Libro Completo En

Total Page:16

File Type:pdf, Size:1020Kb

Libro Completo En Identificación y diagnóstico de Actinomicetales patógenos 1 Universidad de Los Andes Autoridades Universitarias Léster Rodríguez Herrera Rector Humberto Ruiz Calderón Vicerrector Académico Mario Bonucci R. Vicerrector Administrativo Nancy Rivas de Prado Secretaria Publicaciones del Vicerrectorado Académico Director Humberto Ruiz Calderón Editor Luis Ricardo Dávila Consejo Editorial Tomás Bandes, Asdrúbal Baptista, Rafael Cartay, Mariano Nava, Stella Serrano, Gregory Zambrano Colección Ciencias de la Salud Comité Editorial César Colosante, Diego Dávila Spinetti, Patricio Jarpa, Sabino Melonasina, Jesús Alfonso Osuna Ceballos 2 Identificación y diagnóstico de Actinomicetales patógenos José Antonio Serrano A. Horacio Sandoval y Trujillo Publicaciones del Vicerrectorado Académico Colección Ciencias de la Salud 3 Publicaciones del Vicerrectorado Académico Colección Ciencias de la Salud Título de la obra: Identificación y Diagnóstico de Actinomicetales Patógenos ©Editores José Antonio Serrano A. Horacio Sandoval y Trujillo Primera edición, 2005 Producción editorial Publicaciones del Vicerrectorado Académico Universidad de Los Andes Diseño de portada Kataliñ Alava Impresión Editorial Venezolana C. A. Mérida Venezuela Telf. 0274-2638308 Hecho el Depósito Legal Depósito Legal: LF 23720047922837 ISBN: 980221399-3 Dirección Universidad de Los Andes Av. 3 Independencia, Edificio Central del Rectorado Mérida, Venezuela [email protected] http://viceacademico.ula.ve 4 Con la colaboración de: Blaine Beaman. Departamento de Microbiología e Inmunología. Universidad de California. Davis. CA. EE.UU. Enrique García. Departamento de Microbiología. Facultad de Farmacia. Universidad de Los Andes. Mérida. Venezuela. George Brownell. Medical College of Georgia. Augusta GA. EE.UU. Hugo Ramírez Saad. Departamento de Sistemas Biológicos Universidad Autónoma Metropolitana – Xochimilco. México Mario César Salinas Carmona Facultad de Medicina y Hospital Universitario Dr. José E. Gonzáles Universidad Autónoma de Nuevo León Monterrey, NL México Martin Embley Natural History Museum. Londres. Reino Unido. Michael Goodfellow. Universidad de Newcastle. Newcastle upon Tyne. Reino Unido. Patrick Boiron. Facultad de Farmacia Université Claude Bernard, Lyon I Lyon, Francia Thuioshi Ioneda. Universidad de Sâo Paulo. Brasil. 5 6 Índice PRÓLOGO…………………………………………………………………… 13 CAPÍTULO 1 LOS ACTINOMICETOS…………………………………………………….. 15 BIOLOGÍA DE LOS ACTINOMICETOS DE IMPORTANCIA MÉDICA Y ORGANISMOS RELACIONADOS……………………………………….. 19 Actinomyces………………………………………………………….. 19 Actinomyces bovis Actinomyces israelii Actinomyces naeslundii Actinomyces odontolyticus Actinomyces viscosus Actinomyces pyogenes Actinomyces denticolens Actinomyces lowelii Actinomyces hordeovulneris Actinomyces meyeri Corynebacterium…………………………………………………… 28 Corynebacterium bovis Corynebacterium diphtheriae Corynebacterium kutscheri Corynebacterium pseudodiphthericum Corynebacterium pseudotuberculosis Corynebacterium xerosis Corynebacterium minutissimum Corynebacterium striatum Corynebacterium renale Corynebacterium cystitidis Corynebacterium pilosum Corynebacterium mycetouides Corynebacterium matruchotii Corynebacterium iranicum Mycobacterium……………………………………………………. 40 Mycobacterium africanum Mycobacterium avium Mycobacterium bovis Mycobacterium flavescens 7 Mycobacterium fortuitum Mycobacterium gastri Mycobacterium gordonae Mycobacterium intracellulare Mycobacterium kansasii Mycobacterium leprae Mycobacterium lepraemurium Mycobacterium marinum Mycobacterium microti Mycobacterium nonchromogenicum Mycobacterium paratuberculosis Mycobacterium phlei Mycobacterium scrofulaceum Mycobacterium simiae Mycobacterium smegmatis Mycobacterium terrae Mycobacterium triviale Mycobacterium tuberculosis Mycobacterium ulcerans Mycobacterium vaccae Mycobacterium xenopi Mycobacterium malmolense Mycobacterium shimoidei Mycobacterium asiaticum Mycobacterium szulgai Mycobacterium haemophilum Mycobacterium farcinogenes Mycobacterium chelonae Mycobacterium senegalense Mycobacterium porcinum Nocardia…………………………………………………………..... 73 Nocardia asteriodes Nocardia brasiliensis Nocardia farcinica Nocardia otitidiscaviarum (N.caviae) Nocardia rhodnii Nocardia rugosa Nocardia transvalensis Streptomyces……………………………………………………….. 83 Streptomyces paraguayensis Streptomyces somaliensis 8 Actinomadura…………………………………………………….... 85 Actinomadura madurae Actinomadura pelletieri Actinomadura latina Faenia……………………………………………………………….. 87 Faenia rectivirgula Geodermatophilus………………………………………………….. 89 Geodermatophilus obscurus Dermatophilus……………………………………………………… 91 Dermatophilus congolensis Rhodococcus………………………………………………………. 93 Rhodococcus bronchialis Rhodococcus equi Rhodococcus sputi Rhodococcus aichiensis Rhodococcus auranticus Rhodococcus chubuensis Rhodococcus obuensis Nocardiopsis………………………………………………………. .... 97 Nocardiopsis dassonvillei CAPÍTULO 2 EL MICETOMA………………………………………………………….......... 103 Aspectos serológicos e inmunológicos del Micetoma Situación inmunológica del paciente con Micetoma Inmunidad no específica: Interacción fagocito-nocardia Inmunidad mediada por células Inmunidad humoral Conclusiones CAPÍTULO 3 SENSIBILIDAD DE Nocardia A LOS ANTIBIÓTICOS………………….. 121 CAPÍTULO 4 MORFOLOGÍA DE LAS ESPECIES INCLUIDAS EN EL GRUPO NOCARDIOFORMES Y TAXONES RELACIONADOS……………….... 129 Nocardia asteroides 9 Nocardia brasiliensis Nocardia caviae Saccharopolyspora brevicatena Rhodococcus rhodochrous Micropolyspora brevicatena Micropolyspora faeni Faenia rectivirgula Actinomadura madurae Actinomadura pelletieri Actinomadura roseoviolacea Actinomadura verrucospora Nocardiopsis dasonvillei CAPÍTULO 5 TÉCNICAS PARA EL AISLAMIENTO Y DIAGNÓSTICO DE ACTINOMICETOS PATÓGENOS……………………………………. 137 CAPÍTULO 6 CITOQUÍMICA DE ACTINOMICETOS…………………………………. 157 Análisis celular total de Actinomicetos. Azúcares Aminoácidos. Análisis de la pared celular de Actinomicetos. Método de Braun y Sieglin para purificar pared celular. Método rápido para la demostración de ácidos micólicos. Preparación de polisacáridos para pruebas de precipitación Según Zamora, Bojalil y Bastarrachea (1962) Procedimiento de extracción de ácidos micólicos y ácidos Grandes de cadena corta. Cromatografía bidimiensional de ácidos micólicos. Purificación de ácidos grasos. Lípidos polares y menaquinonas. Cromatografía bidimensional de lípidos polares. Purificación de menaquinonas. Cromatografía de capa fina en fase reversa de las menaquinonas. CAPÍTULO 7 LÍPIDOS DE ACTINOMICETOS …………………………………………… 181 CAPÍTULO 8 LA RESPUESTA INMUNE DE PACIENTES CON ACTIONOMICETOMA Y EL DIAGNOSTICO SEROLOGICO DE INFECCIONES POR NOCARDIA BRASILIENSIS ………………………………………… 195 10 CAPITULO 9 DETECCIÓN Y TIPIFICACIÓN DE ACTINOMICETOS PATÓGENOS BASADOS EN TÉCNICAS MOLECULARES ……………………………… 203 CAPÍTULO 10 PRINCIPIOS DE TAXONOMÍA NUMÉRICA. …………………………… 219 Procedimientos operacionales. Análisis de grupo. Determinación de grupos (Faena). APÉNDICE FÓRMULAS DE LOS MEDIOS DE CULTIVO PARA AISLAMIENTO Y CRECIMIENTO DE ACTINOMICETALES .................................................... 229 PREPARACIÓN DE COLORANTES MÁS UTILIZADOS EN EL ESTUDIO DE LOS ACTINOMICETALES ........................................................................ 239 TÉCNICAS DE TINCIÓN ................................................................................. 242 11 ÍNDICE DE TABLAS TABLA 1.1 Clasificación de actinomicetos .......................................................... 17 TABLA 1.2 Prueba de Shick ................................................................................. 32 TABLA 1.3 Coriynebacterias patógenas encontradas en especimenes clínicos.... 34 TABLA 1.4 Micobacterias patógenas encontradas en especimenes clínicos........ 43 TABLA 1.5 Tabla comparativa de lepra tuberculoide y lepra lepromatosa.......... 53 TABLA 2.1 Agentes etiológicos de micetoma...................................................... 104 TABLA 2.2 Actinomicetos patógenos encontrados en especimenes clínicos....... 105 TABLA 2.3 Morfología de los granos producidos por diferentes especies de actinomicetos aeróbicos ....................................................................... 107 TABLA 2.4 Morfología de los granos producidos por diferentes especias de actinomicetos aeróbicos ...................................................................... 108 TABLA 3.1 Sensibilidad de N.asteroides a diversos antibióticos......................... 125 TABLA 3.2 Esquema de identificación presuntivo de nocardias ......................... 126 TABLA 5.1 Características para diagnóstico y diferenciación entre organismos de los géneros Mycobacterium, Rhodococcus, Nocardia y Actinomadura......................................................................... 145 TABLA 5.2 Características bioquímicas y fisiológicas útiles para la determinación de Nocardia, Actinomadura, Streptomyces, Dermatophilus, Actinomyces y Corynebacterium. .................................. 146 TABLA 5.3 Características que distinguen cepas de Nocardia en el medio de Schaall (1974).................................................................. 147 TABLA 5.4 Características diferenciales de las especies del género Actinomyces y bacterias relacionadas...................................................... 148 TABLA 5.5 Propiedades diferenciales entre los organismos de los géneros nocardioformes........................................................................................ 149 TABLA 6.1 Tipos de pared celular en algunos actinomicetos............................ 158 TABLA 6.2 Clasificación de peptidoglicanas....................................................
Recommended publications
  • Leprae by Means of Cytoplasmic Antigens
    Bull. Org. mond. Santt 1972, 46, 509-513 Bull. Wld Hlth Org. Immunological determination of Mycobacterium leprae by means of cytoplasmic antigens J. B. G. KWAPINSKI,1 J. 0. DE ALMEIDA,2 & E. H. KWAPINSKI 3 Mycobacterium leprae was isolated and purified from lepromas, the spleen, and the liver of leprosy patients. An immunodiffusion analysis of the cytoplasms obtained from four lots of M. leprae and M. lepraemurium, 295 strains of different actinomycetales, and 12 other bacteria was performed with the use ofthe cytoplasm antisera. Immunological relationships were revealed between the cytoplasms of M. leprae, M. lepraemurium, M. avium, M. gallinarum, M. tuberculosis, M. simiae, M. kansasii, M. chitae, M. cap- sulatum, Actinomyces israelii, A. naeslundii, and some strains of saprophytic myco- bacteria. These studies led to the proposed concept of the immunological evolution of M. leprae and M. lepraemurium and an Actinomyces-like progenitor through M. avium- M. gallinarum and to a proposal for the polyvalent vaccine currently being developed by this research group. Most of the past immunological research on lep- help to elucidate the immunogenicity of M. leprae rosy dealt with the skin or serum reactions of leprosy and would be useful for the preparation of an anti- patients with different mycobacterial antigen prepa- leprosy vaccine. rations. Almost all of these data were critically re- viewed by Bechelli (1971) and by de Almeida.4 More recently, the cross-reactions given by polysaccharide- MATERIALS AND METHODS protein complexes purified from M. leprae with the Sources of M. leprae and M. lepraemurium sera obtained from human leprosy, tuberculosis, and nocardiosis were revealed by Estrada-Parra (1970).
    [Show full text]
  • A Case of Disseminated Infection Due to Actinomyces Meyeri Involving
    Case Report Infection & http://dx.doi.org/10.3947/ic.2014.46.4.269 Infect Chemother 2014;46(4):269-273 Chemotherapy ISSN 2093-2340 (Print) · ISSN 2092-6448 (Online) A Case of Disseminated Infection due to Actinomyces meyeri Involving Lung and Brain Hyun Jung Park1, Ki-Ho Park3, Sung-Han Kim1, Heungsup Sung2, Sang-Ho Choi1, Yang Soo Kim1, Jun Hee Woo1, and Sang-Oh Lee1 Departments of 1Internal Medicine and 2Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul; 3Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea Actinomyces meyeri is rarely isolated in cases of actinomycosis. The identification of A. meyeri had historically been difficult and unreliable. With the recent development of 16S ribosomal RNA (16S rRNA) sequencing, Actinomyces species such as A. meyeri can be isolated much more reliably. A. meyeri often causes disseminated disease, which can be secondary to frequent pulmonary infections. A penicillin-based regimen is the mainstay of A. meyeri treatment, with a prolonged course usually re- quired. Here, we report a case of pulmonary actinomycosis with brain abscess caused by A. meyeri that was initially thought to represent lung cancer with brain metastasis. Key Words: Actinomyces; Sequence analysis, RNA; Brain abscess Introduction cies to cause similar clinical disease is largely unknown [2]. Recent developments in microbiological identification tech- Actinomycosis is a chronic infection caused by organisms in niques, especially 16S ribosomal RNA (16S rRNA) sequencing, the genus Actinomyces, with Actinomyces israelii being the have identified other Actinomyces species such as A. meyeri, most common etiologic agent [1].
    [Show full text]
  • Common Commensals
    Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes
    [Show full text]
  • The Complete Genome Sequence of Mycobacterium Bovis
    The complete genome sequence of Mycobacterium bovis Thierry Garnier*, Karin Eiglmeier*, Jean-Christophe Camus*†, Nadine Medina*, Huma Mansoor‡, Melinda Pryor*†, Stephanie Duthoy*, Sophie Grondin*, Celine Lacroix*, Christel Monsempe*, Sylvie Simon*, Barbara Harris§, Rebecca Atkin§, Jon Doggett§, Rebecca Mayes§, Lisa Keating‡, Paul R. Wheeler‡, Julian Parkhill§, Bart G. Barrell§, Stewart T. Cole*, Stephen V. Gordon‡¶, and R. Glyn Hewinson‡ *Unite´deGe´ne´ tique Mole´culaire Bacte´rienne and †PT4 Annotation, Ge´nopole, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France; ‡Tuberculosis Research Group, Veterinary Laboratories Agency Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom; and §The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom Edited by John J. Mekalanos, Harvard Medical School, Boston, MA, and approved March 19, 2003 (received for review January 24, 2003) Mycobacterium bovis is the causative agent of tuberculosis in a The disease is caused by M. bovis, a Gram-positive bacillus range of animal species and man, with worldwide annual losses to with zoonotic potential that is highly genetically related to agriculture of $3 billion. The human burden of tuberculosis caused Mycobacterium tuberculosis, the causative agent of human tu- by the bovine tubercle bacillus is still largely unknown. M. bovis berculosis (5, 6). Although the human and bovine tubercle bacilli was also the progenitor for the M. bovis bacillus Calmette–Gue´rin can be differentiated by host range, virulence and physiological vaccine strain, the most widely used human vaccine. Here we features the genetic basis for these differences is unknown. M. describe the 4,345,492-bp genome sequence of M.
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]
  • INTERNATIONAL BULLETIN of BACTERIOLOGICAL NOMENCLATURE and TAXONOMY Vol
    INTERNATIONAL BULLETIN OF BACTERIOLOGICAL NOMENCLATURE AND TAXONOMY Vol. 15, No. 3 July 15, 1965 pp. 143-163 THE CLASSIFICATION AND PHYLOGENETIC RELATIONSHIPS OF THE ACTINOMYCETALES ' Leo Pine and Lucille Georg Communicable Disease Center, Public Health Service, U. S. Department of Health, Education, and Welfare, Atlanta, Georgia SUMMARY. The taxonomic and phylogenetic re- lationships of members of the order Actino- mycetales have been examined. On the basis of cellular and colony morphology, cell wall composition, fermentation products, and cer- tain physiological characteristics, the taxa within the family Actinomycetaceae were divided into two groups. Each group was closely related to members of the family -Lactobacillaceae. One group consisted of Actinomyces israelii, -A. naeslundii, ,A. pro- pionicus, Nocardia dentocariosus and Odonto- myces viscosis ("hamster organism"). The second group consisted of bovis, ,A. erik- sonii, and Lactobacillus bifidusA. type 11 (k parabifidus). This latter organism was re- named Actinomyces pa.rabifidus nov. comb. because its morphological, physiological and biochemical characteristics related it to the members of both groups of the genus Actino- myces. The families Streptomycetaceae and Mycobacteriaceae appeared more closely re- lated to the family Corynebacteriaceae than to the family Actinomycetaceae. The use of certain criteria for classification and deter- mination of phylogenetic relationships was discussed. We have stressed those areas in which necessasy information is lacking. A report to
    [Show full text]
  • Actinomycetes (Branching Bacteria ): Dr.Jawad K
    College of Medicine Microbiology Medical bacteriology Actinomycetes (branching bacteria ): Dr.Jawad K. Al-Khafaji ----------------------------------------------------------------------------------------- Actinomycete (fungus-like bacteria) resembles fungus as it forms mycelia and resemble bacteria as it has not true nucleus. Important properties: 1. Actinomycetes for many years were classified as fungi because the actinomycetes are form long branching filaments that resemble the hyphae of fungi .But they are reclassified as bacteria since they are thin, possesses cell wall containing muramic acid, it has prokaryotic nuclei and susceptible to bacterial antibiotic agents. 2. Actinomycetes are common in soil .There are two medically important organisms, Actinomyces israelii and Nocardia asteroids . A.israelii is anaerobe that forms part of normal flora of oral cavity. N.asteroides is aerobe and is found in environment, particularly in the soil. 3. They are gram-positive bacilli. Many isolates of N.asteroides are weakly acid fast stain. 4. The A israelii is strict anaerobic; whereas N.asteroides is grow under strict aerobic conditions. Transmission : A.israelii infection is acquired endogenously, from normal oral flora. There is no person to person spread. Infection of N.asteroides is acquired from soil by airborne route. Actinomycetes infections are not transmitted from person to person ( the diseases are not communicable ). Pathogenesis : Actinomycetes are responsible for three human infections. 1. Actinomycosis is caused by A.israelii in human or by A.bovis in cattle. The disease is chronic suppurative and granulomatous infection that produces pyogenic lesions with interconnecting sinus tract that contain sulfur granules. Three forms are (i)Cervicofacial lesion is most common ,especially among poor dental hygiene and tooth extraction.
    [Show full text]
  • ABSA General Microbiology Fact Sheets
    GENERAL MICROBIOLOGY FACT SHEET Signs & Pathogen Genus species Disease Risk Group Host Range Transmission Symptoms Incubation Fact Micrograph Bacteria Actinomcyces spp. Actinomycosis Humans, cattle, Person-to-person by contact of Opportunistic pathogen. Chronic bacterial variable - days to months. Fatality rate of 5-20% if untreated. Opportuinistic Actinomyces israelii horses mouth, aerosols, fomites. disease localized in jaw, thorax, or pathogen. abdomen. Characterized by persistent swelling, suppuration and formation of 2 abscesses or granulomas. Bacteria Bacillus cereus Food Poisoning Humans Ingestion of foods kept at Opportunistic pathogen; intoxication 1-6 hours, average 4 hours; Infectious dose is greater than 10e6 organisms by ambient conditions after characterized by two forms: an emetic form diarrheal form 6-24 hours ingestion (>10e5 organisms/g of food). cooking; emetic form frequently with severe nausea and vomiting and a (average 17 hours) associated with cooked rice. diarrheal form with abdominal cramps and 2 Not communicable from person diarrhea. Usually mild and self-limiting (24 to person. hrs). Bacteria Bordetella pertussis Whooping Cough Humans Direct contact with discharges Stage 1: Catarrhal: Irritating cough, lasts 1 6-20 days Common in children worldwide; pertussis is among the from respiratory mucous to 2 weeks; Stage 2: Paroxysmal; violent most lethal infant diseases- membranes of infected persons coughs followed by a high pitched Treatment with dTaP(acellular pertussis vaccine, a by the airborne route. inspiratory whoop, lasts 2 to 6 weeks; preventive vaccine) is now available for adults 2 Stage 3: Convalescent; the cough gradually decreases in frequency and severity, lasts several weeks Bacteria Brucella melitensis Brucellosis Humans, swine, Skin or mucous membrane High and protracted (extended) fever.
    [Show full text]
  • Mycobacterium Leprae a Nd Elevation Of
    Lepr. Rev. (1978) 49, 203-213 Absence of jj-Glucuron idase in Mycobacterium leprae and Elevation of the Enzyme in I nfected Tissues K. PRABHAKARAN, E. B. HARRIS AND W. F. KIRCHHEIMER U. S. Public Health Service Hospital. Carville. LA 70 721. USA ,8-Glucuronidase actlVlty was determined in mouse footpads infected with My cobacterium leprae. in the leprosy organisms separated from the liver and spleen of experimentally infected armadillos, and in the armadillo tissues. Enzyme assays in th� mouse footpads were initiated 1 week after inoculation with M. /eprae and continued at monthly intervals for 12 months. In the mouse footpads and in the armadillo tissues, M. leprae infection resulted in remarkable elevations of ,8- glucuronidase leveis. The leprosy bacilli seemed to be devoid of the enzyme. In its properties like pH optimum, reaction velocity and effect of inhibitors, the activity detected in M. leprae resembled the host tis sue enzyme rather than bacterial ,8- glucuronidase; and the activity was found to be superficially adsorbed on the bacilli. lt is well established that phagocytes are rich in lysosomal enzymes. Evidently, the increased ,8-g1ucuronidase of the infected tissues is not derived from the invading organisms, but from the differenttypes of phagocytic cells infiltratingthe tissues. Introduction j3-Glucuronidase is an important hydrolytic enzyme ubiquitously distributed in animal tissues and in tissue fluids. Phagocytic cells are especially rich in j3-g1ucuronidase. In the mammalian liver, the enzyme is largely associated with Iysosomes, and approximately one-third of the activity is distributed in the endoplasmic reticulum. The hydrolase is closely correlated with cellular pro­ liferation and tissue repair; high leveis of the enzyme are found in the reproductive and endocrine organs and in tumours.
    [Show full text]
  • Mycobacterium Avium Subsp
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Veterinary and Biomedical Sciences, Papers in Veterinary and Biomedical Science Department of July 2001 Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine N. Beth Harris University of Nebraska - Lincoln Raul G. Barletta University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/vetscipapers Part of the Veterinary Medicine Commons Harris, N. Beth and Barletta, Raul G., "Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine" (2001). Papers in Veterinary and Biomedical Science. 5. https://digitalcommons.unl.edu/vetscipapers/5 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLINICAL MICROBIOLOGY REVIEWS, July 2001, p. 489–512 Vol. 14, No. 3 0893-8512/01/$04.00ϩ0 DOI: 10.1128/CMR.14.3.489–512.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine N. BETH HARRIS AND RAU´ L G. BARLETTA* Department of Veterinary and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska 68583-0905 INTRODUCTION .......................................................................................................................................................489
    [Show full text]
  • Metabolism in Mycobacterium Leprae, M. Tuberculosis and Other
    BnaA Mtthcal BidUnm (1988) Vol 44, No 3, pp 547-561 Metabolism in Mycobacterium leprae M. tuberculosis and Downloaded from https://academic.oup.com/bmb/article/44/3/547/283569 by guest on 28 September 2021 other pathogenic mycobacteria P R Wheeler C Ratledge Department of Biochemistry, Untvernty of Hull, Hull Pathogenic mycobacteria have complex lipoidal cell walls. Most of them secrete further lipids which appear as a layer around intracellular organisms. This lipoidal exterior may protect mycobacteria inside macrophages from attempts that those host cells make to kill them Such protection could be especially important in M leprae which unusually lacks catalase, an important 'self-defence' enzyme. Intracellular mycobacteria must obtain key nutrients from the host. The role of mycobactm and exochelm in acquiring iron, the carbon and nitrogen sources—including metabolic intermediates—used, and control of biosynthetic pathways are discussed. M. tuberculosis is capable of synthesismg all its macromolecules but M. leprae depends on the host for purines (precursors of nucleic acids), and maybe other intermediates Pathogenic mycobacteria grow slowly, and the possibilities that permeability of the envelope to nutrients, catabolic or anabolic (particularly DNA, RNA synthesis) reactions are limiting to growth are considered. Some characteristic activities may represent targets for antimycobactenal agents. Although it is a considerable over-simplification, it could be asserted that most mycobacteria are no more than Escherichia coli wrapped up in a fur coat. Metabolic processes in mycobacteria, for 548 TUBERCULOSIS AND LEPROSY the most part, are therefore the same, in broad outline as have been elucidated in the more amenable bacteria. Thus it is the few activities which are characteristically mycobacterial and the differ- ences between pathogenic mycobacteria and more amenable mi- crobes, that we discuss in this article.
    [Show full text]
  • Genomics Insights Into the Biology and Evolution of Leprosy Bacilli
    The International Textbook of Leprosy Part II Section 8 Chapter 8.2 Genomics Insights Into the Biology and Evolution of Leprosy Bacilli Pushpendra Singh Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda JoAnn Tufariello Department of Microbiology and Immunology, Albert Einstein College of Medicine Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University Alice R Wattam Biocomplexity Institute, Virginia Tech University Thomas P Gillis Effect: hope Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine William R Jacobs Jr Department of Microbiology and Immunology, Albert Einstein College of Medicine The International Textbook of Leprosy Genomics Insights Introduction GENERAL INTRODUCTION Leprosy is a chronic granulomatous disease that affects the peripheral nerves, skin, and eyes. It was strongly believed to be a hereditary disease until 1873, when a young Norwegian physician, Gerhard Armauer Hansen, demonstrated the causative bacterium of the disease. The pathogen, known as Mycobacterium leprae, has since defied all efforts to cultivate it in any artificial medi- um, thereby limiting traditional microbiological investigations. The availability of a very effective multi-drug therapy (MDT; see Chapter 2.6; Chapter 5.2) for over three decades has drastically reduced the prevalence of the disease; however, it has also facilitated the notion held by the general public and health policymakers that it is a disease of the past. This notion is clearly not the case, as new case detection rates of leprosy have stubbornly remained at or near 200,000 cases annually over the past decade (1). The persistent rate of new cases indicates that transmis- sion has not been completely interrupted by MDT and that a fuller understanding of transmis- sion (see Chapter 1.2) is required to fashion strategies aimed at reaching zero transmission of M.
    [Show full text]