Contents Definition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracy L. Kivell Pierre Lemelin Brian G. Richmond Daniel Schmitt Editors
Developments in Primatology: Progress and Prospects Series Editor: Louise Barrett Tracy L. Kivell Pierre Lemelin Brian G. Richmond Daniel Schmitt Editors The Evolution of the Primate Hand Anatomical, Developmental, Functional, and Paleontological Evidence Developments in Primatology: Progress and Prospects Series Editor Louise Barrett Lethbridge , Alberta , Canada More information about this series at http://www.springer.com/series/5852 Tracy L. Kivell • Pierre Lemelin Brian G. Richmond • Daniel Schmitt Editors The Evolution of the Primate Hand Anatomical, Developmental, Functional, and Paleontological Evidence Editors Tracy L. Kivell Pierre Lemelin Animal Postcranial Evolution (APE) Lab Division of Anatomy Skeletal Biology Research Centre Department of Surgery School of Anthropology and Conservation Faculty of Medicine and Dentistry, University of Kent University of Alberta Canterbury, UK Edmonton , AB , Canada Department of Human Evolution Daniel Schmitt Max Planck Institute for Evolutionary Department of Evolutionary Anthropology Anthropology Duke University Leipzig , Germany Durham , NC , USA Brian G. Richmond Division of Anthropology American Museum of Natural History New York , NY , USA Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig, Germany ISSN 1574-3489 ISSN 1574-3497 (electronic) Developments in Primatology: Progress and Prospects ISBN 978-1-4939-3644-1 ISBN 978-1-4939-3646-5 (eBook) DOI 10.1007/978-1-4939-3646-5 Library of Congress Control Number: 2016935857 © Springer Science+Business Media New York 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
An Incidence of Duplicated Princeps Pollicis and Radialis Indicis Arteries
Open Access Case Report DOI: 10.7759/cureus.14894 An Incidence of Duplicated Princeps Pollicis and Radialis Indicis Arteries Nicholas Lampasona 1 , Taylor Mazzei 2 , Brandon LaPorte 3 , Arthur Speziale 4 , Oleg Tsvyetayev 4 , Gary Schwartz 5 , Nicholas Lutfi 6 1. Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 2. Orthopaedic Surgery, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 3. Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 4. Radiology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 5. Orthopaedic Surgery, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA 6. Anatomy, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA Corresponding author: Nicholas Lampasona, [email protected] Abstract The princeps pollicis artery (PPA) is typically a direct branch off the deep palmar arterial arch. Identified is a 90-year-old female cadaver in which the right hand has a duplicated PPA and radialis indicis (RI) artery. These vessels originate from the superficial palmar arterial arch as variant vessels as well as from the deep palmar arterial arch. The superficial arch appears in its classic pattern, while the duplicate PPA and RI present at the radial aspect of the superficial arch in the volar first web space with clear communication to the superficial radial artery. There are many common surgical procedures that require precise knowledge of the first web space, such as Dupuytren's contracture release, trigger thumb release, and syndactyly release at the first web space. -
ANGIOGRAPHY of the UPPER EXTREMITY Printed in the Netherlands by Koninklijke Drukkerij G.J.Thieme Bv, Nijmegen ANGIOGRAPHY of the UPPER EXTREMITY
1 f - h-' ^^ ANGIOGRAPHY OF THE UPPER EXTREMITY Printed in The Netherlands by Koninklijke drukkerij G.J.Thieme bv, Nijmegen ANGIOGRAPHY OF THE UPPER EXTREMITY PROEFSCHRIFT ter verkrijging van de graad van Doctor in de Geneeskunde aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magni- ficus Dr. A. A. H. Kassenaar, Hoogleraar in de faculteit der Geneeskunde, volgens besluit van het college van dekanen te verdedigen op donderdag 6 mei 1982 te klokke 15.15 uur DOOR BLAGOJA K. JANEVSKI geborcn 8 februari 1934 te Gradsko, Joegoslavie MARTINUS NIJHOFF PUBLISHERS THE HAGUE - BOSTON - LONDON 1982 PROMOTOR: Prof. Dr. A. E. van Voorthuisen REPERENTEN: Prof. Dr. J. M. F. LandLandsmees r 1 Prof. Dr. J. L. Terpstra ! I Copyright © 1982 by Martinus Nijhoff Publishers, The Hague All rights reserved. No part of this publication may be repro- duced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub- lishers, Martinus Nijhoff Publishers,P.O. Box 566,2501 CN The Hague, The Netherlands if ••»• 7b w^ wife Charlotte To Lucienne, Lidia and Dejan h {, ,;T1 ii-"*1 ™ ffiffp"!»3^>»'*!W^iyJiMBiaMMrar^ ACKNOWLEDGEMENTS This thesis was produced in the Department of Radiology, Sirit Annadal Hospital, Maastricht. i Case material: Prof. Dr. H. A. J. Lemmens, surgeon. Technical assistence: Miss J. Crijns, Mrs. A. Rousie-Panis, Miss A. Mordant and Miss H. Nelissen. Secretarial help: Mrs. M. Finders-Velraad and Miss Y. Bessems. Photography: Mr. C. Evers. Graphical illustrations: Mr. C. Voskamp. Correction English text: Dr. -
Original Unedited Manuscript
Regional patterning in tail vertebral form and function in chameleons (C. calyptratus) Allison M. Luger1, Peter J. Watson2, Hugo Dutel3,2, Michael J. Fagan2, Luc Van Hoorebeke4, Anthony Herrel1,5, Dominique Adriaens1 1 Evolutionary Morphology of Vertebrates, Ghent University, Belgium 2 Department of Engineering, University of Hull, UK 3. School of Earth Sciences, University of Bristol, UK 4 UGCT - Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86/N12, 9000 Gent, Belgium Downloaded from https://academic.oup.com/icb/advance-article/doi/10.1093/icb/icab125/6296421 by guest on 15 June 2021 5 UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005, Paris, France ORCID: 0000-0003-0991-4434 Corresponding author : Allison M. Luger K.L. Ledeganckstraat 30 9000 Ghent, Belgium E-mail : [email protected] Tel : +32 484153535 Running title : Tail vertebral form affects prehensility Total number of words: 5781 ORIGINAL UNEDITED MANUSCRIPT © The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions, please e-mail: [email protected] Abstract Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis (MDA). First, observations from dissections and 3D reconstructions generated from contrast- enhanced µCT-scans were used to document regional variation in arrangement of the caudal muscles along the antero-posterior axis. -
Blood Vessels and Lymphatics of the Upper Limb Axillary Artery • Course: – It Starts at the Outer Border of the 1St Rib As a Continuation of the Subclavian Artery
Blood vessels and lymphatics of the upper limb Axillary artery • Course: – It starts at the outer border of the 1st rib as a continuation of the subclavian artery. – It is divided by the covering pectoralis minor muscle into 3 parts: • 1st part, is proximal to pectoralis minor. • 2nd part, is under cover the pectoralis minor. • 3rd part, is distal to the pectoralis minor. • It ends at the lower border of the teres major muscle which it continues as the brachial artery. • Relations: • Anterior: muscles of the pectoral muscles and clavipectoral fascia. • Posterior: muscles of the posterior wall of axilla and posterior cord of the brachial plexus. • Medially: the axillary vein and the medial cord of the brachial plexus. • Laterally: the lateral cord of the brachial plexus. • Branches: – 1st part: (one branch): • The superior thoracic artery: which supplies the upper part of the chest wall. – 2nd part: (two branches): • Thoraco-acromial artery: on the upper border of the pectoralis minor, which supplies the pectoral and shoulder regions. It gives off: Acromial, pectoral, clavicular & deltoid branches. • Lateral thoracic artery: on the lower border of the pectoralis minor, which supplies the pectoral region and the breast. – 3rd part: (three branches): • Subscapular artery: it descends on the lateral border of the scapula and it gives off circumflex scapular artery. It supplies the back of shoulder. • Posterior circumflex humeral artery: it accompanies the axillary nerve on the back of the surgical neck of the humerus. • Anterior circumflex humeral artery: in front of the surgical neck of the humerus. • Anastmosis related to the axillary artey: – Anastmosis around the scapula: formed by: • Suprascapular artery, form the thyrocervical trunk. -
SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej -
Is Variation in Tail Vertebral Morphology Linked to Habitat Use in Chameleons?
Received: 10 September 2019 Revised: 3 December 2019 Accepted: 12 December 2019 DOI: 10.1002/jmor.21093 RESEARCH ARTICLE Is variation in tail vertebral morphology linked to habitat use in chameleons? Allison M. Luger1 | Anouk Ollevier1 | Barbara De Kegel1 | Anthony Herrel1,2 | Dominique Adriaens1 1Department of Evolutionary Biology of Vertebrates, Ghent University, Ghent, Belgium Abstract 2Département Adaptations du Vivant, Chameleons (Chamaeleonidae) are known for their arboreal lifestyle, in which they Bâtiment d'Anatomie Comparée, UMR 7179 make use of their prehensile tail. Yet, some species have a more terrestrial lifestyle, C.N.R.S/M.N.H.N, Paris, France such as Brookesia and Rieppeleon species, as well as some chameleons of the genera Correspondence Chamaeleo and Bradypodion. The main goal of this study was to identify the key ana- Allison M. Luger, Department of Evolutionary Biology of Vertebrates, Ghent University, tomical features of the tail vertebral morphology associated with prehensile capacity. K.L. Ledeganckstraat 35, 9000 Ghent, Belgium. Both interspecific and intra-individual variation in skeletal tail morphology was inves- Email: [email protected] tigated. For this, a 3D-shape analysis was performed on vertebral morphology using Funding information μCT-images of different species of prehensile and nonprehensile tailed chameleons. Tournesol Mobility Grant; FWO, Grant/Award Number: #3G006716 A difference in overall tail size and caudal vertebral morphology does exist between prehensile and nonprehensile taxa. Nonprehensile tailed species have a shorter tail with fewer vertebrae, a generally shorter neural spine and shorter transverse pro- cesses that are positioned more anteriorly (with respect to the vertebral center). The longer tails of prehensile species have more vertebrae as well as an increased length of the processes, likely providing a greater area for muscle attachment. -
Foraging Behaviour of the Slender Loris (Loris Lydekkerianus Lydekkerianus): Implications for Theories of Primate Origins
Journal of Human Evolution 49 (2005) 289e300 Foraging behaviour of the slender loris (Loris lydekkerianus lydekkerianus): implications for theories of primate origins K.A.I. Nekaris* Department of Anthropology, Washington University, Campus Box 1114, One Brookings Drive, St. Louis, MO 63110, USA Received 3 May 2004; accepted 18 April 2005 Abstract Members of the Order Primates are characterised by a wide overlap of visual fields or optic convergence. It has been proposed that exploitation of either insects or angiosperm products in the terminal branches of trees, and the corresponding complex, three-dimensional environment associated with these foraging strategies, account for visual convergence. Although slender lorises (Loris sp.) are the most visually convergent of all the primates, very little is known about their feeding ecology. This study, carried out over 10 ½ months in South India, examines the feeding behaviour of L. lydekkerianus lydekkerianus in relation to hypotheses regarding visual predation of insects. Of 1238 feeding observations, 96% were of animal prey. Lorises showed an equal and overwhelming preference for terminal and middle branch feeding, using the undergrowth and trunk rarely. The type of prey caught on terminal branches (Lepidoptera, Odonata, Homoptera) differed significantly from those caught on middle branches (Hymenoptera, Coleoptera). A two-handed catch accompanied by bipedal postures was used almost exclusively on terminal branches where mobile prey was caught, whereas the more common capture technique of one-handed grab was used more often on sturdy middle branches to obtain slow moving prey. Although prey was detected with senses other than vision, vision was the key sense used upon the final strike. -
Radial Artery Aneurysm Secondary to Dynamic Entrapment by Extensor Pollicis Longus Tendon: a Case of Snapping Thumb
Skeletal Radiology (2019) 48:971–975 https://doi.org/10.1007/s00256-018-3061-y CASE REPORT Radial artery aneurysm secondary to dynamic entrapment by extensor pollicis longus tendon: a case of snapping thumb Hatim Alabsi1,2 & Thomas Goetz3 & Darra T. Murphy1 Received: 30 April 2018 /Revised: 28 August 2018 /Accepted: 29 August 2018 /Published online: 13 September 2018 # ISS 2018 Abstract Aneurysms of the distal radial artery at the level of the wrist are rare. Most reported cases are posttraumatic, either from iatrogenic arterial puncture for radial arterial access or from a penetrating injury. Other causes include infection and connective tissue disorders. Early diagnosis is important to avoid the potential complications of thrombus formation, distal digital ischemia, and rupture. Evaluation of the radial artery is typically performed using non-invasive modalities like ultrasonography, computed tomographic angiography (CTA), and magnetic resonance angiography (MRA). Invasive angiography can also be performed, particularly if minimally invasive treatment options are being considered. We report a case of a 35-year-old male mechanic who presented with pain at the base of the left thumb dorsally, with reproducible painful snapping on dynamic exam. Ultrasound demonstrated a fusiform aneurysm of the radial artery. At the level of the aneurysm, there was dynamic entrapment of the artery between the extensor pollicis longus (EPL) tendon and the underlying trapezium. The patient’s symptoms improved with conservative manage- ment and avoidance of the snapping-producing maneuvers. To our knowledge, this is the first published case of snapping at the base of the thumb resulting in repetitive entrapment of the radial artery by the EPL tendon captured on dynamic ultrasound examination. -
Adaptive Simplification and the Evolution of Gecko Locomotion: Morphological and Biomechanical Consequences of Losing Adhesion
Adaptive simplification and the evolution of gecko locomotion: Morphological and biomechanical consequences of losing adhesion Timothy E. Highama,1, Aleksandra V. Birn-Jefferya, Clint E. Collinsa, C. Darrin Hulseyb, and Anthony P. Russellc aDepartment of Biology, University of California, Riverside, CA 92521; bDepartment of Biological Sciences, University of New Orleans, New Orleans, LA 70148; and cDepartment of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 Edited by David B. Wake, University of California, Berkeley, CA, and approved November 26, 2014 (received for review October 1, 2014) Innovations permit the diversification of lineages, but they may also would be appropriate to investigate the resulting changes and impose functional constraints on behaviors such as locomotion. trade-offs that occur during evolutionary reduction and functional Thus, it is not surprising that secondary simplification of novel loco- loss within a clade that displays a spectrum of changes in a highly motory traits has occurred several times among vertebrates and functional anatomical complex. could potentially lead to exceptional divergence when constraints The gekkotan adhesive system has been instrumental in en- are relaxed. For example, the gecko adhesive system is a remarkable abling these lizards to occupy otherwise inaccessible regions of the innovation that permits locomotion on surfaces unavailable to locomotor habitat by enhancing climbing effectiveness through other animals, but has been lost or simplified in species -
Anatomical Snuffbox and It Clinical Significance. a Literature Review
Int. J. Morphol., 33(4):1355-1360, 2015. Anatomical Snuffbox and it Clinical Significance. A Literature Review La Tabaquera Anatómica y su Importancia Clínica. Una Revisión de la Literatura Aladino Cerda*,** & Mariano del Sol ***,**** CERDA, A & DEL SOL, M. Anatomical snuffbox and it clinical significance. A literature review. Int. J. Morphol., 33(4):1355-1360, 2015. SUMMARY: The anatomical snuffbox is a small triangular area situated in the radial part of the wrist, often used to perform clinical and surgical procedures. Despite the frequency with which this area is used, there is scarce information in literature about its details. The objective of this study is detailed knowledge of the anatomical snuffbox’s anatomy and its components, the reported alterations at this portion, besides the clinical uses and significance of this area. KEY WORDS: Hand; Wrist; Anatomical Snuffbox; Radial artery; Cephalic vein; Superficial branch of radial nerve; Scaphoid. INTRODUCTION The anatomical snuffbox (AS) is a depression in (Latarjet & Ruíz-Liard). This triangular structure presents a wrist’s radial part, limited by the tendons of abductor longus base formed by the distal margin of the retinaculum of ex- muscle, extensor pollicis brevis and extensor pollicis longus tensor muscles (Kahle et al., 1995), and a vertex conformed muscles (Latarjet & Ruíz-Liard, 2007). This little triangular by the attachment of the tendons of extensor pollicis longus area is often used to perform clinical procedures as the and extensor pollicis brevis muscles (Fig. 2) (Latarjet & cannulation of the cephalic vein, and surgical procedures as Ruíz-Liard). The roof is formed by the skin and superficial placing arteriovenous fistula between the radial artery and cephalic vein, among other uses. -
Microsurgical Management of Acute Traumatic Injuries of the Hand and Fingers
6 Bulletin of the Hospital for Joint Diseases 2013;71(1):6-16 Microsurgical Management of Acute Traumatic Injuries of the Hand and Fingers Dimitrios Christoforou, M.D., Michael Alaia, M.D., and Susan Craig-Scott, M.D. Abstract instrumentation, and indications. Often, revascularization Traumatic injuries of the hand and fingers may be devastat- or replantation is not an option, and coverage of defects ing and can result in irreversible functional and psychologi- is required using various types of flaps and grafts. These cal problems in individuals who sustain them. They occur in include, but are not limited to, flaps such as the cross finger, all age groups, ranging from the elderly to young children. v-y, kite, thenar, neurovascular island flap for finger and The management of these injuries can be challenging and thumb injuries, and local, distant, or free flaps for soft tissue onerous. As a result, it is imperative that the surgeon be coverage in the hand. both knowledgeable and meticulous in order to afford the The breadth of information available addressing the best possible outcomes. This review focuses on the anatomy, management of these injuries is vast, as are the endless initial evaluation, and acute management of these injuries. techniques and possible tissue transfers (grafts and flaps) A variety of treatment algorithms are discussed as well, in- described to deal with them. As a result, we focus our at- cluding primary closure, grafting, commonly utilized flaps, tention on the anatomy, initial evaluation and acute manage- and replantation. ment algorithms ranging from primary closure to grafting to commonly utilized flaps, and finally replantation.