Hyperspectral Imaging Infrared Sensor Used for Enviromental Monitoring M

Total Page:16

File Type:pdf, Size:1020Kb

Hyperspectral Imaging Infrared Sensor Used for Enviromental Monitoring M Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 3 Optical and Acoustical Methods in Science and Technology 2013 Hyperspectral Imaging Infrared Sensor Used for Enviromental Monitoring M. Kasteka;∗, T. Piatkowskia, M. Zyczkowskia, M. Chamberlandb, P. Lagueuxb and V. Farleyb aInstitute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland bTelops Inc., Quebec, Canada This paper presents detection, identication and quantication of gases using an infrared imaging Fourier- -transform spectrometer. The company Telops has developed an imaging Fourier-transform spectrometer instru- ment, Hyper-Cam sensor, which is oered as short or long wave infrared sensor. The principle of operation of the spectrometer and the methodology for gases detection, identication and quantication has been shown in the paper, as well as theoretical evaluation of gases detection possibility. The variation of a signal reaching the imaging Fourier-transform spectrometer caused by the presence of a gas has been calculated and compared with the reference signal obtained without the presence of a gas in the imaging Fourier-transform spectrometer eld of view. Some result of the detection of various types of gases has been also included in the paper. DOI: 10.12693/APhysPolA.124.463 PACS: 07.57.Ty, 78.20.Ci, 78.40.−q, 78.47.jg 1. Introduction A problem of remote detection of chemical substances appears in many, sometimes extremely dierent elds of human activities. Applications of detection devices in- clude monitoring of technological processes, diagnostics of industrial installations, monitoring of natural environ- ment, and military purposes. Such diversity has caused development of many detection methods employing vari- Fig. 1. The infrared IFTS Hyper-Cam. ous physical phenomena due to which detection and iden- tication of chemical compounds are possible. Among these methods, a signicant group constitutes the solu- tions using a phenomenon of selective absorption of elec- tral characteristics and resolution matched to the absorp- tromagnetic radiation by chemical compounds. Here, we tion bands of compounds to be detected. Two types can distinguish the solutions based on absorption of laser of such devices can be distinguished. One, it is a sys- radiation emitted by an illuminator, being an element of tem similar to typical thermal camera but additionally a measuring system, and thermovision methods record- equipped with the lter system ensuring the required ing thermal radiation. The methods of the rst group are spectral resolution and the signal analysis system. The the active methods employing absorption of laser radia- other type includes the device based on the principles tion by chemical compounds. Thermovision methods are of the Fourier spectroscopy (Fourier transform infrared based on using the absorption bands of chemical com- spectroscopy FTIR) that is expensive and so not read- pounds in IR. ily available. Thermovision methods, employing arrays detectors, Fourier-transform spectrometers (FTS) are renowned provide an image (in real time) of the observed scenery instruments, particularly well-suited to remotely pro- with the marked regions of searched chemical substances. vide excellent estimates of quantitative data. Many au- Usefulness of this method results from the fact that a lot thors have presented how they are using conventional of substances and chemical compounds have their absorp- (non-imaging) FTS to perform quantication of distant tion bands in IR. Figure 1 shows absorption bands of the gas emissions. Amongst others, we should mention the selected chemical compounds. important contributions made by Harig et al. [1, 2]. The devices operating in IR, used for detection of His group performed many measurement campaigns for chemical substances (gases) in the atmosphere have spec- which they obtained excellent results by ensuring proper modeling of the scene and by paying attention to under- stand (and to take into account) the instrument signa- ture. Other groups developed similar approaches how- ∗corresponding author; e-mail: [email protected] ever limiting their study to optically thin plumes [3, 4] to dedicated instruments performing optical subtraction (463) 464 M. Kastek et al. [5, 6], or introducing Bayesian algorithms to maximize image. The spectral distribution for an entire image is the use of a priori information [7]. On the other hand, obtained by performing the analysis according to (2) for detection and quantication activities with an imaging every pixel of an FPA array. The results can be treated as Fourier-transform spectrometer (IFTS) have been rst 3-dimensional data (two image coordinates and a wave- presented by Spisz et al. [8]. length) and can be analysed using the special software The present paper deals with the remote gas identica- for detection and identication of gases. tion and quantication from turbulent stack plumes with Imaging Fourier-transform spectroradiometer Hy- an IFTS. It presents rst the modeling that is required perCam uses the layout of the Michelson interfero- in order to get an appropriate understanding of both the meter. Its schematic diagram, showing the elements re- scene and the instrument. Next it covers the method- sponsible for the change of the length of optical path, is ology of the developed quantication approach. Finally, shown in Fig. 2. results are presented to demonstrate the capabilities and the performances of the remote gas quantication by us- ing hyperspectral data obtained from the Telops Hyper- Cam. The latter is described in much detail in prior Refs. [912]. 2. Imaging Fourier transform spectroradiometer The infrared IFTS Hyper-Cam LWIR used in experiment was built by Telops Inc. This IFTS use 320 × 256 pixels mercury cadmium telluride (MCT) fo- cal plane arrays (FPA) with a 6◦ × 5◦ FOV. The FPA has Stirling cooler to provide good noise gures in a eld ready package. Spectral information is obtained using Fig. 2. Block diagram of imaging Fourier-transform a technique called Fourier transform infrared radiometry spectroradiometer. (FTIR). FTIR is a classical interference based technique applied to gas spectroscopy that uses a Michelson inter- In the presented system the retro-reectors are used ferometer to mix an incoming signal with itself at several instead of at mirrors. As a result it is easier to move dierent discrete time delays. The resulting time do- M2 mirror keeping the reecting plane in constant po- main waveform, called an interferogram, is related to the sition with respect to the optical axis. It should be power spectrum of the scene through the Fourier trans- mentioned here that the interferometer works in the far form. An interferogram for each pixel in an image is cre- infrared range, thus the necessary dierence in optical ated by imaging the output of the interferometer onto a paths requires large mirror travel. For such long moves focal plane array and collecting data at each discrete time in a classical setup with at mirrors the skew of mirror delay. Advantages of using an FTIR sensor over lter or plane is dicult to avoid which may result in consid- grating based system include higher resolution for equal erable measurement errors. The solution presented in cost and the absence of misalignment of dierent color Fig. 2 minimizes such errors. images due to platform motion. However, FTIR does The main dierence between standard and imaging have the disadvantage of producing a slower frame rate interferometer is the application of FPA detector type. than lter based systems because twice as many points The imaging device can be described as classical inter- are taken for the same number of spectral points. For ferometer multiplied by the number of pixels in the ar- atmospheric tracking of gases however, the LWIR sensor ray. As a result the spectral analysis of interferograms has sucient frame rate [13]. at single pixels gives the spectral information of the en- Data for this collection can be taken from 0.25 cm−1 to tire image. The analysis of incident radiation at pixel 150 cm−1 spectral resolution between 830 cm−1 (12 µm) level is identical for every array element. The change in and 1290 cm−1 (7.75 µm) at a frame rate of 0.2 Hz. In amplitude as a result of optical path dierence x, for λi addition to the infrared data, visible imagery was taken wavelength is given by using a rewire camera that is boresighted to the IR sen- sor. Figure 1 shows a picture of a Hyper-Cam LWIR. The x A(x) = Ai cos 2π : (1) sensor is controlled by eld computer and data is stored λi on a RAID drive to guarantee integrity of data [13]. Detector response is proportional to the radiant intensity The main dierence between the standard and imaging of incident radiation interferometer is the application of FPA detector type. 2 x I(t) = Ii cos 2π : (2) The imaging device can be described as classical inter- λi ferometer multiplied by the number of pixels in the ar- Considering the trigonometric relations for the cosine of ray. As a result the spectral analysis of interferograms at double angle and by limiting the analysis to variable com- single pixels gives the spectral information of the entire ponent only, the radiant intensity as the function of op- Hyperspectral Imaging Infrared Sensor Used . 465 tical path dierence can be written as ment can be achieved by applying longer optical path x dierences and by increasing the number of measurement I(x) = Ii cos 4π : (3) points. Unfortunately both methods lead to longer mea- λi For the sources with continuous radiation characteristics surement times, which are still shortest in case of Fourier- in the range from to , whose spectral characteristics -transform spectrometers than in any other type. The λ1 λ2 advantage of imaging spectrometer over scanning ones is is described by a function S(λ), the radiant intensity can be described as that for a given optical path dierence the entire image is analyzed simultaneously.
Recommended publications
  • EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
    EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation.
    [Show full text]
  • All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance
    hv photonics Communication All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance Jing Yu, Tingting Lang * and Huateng Chen Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China; [email protected] (J.Y.); [email protected] (H.C.) * Correspondence: [email protected] Abstract: This paper presents a terahertz (THz) metamaterial absorber made of stainless steel. We found that the absorption rate of electromagnetic waves reached 99.95% at 1.563 THz. Later, we ana- lyzed the effect of structural parameter changes on absorption. Finally, we explored the application of the absorber in refractive index sensing. We numerically demonstrated that when the refractive index (n) is changing from 1 to 1.05, our absorber can yield a sensitivity of 74.18 µm/refractive index unit (RIU), and the quality factor (Q-factor) of this sensor is 36.35. Compared with metal–dielectric–metal sandwiched structure, the absorber designed in this paper is made of stainless steel materials with no sandwiched structure, which greatly simplifies the manufacturing process and reduces costs. Keywords: metamaterial absorber; stainless steel; refractive index sensing; sensitivity 1. Introduction Metamaterials are new artificial materials that are periodically arranged according to certain subwavelength dimensions [1,2]. Owing to their unique properties of perfect absorption, perfect transmission, and stealth, metamaterials show promising applications Citation: Yu, J.; Lang, T.; Chen, H. in sensors [3–11], absorbers [12,13], imaging [14,15], etc. Among them, in biomolecular All-Metal Terahertz Metamaterial sensing, metamaterial devices are spurring unprecedented interest as a diagnostic protocol Absorber and Refractive Index for cancer and infectious diseases [10,11].
    [Show full text]
  • Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits
    www.nature.com/scientificreports OPEN Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Received: 18 April 2016 Accepted: 11 July 2017 Selection Algorithms and Published: xx xx xxxx Chemometric Models Hongyan Zhu1, Bingquan Chu1, Yangyang Fan1, Xiaoya Tao2, Wenxin Yin1 & Yong He1 We investigated the feasibility and potentiality of determining frmness, soluble solids content (SSC), and pH in kiwifruits using hyperspectral imaging, combined with variable selection methods and calibration models. The images were acquired by a push-broom hyperspectral refectance imaging system covering two spectral ranges. Weighted regression coefcients (BW), successive projections algorithm (SPA) and genetic algorithm–partial least square (GAPLS) were compared and evaluated for the selection of efective wavelengths. Moreover, multiple linear regression (MLR), partial least squares regression and least squares support vector machine (LS-SVM) were developed to predict quality attributes quantitatively using efective wavelengths. The established models, particularly SPA-MLR, SPA-LS-SVM and GAPLS-LS-SVM, performed well. The SPA-MLR models for frmness (Rpre = 0.9812, RPD = 5.17) and SSC (Rpre = 0.9523, RPD = 3.26) at 380–1023 nm showed excellent performance, whereas GAPLS-LS-SVM was the optimal model at 874–1734 nm for predicting pH (Rpre = 0.9070, RPD = 2.60). Image processing algorithms were developed to transfer the predictive model in every pixel to generate prediction maps that visualize the spatial distribution of frmness and SSC. Hence, the results clearly demonstrated that hyperspectral imaging has the potential as a fast and non-invasive method to predict the quality attributes of kiwifruits. Fruit quality represents a combination of properties and attributes that determine the suitability of the fruit to be eaten as fresh or stored for a reasonable period without deterioration and confer a value regarding consum- er’s satisfaction1, 2.
    [Show full text]
  • Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat
    remote sensing Article Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat Iman Tahmasbian 1,* , Natalie K. Morgan 2, Shahla Hosseini Bai 3, Mark W. Dunlop 1 and Amy F. Moss 2 1 Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia; Scopus affiliation ID: 60028929; [email protected] 2 School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; [email protected] (N.K.M.); [email protected] (A.F.M.) 3 Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; s.hosseini-bai@griffith.edu.au * Correspondence: [email protected] Abstract: Hyperspectral imaging (HSI) is an emerging rapid and non-destructive technology that has promising application within feed mills and processing plants in poultry and other intensive animal industries. HSI may be advantageous over near infrared spectroscopy (NIRS) as it scans entire samples, which enables compositional gradients and sample heterogenicity to be visualised and analysed. This study was a preliminary investigation to compare the performance of HSI with that of NIRS for quality measurements of ground samples of Australian wheat and to identify the most important spectral regions for predicting carbon (C) and nitrogen (N) concentrations. In total, 69 samples were scanned using an NIRS (400–2500 nm), and two HSI cameras operated in Citation: Tahmasbian, I.; Morgan, 400–1000 nm (VNIR) and 1000–2500 nm (SWIR) spectral regions. Partial least square regression N.K; Hosseini Bai, S.; Dunlop, M.W; (PLSR) models were used to correlate C and N concentrations of 63 calibration samples with their Moss, A.F Comparison of spectral reflectance, with 6 additional samples used for testing the models.
    [Show full text]
  • Hyperspectral Imaging with a TWINS Birefringent Interferometer
    Vol. 27, No. 11 | 27 May 2019 | OPTICS EXPRESS 15956 Hyperspectral imaging with a TWINS birefringent interferometer 1,2,4 3,4 3 A. PERRI, B. E. NOGUEIRA DE FARIA, D. C. TELES FERREIRA, D. 1 1 1,2 1,2 3 COMELLI, G. VALENTINI, F. PREDA, D. POLLI, A. M. DE PAULA, G. 1,2 1, CERULLO, AND C. MANZONI * 1IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy 2NIREOS S.R.L., Via G. Durando 39, 20158 Milano, Italy 3Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil 4The authors contributed equally to the work *[email protected] Abstract: We introduce a high-performance hyperspectral camera based on the Fourier- transform approach, where the two delayed images are generated by the Translating-Wedge- Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012)], a common- path birefringent interferometer that combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. In our imaging system, TWINS is employed as a time-scanning interferometer and generates high-contrast interferograms at the single-pixel level. The camera exhibits high throughput and provides hyperspectral images with spectral background level of −30dB and resolution of 3 THz in the visible spectral range. We show high-quality spectral measurements of absolute reflectance, fluorescence and transmission of artistic objects with various lateral sizes. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 1. Introduction A great deal of physico-chemical information on objects can be obtained by measuring the spectrum of the light they emit, scatter or reflect.
    [Show full text]
  • Hyperspectral Microscopy for Early and Rapid Detection Of
    HYPERSPECTRAL MICROSCOPY FOR EARLY AND RAPID DETECTION OF SALMONELLA SEROTYPES by MATTHEW BRENT EADY (Under the Direction of Bosoon Park) ABSTRACT Optical microbial detection methodologies have shown the potential as early and rapid pathogen detection methods. This proof-of-concept project explores the use of hyperspectral microscopy as a potential method for early and rapid classification of five Salmonella serotypes. Darkfield hyperspectral microscope images were collected at early incubation times of 6, 8, 10, and 12 hrs., then compared to 24 hrs. incubation. Hypercube data collected from cells were analyzed through multivariate data analysis (MVDA) methods to assess classification ability of early incubation times. A separate experiment was conducted to explore the ability of analyzing hyperspectral data collected from only informative spectral bands as opposed to the original 89 spectral bands. MVDA showed that incubation times as early as 8 hours had near identical spectra and classification abilities compared to 24 hours; while the original 89-point spectrum could be reduced to 3 selected spectral bands and maintain high serotype classification accuracy. INDEX WORDS: Salmonella, hyperspectral microscopy, early detection, rapid detection, multivariate data HYPERSPECTRAL MICROSCOPY FOR EARLY AND RAPID DETECTION OF SALMONELLA SEROTYPES by MATTHEW BRENT EADY BSA, The University of Georgia, 2011 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF
    [Show full text]
  • Integrated Raman and Hyperspectral Microscopy
    ELEMENTAL ANALYSIS FLUORESCENCE Integrated Raman and GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS Hyperspectral Microscopy FORENSICS PARTICLE CHARACTERIZATION RAMAN Combined spectral imaging technologies SPECTROSCOPIC ELLIPSOMETRY SPR IMAGING XploRA® PLUS integrates hyperspectral microscopy with confocal Raman microscopy for multimodal hyperspectral imaging on a single platform HORIBA Scientific is happy to announce the integration photoluminescence, transmittance and reflectance) of the enhanced darkfield (EDF) and optical hyperspectral modes. Switching between imaging modes requires no imaging (HSI) technologies from CytoViva® with HORIBA’s sample movement whatsoever, ensuring all of these multi- renowned confocal Raman microscopy, XploRA PLUS. modal images are truly of the same area. The integrated system offers versatile modes of imaging and hyperspectral imaging that are very important for XploRA PLUS houses four gratings for optimized spectral nanomaterial and life science studies. resolution, and up to three lasers (select from blue to NIR+) for performing Raman, PL and/or FL hyperspectral This integrated microscope platform provides both imaging. EMCCD (electron multiplying CCD) is available widefield imaging (reflection, transmission, brightfield, for enhanced sensitivity as an upgrade from the CCD as darkfield, polarized light and epi-fluorescence), a detector. Operations, including switching lasers and and hyperspectral imaging (Raman, fluorescence, gratings, are fully automated via LabSpec 6 Spectroscopy Suite. LabSpec
    [Show full text]
  • Section1: Introduction to Hyperspectral Imaging
    Section1: Introduction to Hyperspectral imaging The information provided here is a short overview of NIR spectroscopy and hyperspectral imaging for a novice to this field. Please consult literature in the Reference section for more informative explanation and further reading. What is NIR hyperspectral imaging? Hyperspectral imaging is a combination of imaging and spectroscopy. What does spectroscopy entail? Spectroscopy studies the interaction between matter and electromagnetic radiation and records the amount of radiation absorbed or emitted as a spectrum over a specific wavelength range. What is electromagnetic radiation? In physics, electromagnetic radiation is defined as the waves of the electromagnetic field. The waves propagates through space and time and carries electromagnetic energy. Waves are characterized by their frequency of oscillation (number of times that a wave passes by a certain point per unit time) or by the wavelength (units expressed as nm or cm-1 for wavenumber). Waves of different frequencies make up the electromagnetic spectrum. Figure 1: An electromagnetic wave can be defined by the length from one point to the identical point on the next wave and is indicated as wavelength (nm) or wavenumber (cm-1). What is the electromagnetic spectrum? The electromagnetic spectrum covers the range of frequencies from the wavelengths with shorter frequencies linked to nuclear radiation (Gamma rays), which carries high energy, followed by X-rays, ultraviolet (UV)-, visible-, infrared (IR) to the radio waves, which carry low energy (Fig 2). Figure 2: Schematic for the electromagnetic spectrum. Gamma rays have short wavelengths and this increase in the direction of the Radio waves. As wavelengths decrease the energy levels increase.
    [Show full text]
  • Chemical Detection of Contraband Dr
    7/12/2019 Chemical Detection of Contraband Dr. Jimmie Oxley University of Rhode Island; [email protected] https://www.cbp.gov/border‐security/protecting‐agriculture/agriculture‐canine Cocaine, 84 kg, hidden in boxes of chrysanthemums. www.dailymail.co.uk/news/article‐2209630/Florist‐jailed‐18‐years‐smuggling‐23‐5m‐cocaine‐UK‐hidden‐boxes‐flowers.html Pants Bomber Causes Grief for Chefs Who Smuggle Salami Into America Wall Street Journal Jan 14, 2010 Feb.28, 2019 1.6 tons cocaine Port of Newark https://www.dailymail.co.uk/news/article‐2116524/If‐didnt‐buy‐flowers‐mother‐today‐youve‐got‐excuse‐ Photo: Courtesy of Customs & Border Protection Millions‐Amsterdam‐warehouse‐shipped‐UK.html So What, Who Cares? We all do! How we go about it depends on what we want to detect https://www.stayathomemum.com.au/my‐kids/babies/33‐weird‐things‐you‐wont‐know‐unless‐youre‐a‐parent/3/ • explosives • drugs •CWAs •TICs, TIMs •VOCs • environmental pollutants https://www.kidspot.com.au/baby/baby‐care/nappies‐and‐bottom‐care/smart‐nappies‐will‐save‐you‐ from‐getting‐poo‐on‐your‐finger/news‐story/a28d09d8c5d4ce6e1069b257ae8df34f Korean startup, Monit, has new bluetooth device, which tells when baby needs changing. 1 7/12/2019 mm wave VISIBLE terahertz Penetrating ionizing colorimetric THz/mm wave X‐ray backscatter Raman IR imaging Chemical fingerprint images by heat differential Ion Analysis Techniques: • Ion Mobility (IMS) • Mass Spectrometry (MS) • Emission spectroscopy • Laser Induced Breakdown Spec (LIBS) • Photoionization (PID) Thermal & Conductometric
    [Show full text]
  • The New Effort for Hyperspectral Standarization IEEE P4001
    The new effort for Hyperspectral Standarization IEEE P4001 2019 IS&T International Symposium on Electronic Imaging (#EI2019) Paper #IMSE-370 (Keynote) Session: Color and Spectral Imaging Chris Durell, Labsphere, Inc Chair IEEE P4001 © 2018 Labsphere, Inc. Proprietary & Confidential Contents Overview of different types of hyperspectral imaging Deeper dive into “Pushbroom” Spatial Scanning systems Why a standard is needed. What is the focus of IEEE P4001 and what we are doing. © 2018 Labsphere, Inc. Proprietary & Confidential Spectral Sensing and Imaging Object identification by spatial features Spectral discrimination by species, and environmental conditions Identification and discrimination of subtle spectral details of materials, vapors and aerosols Source: M. Velez-Reyes, J. A. Goodman, and B.E. Saleh, “Chapter 6: Spectral Imaging.” In B.E. Saleh, ed., Introduction to Subsurface Imaging, Cambridge University Press, 2011. Adapted from From 1993 MUG © 2018 Labsphere, Inc. Proprietary & Confidential False Katydid Amblycorypha oblongifolia Courtesy of Dr. Brandon Russell, UCONN. 0.35 0.3 0.25 0.2 Maple Leaf 0.15 Reflectance Reflectance 0.1 Katydid Wing Reflectance 0.05 0 400 500 600 700 Wavelength (nm) © 2018 Labsphere, Inc. Proprietary & Confidential Katydid Hiding on a Leaf (380-1040nm) Courtesy of Dr. Brandon Russell, UCONN. © 2018 Labsphere, Inc. Proprietary & Confidential Domains of Spectral Imaging Category Spectral Spectral Application Example Band Resolution System Content • Multispectral classification LANDSAT (NOAA) Multispectral
    [Show full text]
  • Air Monitoring Technology
    Prepared for Environmental Defense Fund Los Angeles, California Prepared by Ramboll Environ US Corporation San Francisco, California Project Number 0342333A Date December, 2017 TECHNOLOGY ASSESSMENT REPORT: AIR MONITORING TECHNOLOGY NEAR UPSTREAM OIL AND GAS OPERATIONS ENVIRONMENTAL DEFENSE FUND LOS ANGELES, CALIFORNIA Technology Assessment Report: Air Monitoring Technology Near Upstream Oil and Gas Operations Environmental Defense Fund Los Angeles, California CONTENTS 1. INTRODUCTION 1 1.1 Objectives of this Report 1 2. HISTORICAL APPROACHES TO AMBIENT AIR MONITORING NEAR UPSTREAM OIL AND GAS OPERATIONS 2 2.1 Pollutants of Interest 2 2.2 Regulatory Framework 4 2.3 Episodic/Ad-hoc Monitoring Plans 6 3. PARADIGM SHIFT TO UTILIZE LOWER COST SENSORS 10 3.1 Current State of Sensor Science and Performance Evaluations 11 3.2 Emerging Capabilities of Networked or Crowdsourced Sensors Utilizing Data Analytics 13 4. CHALLENGES 14 5. OVERVIEW OF PRIMARY SENSING CATEGORIES 15 6. DETAILED REVIEWS OF AVAILABLE AND EMERGING TECHNOLOGIES 22 6.1 Mobile Platforms 22 6.2 Sensor Technologies 23 6.2.1 Mid-range Cost 24 6.2.1.1 Open Path Fourier Transform Infrared Spectroscopy (OP-FTIR) 24 6.2.1.2 Tunable Diode Laser Absorption Spectroscopy (TDLAS) 26 6.2.1.3 Cavity-Enhanced Absorption Spectroscopy/Cavity Ring Down Spectroscopy 29 6.2.1.4 Handheld Gas Chromatographs 31 6.2.2 Low Cost 33 6.2.2.1 Non-dispersive Infrared Sensor (NDIR) 33 6.2.2.2 Photoionization Detector (PID) 35 6.2.2.3 Electrochemical (EC) 38 6.2.2.4 Metal Oxide Semiconductor (MOS) 40 6.2.2.5 Pellistor 43 7.
    [Show full text]
  • Dual-Camera Design for Hyperspectral and Panchromatic Imaging, Using A
    www.nature.com/scientificreports OPEN Dual-camera design for hyperspectral and panchromatic imaging, using a wedge shaped liquid crystal as a spectral multiplexer Shauli Shmilovich 1,5*, Yaniv Oiknine 2,5*, Marwan AbuLeil2, Ibrahim Abdulhalim 2,3, Dan G. Blumberg4 & Adrian Stern2 In this paper, we present a new hyperspectral compact camera which is designed to have high spatial and spectral resolutions, to be vibrations tolerant, and to achieve state-of-the-art high optical throughput values compared to existing nanosatellite hyperspectral imaging payloads with space heritage. These properties make it perfect for airborne and spaceborne remote sensing tasks. The camera has both hyperspectral and panchromatic imaging capabilities, achieved by employing a wedge-shaped liquid crystal cell together with computational image processing. The hyperspectral images are acquired through passive along-track spatial scanning when no voltage is applied to the cell, and the panchromatic images are quickly acquired in a single snapshot at a high signal-to-noise ratio when the cell is voltage driven. Over the last decades, spectral imaging1–4 has become progressively utilized in airborne and spaceborne remote sensing tasks5,6, among many others. Today it is used in many felds, such as vegetation science7, urban mapping8, geology9, mineralogy10, mine detection11 and more. A large amount of these spectral imagers take advantage of the platform’s motion, and acquire the spectral data by performing along-track spatial scanning of the imaged object4,12. Te spectral information could then be measured directly, that is, by frstly splitting it into spectral com- ponents using a dispersive or difractive optical element, followed by a direct measurement of each component.
    [Show full text]