Bispecific Antibody Generated with Sortase and Click Chemistry Has Broad Antiinfluenza Virus Activity

Total Page:16

File Type:pdf, Size:1020Kb

Bispecific Antibody Generated with Sortase and Click Chemistry Has Broad Antiinfluenza Virus Activity Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity Koen Wagnera,1, Mark J. Kwakkenbosa,1, Yvonne B. Claassena, Kelly Maijoora, Martino Böhnea, Koenraad F. van der Sluijsb, Martin D. Wittec,2, Diana J. van Zoelend, Lisette A. Cornelissend, Tim Beaumonta, Arjen Q. Bakkera, Hidde L. Ploeghc, and Hergen Spitsa,3 aAIMM Therapeutics, 1105 BA Amsterdam, The Netherlands; bLaboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; and dDepartment of Virology, Central Veterinary Institute, Wageningen University and Research Centre, 8200 AB Lelystad, The Netherlands Edited by K. Christopher Garcia, Stanford University, Stanford, CA, and approved October 21, 2014 (received for review May 9, 2014) Bispecific antibodies have therapeutic potential by expanding the Here, we present a bispecific antibody format, in which two functions of conventional antibodies. Many different formats of antibodies are fused at their C termini, using a combination of bispecific antibodies have meanwhile been developed. Most are sortase transpeptidation and click chemistry (20), to create an IgG genetic modifications of the antibody backbone to facilitate heterodimer. This C-C fusion does not require mutations within the incorporation of two different variable domains into a single antibody constant domains that might interfere with Fc-receptor molecule. Here, we present a bispecific format where we have binding or that would compromise antibody stability. Thus, the fused two full-sized IgG antibodies via their C termini using sor- native antibody structure is fully retained in our format. tase transpeptidation and click chemistry to create a covalently C-to-C fusion is a two-step process (Fig. 1), using a combina- linked IgG antibody heterodimer. By linking two potent anti- tion of sortase transpeptidation and click chemistry (20). Sortase influenza A antibodies together, we have generated a full anti- is a bacterial enzyme that functions to attach cell surface proteins body dimer with bispecific activity that retains the activity and bearing an “LPXTG” motif to the cell wall of Gram-positive bac- stability of the two fusion partners. teria via transacylation (21, 22). Sortase-catalyzed transpeptidation allows for efficient site-specific modifications under physiological antibody engineering | immunotherapy | influenza conditions, with excellent specificity and near-quantitative yields INFLAMMATION IMMUNOLOGY AND (23–25). To facilitate site-specific linking of the C termini of two ith a steady increase of antibodies and antibody derivatives antibodies, the fusion partners are labeled with either an azide or Wsuch as antibody drug conjugates and bispecific antibodies a cyclooctyne (DIBAC) functional group. The modified proteins entering the clinic, monoclonal human antibodies are now an are then conjugated via a strain-promoted cycloaddition between established source of new therapeutic agents (1, 2). The development the azide and the cyclooctyne. This reaction is highly specific and of bispecific antibodies has generated particular interest, because readily proceeds at room temperature in aqueous environments at it allows expansion of basic antibody functions (3, 4). Through neutral pH (26), allowing for efficient fusion under mild conditions. binding two (or more) different targets, a bispecific antibody can To test the robustness of this process and determine the features simultaneously engage two epitopes of a disease agent, block/acti- of this bispecific antibody format, we fused two potent anti- influenza antibodies, each active against a different subgroup of vate multiple ligands/receptors at once, or recruit immune effector the influenza A virus. Based on the hemagglutinin (HA) protein cells (i.e., T cells or B cells) to a specific (tumor) site (5). There is a growing interest in bispecific antibodies with anticancer proper- ties, which has led to an increase in bispecifics that have entered Significance preclinical testing (5, 6). Bispecific antibodies with defined functions are generated by Bispecific antibodies expand the function of conventional anti- means of genetic or biochemical engineering. Many different bodies. However, therapeutic application of bispecifics is ham- methods exist to engineer immunoglobulins, with more than 45 pered by the reduced physiochemical stability of such molecules. bispecific antibody formats at last count (reviewed in ref. 5). We present a format for bispecific antibodies, fusing two full- These bispecific antibody formats fall into three broad subclasses sized antibodies via their C termini. This format does not require mutations in the antibody constant domains beyond installation (5): (i) single-chain double variable domain formats (50–100 of a five-residue tag, ensuring that the native antibody structure kDa) (7–9): Generally these bispecifics consist of multiple vari- ii is fully retained in the bispecific product. We have validated the able domains that are connected via peptide linkers. ( ) IgG with approach by linking two anti-influenza A antibodies, each active multiple variable domains: In this type of bispecific antibody, against a different subgroup of the virus. The bispecific antibody a second variable domain is genetically linked to any desirable dimer retains the activity and the stability of the two original position in the IgG molecule (i.e., the C or N terminus of either antibodies. the IgG heavy or light chain) (10–12). (iii) Asymmetric IgG molecules: In an asymmetric IgG antibody, two different vari- Author contributions: K.W., M.J.K., T.B., H.L.P., and H.S. designed research; K.W., M.J.K., able domains are incorporated into a single, asymmetric, anti- Y.B.C., K.M., M.B., and A.Q.B. performed research; K.F.v.d.S., M.D.W., D.J.v.Z., and L.A.C. contributed new reagents/analytic tools; K.W., M.J.K., and H.S. analyzed data; and K.W., body molecule via heterodimerization of the constant domains. M.J.K., H.L.P., and H.S. wrote the paper. Heterodimerization may be achieved through engineering the – Conflict of interest statement: K.W., M.J.K., Y.B.C., K.M., M.B., T.B., A.Q.B., and H.S. are CH3domain(13 16) or the hinge region of the antibody (17, employees of AIMM Therapeutics. 18). Depending on the engineering method, asymmetric IgGs This article is a PNAS Direct Submission. can be made with a common light chain or with two different 1K.W. and M.J.K. contributed equally to this work. light chains (19). 2Present address: Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Each of these formats has its specific advantages and draw- Groningen, 9747 AG Groningen, The Netherlands. backs. Most of the limitations arise from the fact that their for- 3To whom correspondence should be addressed. Email: [email protected]. mats deviate significantly from the natural, highly stable, IgG This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. structure, which compromises stability and ease of manufacture. 1073/pnas.1408605111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1408605111 PNAS Early Edition | 1of6 Downloaded by guest on September 23, 2021 this antibody binds full-length H5 HA protein and the HA2 subunit. The subunits of HA are described in SI Appendix, Table S2. AT10-005 contains the IGHV1-69 gene segment and harbors the hydrophobic signature commonly found in group 1-specific antibodies (SI Appendix,TableS3) (38, 39). Antibody competition using AT10-005 and the stem-binding antibody CR6261 (40) (SI Appendix,Fig.S1) for H1 binding on H1N1 (A/Hawaii/31/2007)- infected cells confirms that both antibodies bind similar regions. AT10-002 is specific for HA proteins of group 2 viruses (SI Appendix, Table S1) and shows neutralizing activity against four group 2 viruses (two H3N2, one H7N1, and one H7N7 virus) (Table 1). The antibody binds full-length H3 but not the separate HA1 portion (SI Appendix, Table S4). In addition, AT10-002 competes with the group 2 HA stem-specific antibody CR8020 (31) for binding to H3N2-infected cells (SI Appendix, Fig. S2). To further analyze the binding site of AT10-002, we have isolated a third HA-specific antibody: AT10-003. AT10-003 was found to – Fig. 1. Approach for synthesis of C-to-C fused antibodies. (A) Antibodies bind to three H3 viruses (SI Appendix, Table S5), and reacted are labeled at the C terminus either with an azide (N ) or DIBAC with a click 3 with both the full-length H3 and the HA1 portion of the mole- peptide by using sortase. (B) Click-labeled antibodies are fused via the click SI reaction. cule indicating that the HA head is sufficient for binding ( Appendix, Table S4). Notably, AT10-003 was unable to block binding of AT10-002 to H3N2-infected cells (SI Appendix, Fig. sequence, there are 18 different subtypes of influenza A, divided S2). Therefore, the finding that AT10-002 binding is blocked by into two subgroups (27, 28). The HA protein is the common target CR8020 and not by AT10-003 suggests that the stem region of of almost all neutralizing antibodies, and several antibodies with group 2 HA influenza has the largest contribution to the AT10- broadly neutralizing activity between influenza A subtypes in the 002 epitope. Linking the broadly reacting antibodies AT10-005 same group exist (29–33). Combining two such potent subgroup- and AT10-002 would potentially result in a molecule active specific antibodies may result in an IgG heterodimer with even against a broad spectrum of group 1 and group 2 influenza A broader anti-influenza A activity. This type of molecule would viruses. have therapeutic relevance in a passive immunization setting, Synthesis of the C-to-C Fused Bispecific Antibody Dimer. To enable because influenza viruses continue to cause significant morbidity the C-to-C protein fusion, we modified the C termini of the and mortality, despite efforts to contain them with seasonal heavy chains of both antiinfluenza antibodies with a small tag, vaccines (34).
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0176967 A1 Stennicke (43) Pub
    US 20090176967A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0176967 A1 Stennicke (43) Pub. Date: Jul. 9, 2009 (54) CONJUGATION OF FVII (30) Foreign Application Priority Data (75) Inventor: Henning Ralf Stennicke, Kokkedal Aug. 2, 2004 (DK) ........................... PA 2004 O1175 (DK) Publication Classification Correspondence Address: (51) Int. Cl. INTELLECTUALNOVO NORDISK, PROPERTYINC. DEPARTMENT C. f :08: 1OO COLLEGE ROADWEST C07K 5/10 (2006.015 PRINCETON, NJ 08540 (US) C07K 7/06 (2006.01) (73) Assignee: Novo Nordisk HealthCare A/G, CI2N 15/12 (2006.01) Zurich (CH) CI2N 5/8 (2006.01) CI2N I/19 (2006.01) (21) Appl. No.: 11/659,153 (52) U.S. Cl. ....... 530/330; 435/68. 1530/381: 536/23.5; 435/320.1; 435/254.2 (22) PCT Filed: Aug. 2, 2005 (57) ABSTRACT (86). PCT No.: PCT/EP2005/053756 New FVII polypeptides and FVIIa derivatives, uses of such S371371 (c)(1),(c)(1 peptides, and methods of producing these polypeptides and (2), (4) Date: Oct. 23, 2008 derivatives, are provided. (SEQID NO, 1) FVII Polypeptide variant A (Sortase A) 5 Ala-Asn-Ala-Phe-Leu-GLA-GLA-Leu-Arg-Pro-Gly-Ser-Leu-GLA-Arg-GLA-Cys-Lys 5 1O 15 GLA-GLA-Gln-Cys-Ser-Phe-GLA-GLA-Ala-Arg-GLA-Ile-Phe-Lys-Asp-Ala-GLA-Arg 2O 25 30 35 10 Thr-Lys-Leu-Phe-Trp-Ile-Ser-Tyr-Ser-Asp-Gly-Asp-Gln-Cys-Ala-Ser-Ser-Pro 40 45 5 O Cys-Gln-Asn-Gly-Gly-Ser-Cys-Lys-Asp-Gln-Leu-Gln-Ser-Tyr-Ile-Cys-Phe-Cys 15 55 8O 65 70 Leu-Pro-Ala-Phe-Glu-Gly-Arg-Asn-Cys-Glu-Thr-His-Lys-Asp-Asp-Gln-Leu-Ile 75 80 85 90 20 Cys-Val-Asn-Glu-Asn-Gly-Gly-Cys-Glu-Gln-Tyr-Cys-Ser-Asp-His-Thr-Gly-Thr 35 1OO 105 Lys-Arg-Ser-Cys-Arg-Cys-His-Glu-Gly-Tyr-Ser-Leu-Leu-Ala-Asp-Gly-Val-Ser 11 O 115 120 125 25 Cys-Thr-Pro-Thr-Val-Glu-Tyr-Pro-Cys-Gly-Lys-Ile-Pro-Ile-Leu-Glu-Lys-Arg 130 135 14 O Asn-Ala-Ser-Leu-Pro-Gln-Thr-Gly-Ile-Val-Gly-Gly-Lys-Val-Cys-Pro-Lys-Gly 3O 145 150 155 18O Glu-Cys-Pro-Trp-Gln-Wal-Leu-Leu-Leu-Val-Asn-Gly-Ala-Gln-Leu-Cys-Gly-Gly 165 170 175 18O 35 Thr-Leu-Ile-Asn-Thr-Ile-Trp-Val-Val-Ser-Ala-Ala-His-Cys-Phe-Asp-Tys-Ile 185 190 195 US 2009/0176967 A1 Jul.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Anaerobic Bacteria Confirmed Plenary Speakers
    OFFICIALOFFICIAL JOURNALJOURNAL OFOF THETHE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC.INC. VolumeVolume 3636 NumberNumber 33 SeptemberSeptember 20152015 Anaerobic bacteria Confirmed Plenary speakers Professor Peter Professor Dan Assoc Prof Susan Lynch Dr Brian Conlon Professor Anna Hawkey Andersson University of California Northeastern Durbin University of Upsalla University San Francisco University, Boston Johns Hopkins Birmingham Environmental pollution Colitis, Crohn's Disease Drug discovery in Dengue and vaccines Nosocomial by antibiotics and its and Microbiome soil bacteria infection control and role in the evolution of Research antibiotic resistance resistance As with previous years, ASM 2016 will be co-run with NOW CONFIRMED! EduCon 2016: Microbiology Educators’ Conference 2016 Rubbo Oration Watch this space for more details on the scientific and Professor Anne Kelso social program, speakers, ASM Public Lecture, workshops, CEO NHMRC ASM awards, student events, travel awards, abstract deadlines and much more.. Perth, WA A vibrant and beautiful city located on the banks of the majestic Swan river. Come stay with us in WA and experience our world class wineries and restaurants, stunning national parks, beaches and much more.. www.theasm.org.au www.westernaustralia.theasm.org.au Annual Scientific Meeting and Trade Exhibition The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 36 Number 3 September 2015 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Vertical For Microbiology Australia Transmission 102 correspondence, see address below. Jonathan Iredell Editorial team Guest Prof. Ian Macreadie, Mrs Jo Macreadie Editorial 103 and Mrs Hayley Macreadie Anaerobic bacteria 103 Editorial Board Dena Lyras and Julian I Rood Dr Chris Burke (Chair) Dr Gary Lum Under the Prof.
    [Show full text]
  • Directed Sortase Evolution for Site-Specific Protein Engineering and Surface Functionalization
    Directed sortase evolution for site-specific protein engineering and surface functionalization Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Zhi Zou Master of Biochemistry and Molecular Biology aus Huanggang, Hubei, P.R. China Berichter: Univ.-Prof. Dr. rer. nat. Ulrich Schwaneberg Univ.-Prof. Dr. rer. nat. Andrij Pich Tag der mündlichen Prüfung: 26.02.2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. Table of Contents Table of Contents Acknowledgements ....................................................................................................................................... 6 Abbreviations and acronyms ......................................................................................................................... 7 Abstract .......................................................................................................................................................... 9 1. Chapter I: Introduction ............................................................................................................................ 11 1.1. Sortases: sources, classes, and functions ......................................................................................... 11 1.1.1 Class A sortases: sortase A ........................................................................................................................
    [Show full text]
  • Modulation of Listeria Monocytogenes Biofilm Formation Using Small Molecules and Enzymes
    MODULATION OF LISTERIA MONOCYTOGENES BIOFILM FORMATION USING SMALL MOLECULES AND ENZYMES MODULATION OF LISTERIA MONOCYTOGENES BIOFILM FORMATION USING SMALL MOLECULES AND ENZYMES By UYEN THI TO NGUYEN, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Uyen T.T. Nguyen, July 2014 Ph.D. – U.T.T. Nguyen; McMaster University – Biochemistry and Biomedical Sciences McMaster University DOCTOR OF PHILOSOPHY (2014) Hamilton, Ontario (Biochemistry and Biomedical Sciences) TITLE: Modulation of Listeria monocytogenes biofilm formation using small molecules and enzymes AUTHOR: Uyen Thi To Nguyen, B.Sc. (McMaster University) SUPERVISOR: Dr. Lori L. Burrows NUMBER OF PAGES: xvii, 217 ii Ph.D. – U.T.T. Nguyen; McMaster University – Biochemistry and Biomedical Sciences ABSTRACT Inadequately disinfected food contact surfaces colonized by Listeria monocytogenes can come into contact with ready-to-eat food products causing cross-contamination and food-borne outbreaks. L. monocytogenes is tolerant of high salt, low temperatures and low pH, in part due to its ability to form biofilms, defined as communities of microorganisms that are surrounded by a self-produced extracellular polymeric substance that can adhere to surfaces. Biofilm formation is a complex process involving a series of poorly defined physiological changes that together lead to tolerance of disinfectants and antibiotics. To better understand the process of L. monocytogenes biofilm development, and to investigate ways in which colonization of surfaces might be prevented, we developed a microtiter biofilm assay suitable for high throughput screening. The assay was used to identify small molecules (protein kinase inhibitors and previously FDA-approved bioactive drugs) that modulate L.
    [Show full text]
  • Genome Structure of the Symbiont Bifidobacterium
    fmicb-07-00624 April 27, 2016 Time: 13:28 # 1 ORIGINAL RESEARCH published: 29 April 2016 doi: 10.3389/fmicb.2016.00624 Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides Alfonso Benítez-Páez1*, F. Javier Moreno2, María L. Sanz3 and Yolanda Sanz1 1 Microbial Ecology, Nutrition and Health Research Group, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas, Paterna, Spain, 2 Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAMCCSIC), Madrid, Spain, 3 Instituto de Química Orgánica General – Consejo Superior de Edited by: Investigaciones Científicas, Madrid, Spain M. Pilar Francino, FISABIO_Public Health, Valencian Health Department, Spain Bifidobacterium pseudocatenulatum CECT 7765 was isolated from stools of a breast- Reviewed by: fed infant. Although, this strain is generally considered an adult-type bifidobacterial Alberto Finamore, species, it has also been shown to have pre-clinical efficacy in obesity models. In Council for Agricultural Research and Economics–Food and Nutrition order to understand the molecular basis of its adaptation to complex carbohydrates Research Center, Italy and improve its potential functionality, we have analyzed its genome and transcriptome, Simone Rampelli, University of Bologna, Italy as well as its metabolic output when growing in galacto-oligosaccharides derived *Correspondence: from lactulose (GOS-Lu) as carbon source. B. pseudocatenulatum CECT 7765 shows Alfonso Benítez-Páez strain-specific genome regions, including a great diversity of sugar metabolic-related [email protected] genes. A preliminary and exploratory transcriptome analysis suggests candidate over- Specialty section: expression of several genes coding for sugar transporters and permeases; furthermore, This article was submitted to five out of seven beta-galactosidases identified in the genome could be activated in Microbial Symbioses, response to GOS-Lu exposure.
    [Show full text]
  • Clostridium Difficile Has a Single Sortase, Srtb, That Can Be Inhibited by Small-Molecule Inhibitors
    Donahue et al. BMC Microbiology 2014, 14:219 http://www.biomedcentral.com/1471-2180/14/219 RESEARCH ARTICLE Open Access Clostridium difficile has a single sortase, SrtB, that can be inhibited by small-molecule inhibitors Elizabeth H Donahue1, Lisa F Dawson1, Esmeralda Valiente1, Stuart Firth-Clark2, Meriel R Major2, Eddy Littler2, Trevor R Perrior2 and Brendan W Wren1* Abstract Background: Bacterial sortases are transpeptidases that covalently anchor surface proteins to the peptidoglycan of the Gram-positive cell wall. Sortase protein anchoring is mediated by a conserved cell wall sorting signal on the anchored protein, comprising of a C-terminal recognition sequence containing an “LPXTG-like” motif, followed by a hydrophobic domain and a positively charged tail. Results: We report that Clostridium difficile strain 630 encodes a single sortase (SrtB). A FRET-based assay was used to confirm that recombinant SrtB catalyzes the cleavage of fluorescently labelled peptides containing (S/P)PXTG motifs. Strain 630 encodes seven predicted cell wall proteins with the (S/P)PXTG sorting motif, four of which are conserved across all five C. difficile lineages and include potential adhesins and cell wall hydrolases. Replacement of the predicted catalytic cysteine residue at position 209 with alanine abolishes SrtB activity, as does addition of the cysteine protease inhibitor MTSET to the reaction. Mass spectrometry reveals the cleavage site to be between the threonine and glycine residues of the (S/P)PXTG peptide. Small-molecule inhibitors identified through an in silico screen inhibit SrtB enzymatic activity to a greater degree than MTSET. Conclusions: These results demonstrate for the first time that C.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles
    UNIVERSITY OF CALIFORNIA Los Angeles Elucidating the Molecular Basis of Protein and Polymer Display in Gram-Positive Bacteria for Novel Antibiotic Development A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Biology by Michele Diedre Kattke 2017 © Copyright by Michele Diedre Kattke 2017 ABSTRACT OF THE DISSERTATION Elucidating the Molecular Basis of Protein and Polymer Display in Gram-Positive Bacteria for Novel Antibiotic Development by Michele Diedre Kattke Doctor of Philosophy in Molecular Biology University of California, Los Angeles, 2017 Professor Robert Thompson Clubb, Chair The emergence of multi-drug resistant bacteria has prompted novel antibiotic development by targeting non-essential pathways, such as virulence factor production and display during cell wall biosynthesis. Within Gram-positive bacteria, sortase transpeptidases covalently attach proteins to the cell wall or assemble pili using class A-F enzymes. Interestingly, class E sortases display proteins via recognition of a non-canonical LAXTG motif. We have determined the first crystal structure of a class E sortase, the 1.93 Å resolution structure of SrtE1 from Streptomyces coelicolor. The SrtE1 enzyme possesses structurally distinct β3/β4 and β6/β7 active site loops that contact the LAXTG substrate. Furthermore, molecular dynamics studies have identified a conserved tyrosine residue that likely confers substrate specificity for class E sortases. A second anti-virulence target, the TarA glycosyltransferase (GT), is highly conserved among Gram-positive bacteria and produces surface-anchored wall teichoic acid (WTA) polymers. The WTA biosynthetic mechanism involving TarA and other membrane- associated, enzymes is poorly understood due to a lack of structural characterization.
    [Show full text]
  • Sortase Enzymes and Their Integral Role in the Development of Streptomyces Coelicolor
    Sortase enzymes and their integral role in the development of Streptomyces coelicolor Sortase enzymes and their integral role in the development of Streptomyces coelicolor Andrew Duong A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment of the Requirements of the Degree of Master of Science McMaster University Copyright by Andrew Duong, December, 2014 Master of Science (2014) McMaster University (Biology) Hamilton, Ontario TITLE: Sortase enzymes and their integral role in the development of Streptomyces coelicolor AUTHOR: Andrew Duong, B.Sc. (H) (McMaster University) SUPERVISOR: Dr. Marie A. Elliot NUMBER OF PAGES: VII, 77 Abstract Sortase enzymes are cell wall-associated transpeptidases that facilitate the attachment of proteins to the peptidoglycan. Exclusive to Gram positive bacteria, sortase enzymes contribute to many processes, including virulence and pilus attachment, but their role in Streptomyces coelicolor biology remained elusive. Previous work suggested that the sortases anchored a subset of a group of hydrophobic proteins known as the long chaplins. The chaplins are important in aerial hyphae development, where they are secreted from the cells and coat the emerging aerial hyphae to reduce the surface tension at the air-aqueous interface. Two sortases (SrtE1 and SrtE2) were predicted to anchor these long chaplins to the cell wall of S. coelicolor. Deletion of both sortases or long chaplins revealed that although the long chaplins were dispensable for wild type-like aerial hyphae formation, the sortase mutant had a severe defect in growth. These two sortases were found to be nearly redundant, as deletion of individual enzymes led to only a modest change in phenotype.
    [Show full text]
  • Thesis Submitted for the Degree of Doctor of Philosophy
    University of Bath PHD Investigation of the Clostridium difficile Sortase by Gene Knockout, X-ray Crystallography and Biochemical Characterisation Chambers, Christopher Award date: 2014 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Investigation of the Clostridium difficile Sortase by Gene Knockout, X-ray Crystallography and Biochemical Characterisation Christopher James Chambers A Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Biology and Biochemistry December 2013 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.
    [Show full text]
  • First Characterization of a Class F Sortase and Establishment of a Microreactor-Based Assay for Its Directed Evolution
    First Characterization of a Class F Sortase and Establishment of a Microreactor-Based Assay for its Directed Evolution Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Salvatore Di Girolamo aus Italien 2020 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung 4.0 International Lizenz. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag von Prof. Dr. Florian Seebeck Prof. Dr. Georg Lipps Prof. Dr. Michael Nash Basel, 21 Mai 2019 Prof. Dr. Martin Spiess 1 2 Table of contents ABSTRACT ........................................................................................................................................... 5 LIST OF ABBREVIATIONS ............................................................................................................ 6 1 INTRODUCTION ........................................................................................................................ 8 1.1 Biology and function of sortases ............................................................................................................ 9 1.2 Classification of sortases ..................................................................................................................... 10 1.3 Sortases structure and mechanism of action......................................................................................
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]