Nuclear Respiratory Factor 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
Investigating the Role of the ETS Transcription Factor ELK1 in Stem Cell Transcription
Investigating the role of the ETS transcription factor ELK1 in stem cell transcription A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 Ian E. Prise Division of Molecular & Cellular Function School of Biological Sciences I. Table of Contents II. List of Figures ...................................................................................................................................... 5 III. Abstract .............................................................................................................................................. 7 IV. Declaration ......................................................................................................................................... 8 V. Copyright Statement ........................................................................................................................... 8 VI. Experimental Contributions ............................................................................................................... 9 VII. Acknowledgments .......................................................................................................................... 10 1. Introduction ...................................................................................................................................... 12 1.I Pluripotency ................................................................................................................................. 12 1.II Chromatin -
An Initiator Element Mediates Autologous Down- Regulation of the Human Type a ␥-Aminobutyric Acid Receptor 1 Subunit Gene
An initiator element mediates autologous down- regulation of the human type A ␥-aminobutyric acid receptor 1 subunit gene Shelley J. Russek, Sabita Bandyopadhyay, and David H. Farb* Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118 Edited by Erminio Costa, University of Illinois, Chicago, IL, and approved May 15, 2000 (received for review November 19, 1999) The regulated expression of type A ␥-aminobutyric acid receptor The 1 subunit gene is located in the 1-␣4-␣2-␥1 gene cluster (GABAAR) subunit genes is postulated to play a role in neuronal on chromosome 4 (12) and is most highly expressed in the adult maturation, synaptogenesis, and predisposition to neurological rat hippocampus. Seizure activity decreases hippocampal 1 disease. Increases in GABA levels and changes in GABAAR subunit mRNA levels by about 50% while increasing 3 levels (11). gene expression, including decreased 1 mRNA levels, have been Because the subtype of  subunit influences the sensitivity of the observed in animal models of epilepsy. Persistent exposure to GABAAR to GABA and to allosteric modulators such as GABA down-regulates GABAAR number in primary cultures of etomidate, loreclezole, barbiturates, and mefenamic acid (13– neocortical neurons, but the regulatory mechanisms remain un- 17), a change in  subunit composition may alter receptor known. Here, we report the identification of a TATA-less minimal function and pharmacology in vivo. Modulation of receptor  promoter of 296 bp for the human GABAAR 1 subunit gene that function by phosphorylation is also influenced by subunit is neuron specific and autologously down-regulated by GABA. -
Differential Co-Assembly of Α1-Gabaars Associated with Epileptic Encephalopathy
Research Report: Regular Manuscript Differential co-assembly of α1-GABAARs associated with epileptic encephalopathy https://doi.org/10.1523/JNEUROSCI.2748-19.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2748-19.2020 Received: 18 November 2019 Revised: 5 May 2020 Accepted: 6 May 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Differential co-assembly of α1-GABAARs 2 associated with epileptic encephalopathy 3 4 5 Saad Hannan1*, Aida H. B. Affandi1, Marielle Minere1¶, Charlotte Jones1, Pollyanna Goh2, 6 Gary Warnes2, Bernt Popp3,4, Regina Trollmann5, Dean Nizetic2,6 & Trevor G. Smart1* 7 8 1. Department of Neuroscience, Physiology and Pharmacology, University College London, 9 Gower Street, London WC1E 6BT, UK 10 2. The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of 11 London, 4 Newark Street, London, E1 2AT, UK 12 3. Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität 13 Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054 Erlangen, Germany. 14 4. Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 15 Germany. 16 5. Department of Pediatrics, Division of Neuropediatrics, -
Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. -
Identification of Key Genes and Pathways Involved in Response To
Deng et al. Biol Res (2018) 51:25 https://doi.org/10.1186/s40659-018-0174-7 Biological Research RESEARCH ARTICLE Open Access Identifcation of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing Xiuling Deng1,2†, Dong Wang3†, Shenyuan Wang1, Haisheng Wang2 and Huanmin Zhou1* Abstract Purpose: This aim of this study was to investigate the key genes and pathways involved in the response to pain in goat and sheep by transcriptome sequencing. Methods: Chronic pain was induced with the injection of the complete Freund’s adjuvant (CFA) in sheep and goats. The animals were divided into four groups: CFA-treated sheep, control sheep, CFA-treated goat, and control goat groups (n 3 in each group). The dorsal root ganglions of these animals were isolated and used for the construction of a cDNA= library and transcriptome sequencing. Diferentially expressed genes (DEGs) were identifed in CFA-induced sheep and goats and gene ontology (GO) enrichment analysis was performed. Results: In total, 1748 and 2441 DEGs were identifed in CFA-treated goat and sheep, respectively. The DEGs identi- fed in CFA-treated goats, such as C-C motif chemokine ligand 27 (CCL27), glutamate receptor 2 (GRIA2), and sodium voltage-gated channel alpha subunit 3 (SCN3A), were mainly enriched in GO functions associated with N-methyl- D-aspartate (NMDA) receptor, infammatory response, and immune response. The DEGs identifed in CFA-treated sheep, such as gamma-aminobutyric acid (GABA)-related DEGs (gamma-aminobutyric acid type A receptor gamma 3 subunit [GABRG3], GABRB2, and GABRB1), SCN9A, and transient receptor potential cation channel subfamily V member 1 (TRPV1), were mainly enriched in GO functions related to neuroactive ligand-receptor interaction, NMDA receptor, and defense response. -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits. -
Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window. -
Stem Cells and Ion Channels
Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Stem Cells and Ion Channels Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Stem Cells International.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Nadire N. Ali, UK Joseph Itskovitz-Eldor, Israel Pranela Rameshwar, USA Anthony Atala, USA Pavla Jendelova, Czech Republic Hannele T. Ruohola-Baker, USA Nissim Benvenisty, Israel Arne Jensen, Germany D. S. Sakaguchi, USA Kenneth Boheler, USA Sue Kimber, UK Paul R. Sanberg, USA Dominique Bonnet, UK Mark D. Kirk, USA Paul T. Sharpe, UK B. Bunnell, USA Gary E. Lyons, USA Ashok Shetty, USA Kevin D. Bunting, USA Athanasios Mantalaris, UK Igor Slukvin, USA Richard K. Burt, USA Pilar Martin-Duque, Spain Ann Steele, USA Gerald A. Colvin, USA EvaMezey,USA Alexander Storch, Germany Stephen Dalton, USA Karim Nayernia, UK Marc Turner, UK Leonard M. Eisenberg, USA K. Sue O’Shea, USA Su-Chun Zhang, USA Marina Emborg, USA J. Parent, USA Weian Zhao, USA Josef Fulka, Czech Republic Bruno Peault, USA Joel C. Glover, Norway Stefan Przyborski, UK Contents Stem Cells and Ion Channels, Stefan Liebau, -
Expression of GABAA Α2-, Β1- And
OPEN Citation: Transl Psychiatry (2013) 3, e303; doi:10.1038/tp.2013.64 & 2013 Macmillan Publishers Limited All rights reserved 2158-3188/13 www.nature.com/tp ORIGINAL ARTICLE Expression of GABAA a2-, b1- and e-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder SH Fatemi1,2,3, TD Folsom1, RJ Rooney4 and PD Thuras5 There is abundant evidence that dysfunction of the g-aminobutyric acid (GABA)ergic signaling system is implicated in the pathology of schizophrenia and mood disorders. Less is known about the alterations in protein expression of GABA receptor subunits in brains of subjects with schizophrenia and mood disorders. We have previously demonstrated reduced expression of GABAB receptor subunits 1 and 2 (GABBR1 and GABBR2) in the lateral cerebella of subjects with schizophrenia, bipolar disorder and major depressive disorder. In the current study, we have expanded these studies to examine the mRNA and protein expression of 12 GABAA subunit proteins (a1, a2, a3, a5, a6, b1, b2, b3, d, e, g2 and g3) in the lateral cerebella from the same set of subjects with schizophrenia (N ¼ 9–15), bipolar disorder (N ¼ 10–15) and major depression (N ¼ 12–15) versus healthy controls (N ¼ 10–15). We found significant group effects for protein levels of the a2-, b1- and e-subunits across treatment groups. We also found a significant group effect for mRNA levels of the a1-subunit across treatment groups. New avenues for treatment, such as the use of neurosteroids to promote GABA modulation, could potentially ameliorate GABAergic dysfunction in these disorders. -
Ion Channels
UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.