carefully chosen spectral bands spread across the visible and infrared regions of the electromagnetic spectrum. Improved versions of these early multispectral imaging sensors continue in use today. A new class of sensor, the hyperspectral imager, has also emerged, employing hundreds of contiguous bands to detect and identify a variety of natural and man-made materials. This overview article introduces the fundamental elements of spectral imaging and discusses the historical evolution of both the sensors and the target detection and classification applications. , vision plays a central role electromagnetic spectrum. Longwave infrared in human perception and interpretation of (LWIR) imaging, which is akin to panchromatic im- O the world. When we hear a loud crash, smell aging, relies on thermal emission of the objects in a something burning, or feel something slipping out of scene, rather than reflected light, to create an image. our grasp, our first response is visual—we look for the More recently, passive imaging has evolved to in- source of the trouble so we can assess and respond to clude not just one panchromatic band or three color the situation. Our eyes and brain can quickly provide bands covering the visible spectrum, but many detailed information about whatever event is occur- bands—several hundred or more—encompassing the ring around us, which leads to a choice of appropriate visible spectrum and the near-infrared (NIR) and action or response.
    [Show full text]
  • Improving Quality of Imaging Spectroscopy Data
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Improving quality of imaging spectroscopy data Dell’Endice, F Abstract: Imaging spectroscopy is moving into quantitative analysis of ecosystem parameters, which require high data quality. Thus, imaging spectrometers shall provide users with very accurate and low uncertainty measurements such that truthful products and reliable policies can be generated. However, the quality of imaging spectroscopy data, which can be interpreted as the distance between the measure- ment and the true value, depends on a series of disturbance factors that can be divided into instrument factors, environmental factors, and data processing factors. Those factors lead to data non-uniformities and inconsistencies that, if not properly identified, quantified, and corrected for, can compromise the quality of the scientific findings. This thesis investigates various techniques aimed to ensure theconsis- tency of imaging spectroscopy data, namely in the spectral domain, throughout the data acquisition and specific data processing schemes, as for instance the calibration to radiances, with particular emphasis on instrument factors. The impact of data inconsistencies and non-uniformities on the quality of imag- ing spectroscopy data is first estimated. A scene-based technique for the characterization of keystone non-uniformity is then proposed. Moreover, a laboratory approach is established as the most reliable technique for the achievement of high accuracy calibration and characterization of imaging spectrome- ters. Last, an algorithm that identifies optimal sensor acquisition parameters for the retrieval of specific products in spectral regions of interest is presented. It has been concluded that laboratory calibration and characterization procedures offer a higher degree of fidelity with respect to scene-based methodologies when non-uniformities and calibration parameters have to be determined and implemented into correction schemes.
    [Show full text]