Atmos. Meas. Tech., 8, 4383–4397, 2015 www.atmos-meas-tech.net/8/4383/2015/ doi:10.5194/amt-8-4383-2015 © Author(s) 2015. CC Attribution 3.0 License. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane D. R. Thompson1, I. Leifer2, H. Bovensmann3, M. Eastwood1, M. Fladeland4, C. Frankenberg1, K. Gerilowski3, R. O. Green1, S. Kratwurst3, T. Krings3, B. Luna4, and A. K. Thorpe1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 2Bubbleology Research International, Solvang, CA, USA 3University of Bremen, Institute of Environmental Physics, P.O. Box 330440, 28334 Bremen, Germany. 4NASA Ames Research Center, Moffett Field, CA, USA Correspondence to: D. R. Thompson (
[email protected]) Received: 15 March 2015 – Published in Atmos. Meas. Tech. Discuss.: 22 June 2015 Revised: 10 September 2015 – Accepted: 10 September 2015 – Published: 19 October 2015 Abstract. Localized anthropogenic sources of atmospheric 1 Introduction CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and Airborne imaging spectrometers have been deployed for a quantify these emissions. In a campaign context, the science wide range of scientific, regulatory, and disaster response yield can be dramatically increased by real-time retrievals objectives. Traditionally these campaigns wait for favorable that allow operators to coordinate multiple measurements of environmental conditions and then fly pre-arranged survey the most active areas. This can improve science outcomes patterns (typically “mowing the lawn”), recording data for for both single- and multiple-platform missions. We describe post-flight radiometric calibration and geolocation.