Hyperspectral Imaging Or Imaging Spectroscopy: an Overview Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation. -
All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance
hv photonics Communication All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance Jing Yu, Tingting Lang * and Huateng Chen Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (J.Y.); [email protected] (H.C.) * Correspondence: [email protected] Abstract: This paper presents a terahertz (THz) metamaterial absorber made of stainless steel. We found that the absorption rate of electromagnetic waves reached 99.95% at 1.563 THz. Later, we ana- lyzed the effect of structural parameter changes on absorption. Finally, we explored the application of the absorber in refractive index sensing. We numerically demonstrated that when the refractive index (n) is changing from 1 to 1.05, our absorber can yield a sensitivity of 74.18 µm/refractive index unit (RIU), and the quality factor (Q-factor) of this sensor is 36.35. Compared with metal–dielectric–metal sandwiched structure, the absorber designed in this paper is made of stainless steel materials with no sandwiched structure, which greatly simplifies the manufacturing process and reduces costs. Keywords: metamaterial absorber; stainless steel; refractive index sensing; sensitivity 1. Introduction Metamaterials are new artificial materials that are periodically arranged according to certain subwavelength dimensions [1,2]. Owing to their unique properties of perfect absorption, perfect transmission, and stealth, metamaterials show promising applications Citation: Yu, J.; Lang, T.; Chen, H. in sensors [3–11], absorbers [12,13], imaging [14,15], etc. Among them, in biomolecular All-Metal Terahertz Metamaterial sensing, metamaterial devices are spurring unprecedented interest as a diagnostic protocol Absorber and Refractive Index for cancer and infectious diseases [10,11]. -
Surface Reflectance and Sun-Induced Fluorescence
remote sensing Article Surface Reflectance and Sun-Induced Fluorescence Spectroscopy Measurements Using a Small Hyperspectral UAS Roberto Garzonio *, Biagio Di Mauro, Roberto Colombo and Sergio Cogliati Remote Sensing of Environmental Dynamics Laboratory. Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milan, Italy; [email protected] (B.D.M.); [email protected] (R.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +39-02-6448-2848 Academic Editors: Jose Moreno and Prasad Thenkabail Received: 25 January 2017; Accepted: 9 May 2017; Published: 12 May 2017 Abstract: This study describes the development of a small hyperspectral Unmanned Aircraft System (HyUAS) for measuring Visible and Near-Infrared (VNIR) surface reflectance and sun-induced fluorescence, co-registered with high-resolution RGB imagery, to support field spectroscopy surveys and calibration and validation of remote sensing products. The system, namely HyUAS, is based on a multirotor platform equipped with a cost-effective payload composed of a VNIR non-imaging spectrometer and an RGB camera. The spectrometer is connected to a custom entrance optics receptor developed to tune the instrument field-of-view and to obtain systematic measurements of instrument dark-current. The geometric, radiometric and spectral characteristics of the instruments were characterized and calibrated through dedicated laboratory tests. The overall accuracy of HyUAS data was evaluated during a flight campaign in which surface reflectance was compared with ground-based reference measurements. HyUAS data were used to estimate spectral indices and far-red fluorescence for different land covers. RGB images were processed as a high-resolution 3D surface model using structure from motion algorithms. -
Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits
www.nature.com/scientificreports OPEN Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Received: 18 April 2016 Accepted: 11 July 2017 Selection Algorithms and Published: xx xx xxxx Chemometric Models Hongyan Zhu1, Bingquan Chu1, Yangyang Fan1, Xiaoya Tao2, Wenxin Yin1 & Yong He1 We investigated the feasibility and potentiality of determining frmness, soluble solids content (SSC), and pH in kiwifruits using hyperspectral imaging, combined with variable selection methods and calibration models. The images were acquired by a push-broom hyperspectral refectance imaging system covering two spectral ranges. Weighted regression coefcients (BW), successive projections algorithm (SPA) and genetic algorithm–partial least square (GAPLS) were compared and evaluated for the selection of efective wavelengths. Moreover, multiple linear regression (MLR), partial least squares regression and least squares support vector machine (LS-SVM) were developed to predict quality attributes quantitatively using efective wavelengths. The established models, particularly SPA-MLR, SPA-LS-SVM and GAPLS-LS-SVM, performed well. The SPA-MLR models for frmness (Rpre = 0.9812, RPD = 5.17) and SSC (Rpre = 0.9523, RPD = 3.26) at 380–1023 nm showed excellent performance, whereas GAPLS-LS-SVM was the optimal model at 874–1734 nm for predicting pH (Rpre = 0.9070, RPD = 2.60). Image processing algorithms were developed to transfer the predictive model in every pixel to generate prediction maps that visualize the spatial distribution of frmness and SSC. Hence, the results clearly demonstrated that hyperspectral imaging has the potential as a fast and non-invasive method to predict the quality attributes of kiwifruits. Fruit quality represents a combination of properties and attributes that determine the suitability of the fruit to be eaten as fresh or stored for a reasonable period without deterioration and confer a value regarding consum- er’s satisfaction1, 2. -
Hyperspectral Imaging - a Technology Update
Hyperspectral Imaging - a Technology Update A White Paper by Dr Nick Barnett, Pro-Lite Technology Ltd May 2021 classification, object segmentation and improved colour characterisation. Imaging spectroscopy is often divided into two categories: multispectral and hyperspectral. Multispectral cameras measure light in a small number (typically 3 to 15) of spectral bands whereas hyperspectral cameras collect a much larger number (up to several hundred) of distinct, yet contiguous bands across a wide spectral range. Traditionally, hyperspectral imaging has found Introduction applications in remote sensing and agriculture New developments in imager technology and in using scanning or push-broom cameras installed on computer processing power are rapidly enhancing satellites, aircraft, or UAVs. In recent times, consumer digital camera performance, leading to a developments in spectral imaging technology have wider adoption of imaging in everyday use. been evolving at a pace. Advances in high Additionally, image processing techniques based resolution sensors, electronics and optics are on artificial intelligence and machine learning are providing enhanced push-broom technologies as increasing the capabilities of cameras and smart well as enabling numerous other forms of spectral devices for tasks such as object detection based on imaging. Alternatives to push-broom systems colour and two-dimensional geometric data. include methods using tunable spectral filters as However, these conventional RGB-type cameras well as designs based on Fourier Transform only make use of a limited range of wavelengths in spectroscopy. There are also snapshot spectral the visible part of the spectrum, so are missing out imaging systems employing mosaic arrays of filters on a lot of the available spectral information. -
Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat
remote sensing Article Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat Iman Tahmasbian 1,* , Natalie K. Morgan 2, Shahla Hosseini Bai 3, Mark W. Dunlop 1 and Amy F. Moss 2 1 Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia; Scopus affiliation ID: 60028929; [email protected] 2 School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; [email protected] (N.K.M.); [email protected] (A.F.M.) 3 Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; s.hosseini-bai@griffith.edu.au * Correspondence: [email protected] Abstract: Hyperspectral imaging (HSI) is an emerging rapid and non-destructive technology that has promising application within feed mills and processing plants in poultry and other intensive animal industries. HSI may be advantageous over near infrared spectroscopy (NIRS) as it scans entire samples, which enables compositional gradients and sample heterogenicity to be visualised and analysed. This study was a preliminary investigation to compare the performance of HSI with that of NIRS for quality measurements of ground samples of Australian wheat and to identify the most important spectral regions for predicting carbon (C) and nitrogen (N) concentrations. In total, 69 samples were scanned using an NIRS (400–2500 nm), and two HSI cameras operated in Citation: Tahmasbian, I.; Morgan, 400–1000 nm (VNIR) and 1000–2500 nm (SWIR) spectral regions. Partial least square regression N.K; Hosseini Bai, S.; Dunlop, M.W; (PLSR) models were used to correlate C and N concentrations of 63 calibration samples with their Moss, A.F Comparison of spectral reflectance, with 6 additional samples used for testing the models. -
Hyperspectral Imaging with a TWINS Birefringent Interferometer
Vol. 27, No. 11 | 27 May 2019 | OPTICS EXPRESS 15956 Hyperspectral imaging with a TWINS birefringent interferometer 1,2,4 3,4 3 A. PERRI, B. E. NOGUEIRA DE FARIA, D. C. TELES FERREIRA, D. 1 1 1,2 1,2 3 COMELLI, G. VALENTINI, F. PREDA, D. POLLI, A. M. DE PAULA, G. 1,2 1, CERULLO, AND C. MANZONI * 1IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy 2NIREOS S.R.L., Via G. Durando 39, 20158 Milano, Italy 3Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil 4The authors contributed equally to the work *[email protected] Abstract: We introduce a high-performance hyperspectral camera based on the Fourier- transform approach, where the two delayed images are generated by the Translating-Wedge- Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a common- path birefringent interferometer that combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. In our imaging system, TWINS is employed as a time-scanning interferometer and generates high-contrast interferograms at the single-pixel level. The camera exhibits high throughput and provides hyperspectral images with spectral background level of −30dB and resolution of 3 THz in the visible spectral range. We show high-quality spectral measurements of absolute reflectance, fluorescence and transmission of artistic objects with various lateral sizes. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 1. Introduction A great deal of physico-chemical information on objects can be obtained by measuring the spectrum of the light they emit, scatter or reflect. -
Hyperspectral Imaging in Environmental Monitoring: a Review of Recent Developments and Technological Advances in Compact Field Deployable Systems
Review Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems Mary B. Stuart 1, Andrew JS. McGonigle 2,3,4 and Jon R. Willmott 1,* 1 Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK 2 Department of Geography, University of Sheffield, Sheffield S10 2TN, UK 3 School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia 4 Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia * Correspondence: [email protected] Received: 17 May 2019; Accepted: 9 July 2019; Published: 11 July 2019 Abstract: The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets. Keywords: hyperspectral; environmental monitoring; miniaturization; low-cost; field deployable 1. -
Hyperspectral Microscopy for Early and Rapid Detection Of
HYPERSPECTRAL MICROSCOPY FOR EARLY AND RAPID DETECTION OF SALMONELLA SEROTYPES by MATTHEW BRENT EADY (Under the Direction of Bosoon Park) ABSTRACT Optical microbial detection methodologies have shown the potential as early and rapid pathogen detection methods. This proof-of-concept project explores the use of hyperspectral microscopy as a potential method for early and rapid classification of five Salmonella serotypes. Darkfield hyperspectral microscope images were collected at early incubation times of 6, 8, 10, and 12 hrs., then compared to 24 hrs. incubation. Hypercube data collected from cells were analyzed through multivariate data analysis (MVDA) methods to assess classification ability of early incubation times. A separate experiment was conducted to explore the ability of analyzing hyperspectral data collected from only informative spectral bands as opposed to the original 89 spectral bands. MVDA showed that incubation times as early as 8 hours had near identical spectra and classification abilities compared to 24 hours; while the original 89-point spectrum could be reduced to 3 selected spectral bands and maintain high serotype classification accuracy. INDEX WORDS: Salmonella, hyperspectral microscopy, early detection, rapid detection, multivariate data HYPERSPECTRAL MICROSCOPY FOR EARLY AND RAPID DETECTION OF SALMONELLA SEROTYPES by MATTHEW BRENT EADY BSA, The University of Georgia, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF -
Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles
sensors Article Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles Alexander Jenal 1,2,* , Georg Bareth 2, Andreas Bolten 2, Caspar Kneer 1, Immanuel Weber 1 and Jens Bongartz 1 1 Application Center for Machine Learning and Sensor Technology, University of Applied Science Koblenz, 53424 Remagen, Germany; [email protected] (C.K.); [email protected] (I.W.); [email protected] (J.B.) 2 Institute of Geography, GIS & RS Group, University of Cologne, 50923 Cologne, Germany; [email protected] (G.B.); [email protected] (A.B.) * Correspondence: [email protected]; Tel.: +49-2642-932-411 Received: 24 September 2019; Accepted: 11 December 2019; Published: 13 December 2019 Abstract: Short-wave infrared (SWIR) imaging systems with unmanned aerial vehicles (UAVs) are rarely used for remote sensing applications, like for vegetation monitoring. The reasons are that in the past, sensor systems covering the SWIR range were too expensive, too heavy, or not performing well enough, as, in contrast, it is the case in the visible and near-infrared range (VNIR). Therefore, our main objective is the development of a novel modular two-channel multispectral imaging system with a broad spectral sensitivity from the visible to the short-wave infrared spectrum (approx. 400 nm to 1700 nm) that is compact, lightweight and energy-efficient enough for UAV-based remote sensing applications. Various established vegetation indices (VIs) for mapping vegetation traits can then be set up by selecting any suitable filter combination. The study describes the selection of the individual components, starting with suitable camera modules, the optical as well as the control and storage parts. -
Integrated Raman and Hyperspectral Microscopy
ELEMENTAL ANALYSIS FLUORESCENCE Integrated Raman and GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS Hyperspectral Microscopy FORENSICS PARTICLE CHARACTERIZATION RAMAN Combined spectral imaging technologies SPECTROSCOPIC ELLIPSOMETRY SPR IMAGING XploRA® PLUS integrates hyperspectral microscopy with confocal Raman microscopy for multimodal hyperspectral imaging on a single platform HORIBA Scientific is happy to announce the integration photoluminescence, transmittance and reflectance) of the enhanced darkfield (EDF) and optical hyperspectral modes. Switching between imaging modes requires no imaging (HSI) technologies from CytoViva® with HORIBA’s sample movement whatsoever, ensuring all of these multi- renowned confocal Raman microscopy, XploRA PLUS. modal images are truly of the same area. The integrated system offers versatile modes of imaging and hyperspectral imaging that are very important for XploRA PLUS houses four gratings for optimized spectral nanomaterial and life science studies. resolution, and up to three lasers (select from blue to NIR+) for performing Raman, PL and/or FL hyperspectral This integrated microscope platform provides both imaging. EMCCD (electron multiplying CCD) is available widefield imaging (reflection, transmission, brightfield, for enhanced sensitivity as an upgrade from the CCD as darkfield, polarized light and epi-fluorescence), a detector. Operations, including switching lasers and and hyperspectral imaging (Raman, fluorescence, gratings, are fully automated via LabSpec 6 Spectroscopy Suite. LabSpec -
Section1: Introduction to Hyperspectral Imaging
Section1: Introduction to Hyperspectral imaging The information provided here is a short overview of NIR spectroscopy and hyperspectral imaging for a novice to this field. Please consult literature in the Reference section for more informative explanation and further reading. What is NIR hyperspectral imaging? Hyperspectral imaging is a combination of imaging and spectroscopy. What does spectroscopy entail? Spectroscopy studies the interaction between matter and electromagnetic radiation and records the amount of radiation absorbed or emitted as a spectrum over a specific wavelength range. What is electromagnetic radiation? In physics, electromagnetic radiation is defined as the waves of the electromagnetic field. The waves propagates through space and time and carries electromagnetic energy. Waves are characterized by their frequency of oscillation (number of times that a wave passes by a certain point per unit time) or by the wavelength (units expressed as nm or cm-1 for wavenumber). Waves of different frequencies make up the electromagnetic spectrum. Figure 1: An electromagnetic wave can be defined by the length from one point to the identical point on the next wave and is indicated as wavelength (nm) or wavenumber (cm-1). What is the electromagnetic spectrum? The electromagnetic spectrum covers the range of frequencies from the wavelengths with shorter frequencies linked to nuclear radiation (Gamma rays), which carries high energy, followed by X-rays, ultraviolet (UV)-, visible-, infrared (IR) to the radio waves, which carry low energy (Fig 2). Figure 2: Schematic for the electromagnetic spectrum. Gamma rays have short wavelengths and this increase in the direction of the Radio waves. As wavelengths decrease the energy levels increase.