Blood Vessels and Lymphatics of the Upper Limb Axillary Artery • Course: – It Starts at the Outer Border of the 1St Rib As a Continuation of the Subclavian Artery

Total Page:16

File Type:pdf, Size:1020Kb

Blood Vessels and Lymphatics of the Upper Limb Axillary Artery • Course: – It Starts at the Outer Border of the 1St Rib As a Continuation of the Subclavian Artery Blood vessels and lymphatics of the upper limb Axillary artery • Course: – It starts at the outer border of the 1st rib as a continuation of the subclavian artery. – It is divided by the covering pectoralis minor muscle into 3 parts: • 1st part, is proximal to pectoralis minor. • 2nd part, is under cover the pectoralis minor. • 3rd part, is distal to the pectoralis minor. • It ends at the lower border of the teres major muscle which it continues as the brachial artery. • Relations: • Anterior: muscles of the pectoral muscles and clavipectoral fascia. • Posterior: muscles of the posterior wall of axilla and posterior cord of the brachial plexus. • Medially: the axillary vein and the medial cord of the brachial plexus. • Laterally: the lateral cord of the brachial plexus. • Branches: – 1st part: (one branch): • The superior thoracic artery: which supplies the upper part of the chest wall. – 2nd part: (two branches): • Thoraco-acromial artery: on the upper border of the pectoralis minor, which supplies the pectoral and shoulder regions. It gives off: Acromial, pectoral, clavicular & deltoid branches. • Lateral thoracic artery: on the lower border of the pectoralis minor, which supplies the pectoral region and the breast. – 3rd part: (three branches): • Subscapular artery: it descends on the lateral border of the scapula and it gives off circumflex scapular artery. It supplies the back of shoulder. • Posterior circumflex humeral artery: it accompanies the axillary nerve on the back of the surgical neck of the humerus. • Anterior circumflex humeral artery: in front of the surgical neck of the humerus. • Anastmosis related to the axillary artey: – Anastmosis around the scapula: formed by: • Suprascapular artery, form the thyrocervical trunk. • Deep branch of the transverse cervical artery, from the thyrocervical trunk. • Subscapular artery, from the 3rd part of the axillary artery. – Anastmosis around the shoulder: formed by: • Suprascapular artery, form the thyrocervical trunk. • Thoraco-acromial atery, from 2nd part of subclavian artery. • Anterior and posterior circumflex humeral arteries from the 3rd part of axillary artery. Brachial artery • Course: – It starts at the lower border of the teres major as a continuation of the axillary artery. – It is superficial throughout its course. On the upper half of the arm, it is medial to the humerous, while in the lower half of the arm, it is front to the humerus. • Termination: at the level of the neck of the radius as two terminal branches (ulnar and radial arteries). • Relations: – Anterior: skin and fascia. The median nerve is crossing at the middle of the artery from the lateral to the medial side. – Posterior: long head of triceps and brachialis. – Lateral: the tendon of biceps at the lower end of the artery. – Medial: the ulnar nerve, at the upper part of the artery. • Branches: 1. Profunda brachii artery: it arises from the postero-medial aspect of the artery, just below its origin. It accompanies the radial nerve in the spiral groove of the humerus. It ends at the lateral side of the arm as one ascending and two descending branches. 2. Nutrient artery to the humerus, which is directed downwards. 3. Upper and lower ulnar collateral arteries: They accompany the ulnar nerve down to the medial epicondyle. 4. Two terminal branches: ulnar and radial arteries. • Anastmosis related to the brachial artery: (Anastmosis around the elbow): – Around the lateral epicondyle: formed by: • The two descending branches of the profunda brachii. • Radial recurrent artery. • Interosseous recurrent artery. – Around the medial epicondyle: • The two ulnar collateral arteries. • The two ulnar recurrent arteries (anterior and posterior). Radial artery • Course and relations: 1. In the forearm: the artery starts at the level of the neck of radius and descends on the radial side of the forearm undercover the brachioradialis muscle. It descends over the pronator teres, flexor digitorum superficialis and flexor pollicis longus. It becomes subcutaneous in the lower 1/3 of the forearm. 2. In the dorsum of the hand: the artery winds backwards just below the styloid process to enter the floor of the anatomical snuff box, then it continues to reach the 1st interosseous spcace. 3. In the palm of the hand: the artery passes through the adductor pollicis to reach the palm of the hand and it ends medially as (the deep palmar arch). • Branches: 1. In the forearm: - Recurrent radial artery: it ascends to the front of the lateral epicondyle. - Anterior carpal artery: it passes medially in the front of the wrist joint. - Superficial palmar artery: it passes throuhg the thenar eminence to join the superficial palmar arch. 2. In the back of the hand: - posterior carpal artery: it gives off three dorsal metacarpal arteries to supply the adjacent sides of the medial 4 fingers. - the 1st dorsal metacarpal artery: it gives off 2 dorsal digital arteries to the adjacent sides of thumb & index fingers. - Dorsal digital artery to the radial side of the thumb. 3. In the palm of the hand: - Princeps pollicis artery: to the thumb. - radialis indices artery: to the radial side of the index finger. - deep palamar arch: located on the bases of metacarpal bones. It gives off: a) three palmar metacarpal arteries. b) three perforating arteries to the back of the hand. c) Recurent carpal artery to the anterior carpal arch. Ulnar artery • Course and relations: 1. In the forearm: the artery starts at the level of the neck of radius and descends on the ulnar side of the forearm undercover the flexor carpi-ulnaris muscle. It descends over the flexor digitorum profundus, lateral to the ulnar nerve. It becomes subcutaneous in the lower 1/3 of the forearm, lateral to the tendon of the flexor carpi-ulnaris muscle. 2. In the palm of the hand: the artery passes superficial to the flexor retinaculum. It ends by crossing the palm laterally to form (the superficial palmar arch). • Branches: 1. In the forearm: - Anterior recurrent ulnar artery: it ascends to the front of the medial epicondyle. - Posterior recurrent ulnar artery: it ascends to the back of the medial epicondyle. - Common interosseous artery: which is a short trunk (1 cm) appear at the upper border of the interosseous membrane, and ends as: A) Anterior interosseous artery: that descends on the anterior surface of the interosseous membrane to supply muscles of the front of forearm. It gives off the nutrient arteries to the ulna and the radius. B) Posterior interosseous artery: that descends in the posterior compartment of the forearm, to supply muscles of the back of forearm. It gives off the recurrent interosseous artery to the back of the lateral epicondyle. - Anterior carpal artery: it passes laterally in the front of the wrist joint. - Posterior carpal artery: to the back of wrist joint. 2. In the palm of the hand: - Deep branch to join the medial end of the deep palmar arch. - Palmar digital artery to the medial side of the little finger. - suerficial palmar arch: located just beneath the palmar aponeurosis. It gives off three common palmar digital arteries to the adjacent sides of the medial 4 fingers. Venous drainage of the upper limb • Superficial veins: 1. Dorsal venous arch: – It lies in the dorsum of the hand. – It receives: • Dorsal metacarpal veins: drain the middle 3 fingers. • Vein drains the thumb & radial side of the index. • Vein drains the ulnar side of the little finger. 2. Cephalic vein: – It start from the lateral end of the dorsal venous arch. – It ascends on the lateral side of the forearm and the lateral side of the arm. – It ends by piercing the clavipectoral fascia to join the Axillary vein. 3. Basilic vein: – It start from the medial end of the dorsal venous arch. – It ascends on the medial side of the forearm and the medial side of the arm. – It ends by piercing the arm fascia at the point of insertion of coracobrachialis, to join the two venae comitants of the brachial artery to form the Axillary vein. 4. Median cubital vein: – It is present obliquely in the front of the elbow. – It joins the cephalic vein (1 inch below the lateral epicondyle) to the basilic vein (1 inch above the medial epicondyle) • Deep veins: (Axillary vein) – It starts at the lower border of the teres major muscle by the union of the two venae comitants of the brachial artery and the basilic vein. – It ascends in the axilla medial to the axillary artery. – It ends at the outer border of the 1st rib where it continues as subclavian vein. – Tributaries: 1. Circumflex humeral veins. 2. Subscapular vein. 3. Lateral and superior thoracic veins. 4. Cephalic vein. Lymph nodes of the upper limb • Axillary lymph nodes: (5 groups) 1. Anterior group (pectoral): – It lies along the lateral thoracic vessels. – It drains the breast & the skin of the anterior abdominal wall above the level of the umbilicus. 2. Posterior group(subscapular): – It lies along the subscapular vessels. – It drains the skin of the back of the trunk above the level of the iliac crest. 3. Lateral group (humeral): – It lies along the lower end of axillary vein. – It drains the upper limb. 4. Central group: – It lies near to the floor of axilla. – It receives afferents from the previous groups of lymph nodes . 5. Apical group: – It lies along the upper end of axillary vein. – It drains the breast and It receives afferents from the previous groups of lymph nodes. – The efferent trunk is the subclavian lymph trunk that ends into thoracic duct on the left side of the body and the right lymphatic duct on the right side. • Lymphatic drainage of the upper limb: 1. Lymph nodes: – deep lymph nodes: are the lateral axillary lymph nodes. – Superficial lymph nodes: • Infraclavicular LNs: in the deltopectoral groove.
Recommended publications
  • Redalyc.Variations in Branching Pattern of the Axillary Artery: a Study
    Jornal Vascular Brasileiro ISSN: 1677-5449 [email protected] Sociedade Brasileira de Angiologia e de Cirurgia Vascular Brasil Astik, Rajesh; Dave, Urvi Variations in branching pattern of the axillary artery: a study in 40 human cadavers Jornal Vascular Brasileiro, vol. 11, núm. 1, marzo, 2012, pp. 12-17 Sociedade Brasileira de Angiologia e de Cirurgia Vascular São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=245023701001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ORIGINAL ARTICLE Variations in branching pattern of the axillary artery: a study in 40 human cadavers Variações na ramificação do padrão da artéria axilar: um estudo em 40 cadáveres humanos Rajesh Astik1, Urvi Dave2 Abstract Background: Variations in the branching pattern of the axillary artery are a rule rather than an exception. The knowledge of these variations is of anatomical, radiological, and surgical interest to explain unexpected clinical signs and symptoms. Objective: The large percentage of variations in branching pattern of axillary artery is making it worthwhile to take any anomaly into consideration. The type and frequency of these vascular variations should be well understood and documented, as increasing performance of coronary artery bypass surgery and other cardiovascular surgical procedures. The objective of this study is to observe variations in axillary artery branches in human cadavers. Methods: We dissected 80 limbs of 40 human adult embalmed cadavers of Asian origin and we have studied the branching patterns of the axillary artery.
    [Show full text]
  • An Incidence of Duplicated Princeps Pollicis and Radialis Indicis Arteries
    Open Access Case Report DOI: 10.7759/cureus.14894 An Incidence of Duplicated Princeps Pollicis and Radialis Indicis Arteries Nicholas Lampasona 1 , Taylor Mazzei 2 , Brandon LaPorte 3 , Arthur Speziale 4 , Oleg Tsvyetayev 4 , Gary Schwartz 5 , Nicholas Lutfi 6 1. Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 2. Orthopaedic Surgery, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 3. Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 4. Radiology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 5. Orthopaedic Surgery, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA 6. Anatomy, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA Corresponding author: Nicholas Lampasona, [email protected] Abstract The princeps pollicis artery (PPA) is typically a direct branch off the deep palmar arterial arch. Identified is a 90-year-old female cadaver in which the right hand has a duplicated PPA and radialis indicis (RI) artery. These vessels originate from the superficial palmar arterial arch as variant vessels as well as from the deep palmar arterial arch. The superficial arch appears in its classic pattern, while the duplicate PPA and RI present at the radial aspect of the superficial arch in the volar first web space with clear communication to the superficial radial artery. There are many common surgical procedures that require precise knowledge of the first web space, such as Dupuytren's contracture release, trigger thumb release, and syndactyly release at the first web space.
    [Show full text]
  • ANGIOGRAPHY of the UPPER EXTREMITY Printed in the Netherlands by Koninklijke Drukkerij G.J.Thieme Bv, Nijmegen ANGIOGRAPHY of the UPPER EXTREMITY
    1 f - h-' ^^ ANGIOGRAPHY OF THE UPPER EXTREMITY Printed in The Netherlands by Koninklijke drukkerij G.J.Thieme bv, Nijmegen ANGIOGRAPHY OF THE UPPER EXTREMITY PROEFSCHRIFT ter verkrijging van de graad van Doctor in de Geneeskunde aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magni- ficus Dr. A. A. H. Kassenaar, Hoogleraar in de faculteit der Geneeskunde, volgens besluit van het college van dekanen te verdedigen op donderdag 6 mei 1982 te klokke 15.15 uur DOOR BLAGOJA K. JANEVSKI geborcn 8 februari 1934 te Gradsko, Joegoslavie MARTINUS NIJHOFF PUBLISHERS THE HAGUE - BOSTON - LONDON 1982 PROMOTOR: Prof. Dr. A. E. van Voorthuisen REPERENTEN: Prof. Dr. J. M. F. LandLandsmees r 1 Prof. Dr. J. L. Terpstra ! I Copyright © 1982 by Martinus Nijhoff Publishers, The Hague All rights reserved. No part of this publication may be repro- duced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub- lishers, Martinus Nijhoff Publishers,P.O. Box 566,2501 CN The Hague, The Netherlands if ••»• 7b w^ wife Charlotte To Lucienne, Lidia and Dejan h {, ,;T1 ii-"*1 ™ ffiffp"!»3^>»'*!W^iyJiMBiaMMrar^ ACKNOWLEDGEMENTS This thesis was produced in the Department of Radiology, Sirit Annadal Hospital, Maastricht. i Case material: Prof. Dr. H. A. J. Lemmens, surgeon. Technical assistence: Miss J. Crijns, Mrs. A. Rousie-Panis, Miss A. Mordant and Miss H. Nelissen. Secretarial help: Mrs. M. Finders-Velraad and Miss Y. Bessems. Photography: Mr. C. Evers. Graphical illustrations: Mr. C. Voskamp. Correction English text: Dr.
    [Show full text]
  • Variation of the Origin of the Lateral Thoracic Artery. Case Report
    Revista Română de Anatomie funcţională şi clinică, macro- şi microscopică şi de Antropologie Vol. XVII – Nr. 4 – 2018 CLINICAL ANATOMY VARiation OF THE ORIGin OF THE LatERAL THORacic ARTERY. CASE REPORT Tamás-Csaba Sipos2, Lóránd Dénes1*, Klara Brînzaniuc1, Annamária Szántó1, Zoltán Pávai1, Zsuzsánna Pap1 University of Medicine, Pharmacy, Sciences and Technology of Tîrgu-Mureş 1. Department of Anatomy and Embryology 2. Student, GM 6th year VARIATION OF THE ORIGIN OF THE LATERAL THORACIC ARTERY. Case RePORT (Abstract): Introduction: Anatomical variations of the origin of axillary artery branches are quite common. The most frequent variations are common trunks or emergence from a different segment than the classical description. Material and method: A formalin fixed male human cadaver has been dissected during teaching classes for medical students at the Anatomy and Embryology De- partment of UMFST Târgu Mureş. We observed a pattern of origins of the axillary artery branch- es different from the classical description. Results: The second part of the axillary artery provides the superior thoracic artery and the thoraco-acromial artery from its anterior surface, while the subscapular artery separates from its posterior surface. The lateral thoracic artery is a branch of the subscapular artery. The anterior and posterior circumflex humeral arteries come from the third part of the axillary artery, which corresponds to the classical description. Conclusions: Published studies report multiple variations regarding the origin of the axillary artery branches. Most com- monly, the lateral thoracic artery originates from the subscapular artery, which is the case in our study as well. Key-words: LATERAL THORACIC ARTERY, vaRIATION, SUBSCAPULAR ARTERY INTRODUCTION provides six branches, which are grouped ac- Arterial supply to the thoraco-scapulo-hu- cording to its parts: the first part gives off the meral area is provided by the branches of the superior thoracic artery, the second part pro- axillary artery.
    [Show full text]
  • Branches of Axillary Artery for PDF 13.5.11
    Diagram of branches Acromial Br lar Br icu of axillary artery Clav rtery mial a oacro Thorac Deltoid Br t 1st Par d 2n Superior thoracic artery Anterior Pectoral Br circumflex t Par Pectoralis minor humeral d artery 3r Sub- scapular artery Lateral thoracic artery Circumflex scapular artery Posterior circumflex humeral artery TheFromFrom axillary 1st2nd3rd part part artery (a)superior .(a) (a) subscapular begins The thoracoacromial thoracic at the runs outer– itdown runs border artery within along the of– a the thestoutlong firstfirst subscapularshort ribintercostal trunk,and ends nerve,which space. at projustthe- lowerjectswithin border forwardthe posterior of over terres theaxillary major inner ,fold. where boarder Near it continuesof the pectoralis lower as angle the minor brachial of theand scapula dividesartery. itinto divides four branches.into two, one (i) side clavicular, goes to runs the sideup over of the subclavius chest, the ; (ii) other pectoral to the is deep large surface and runs of Thedownthe latissimusaxillary between artery with the runsthetwo longacrosspectorals subscapular the withsuperior the nerve. externalaspect Near of anterior theits origin axilla thoracic itand gives is markednerve, off a large and by asuppliesbranch, line drawn thethese circumflexfrom muscles; the middle scapular(iii) acromial, of the artery, clavicle usually which to comes apasses point off backhalf-way a common through between trunk the “triangu withthe two the- condylesdeltoid,lar space” andof tothe runs the humerus, back dorsum beneath when of the the scapula. deltoidarm is raisedtoward(b) The to the anteriora right acromion; angle. circumflex and (iv) humeral deltoid runsartery down which beside is a smallthe cephalic artery thatvein, passes in a groove out across between the frontdeltoid of andthe pectoralishumerus, Itmajor,sending is divided and a branch endsinto threein up these to partsthe muscles.
    [Show full text]
  • Anatomical Evaluation of Lateral Thoracic Artery in Cadavers in North Indian Population
    International Journal of Medical and Health Research Original Research Article International Journal of Medical and Health Research ISSN: 2454-9142 Received: 20-08-2018; Accepted: 22-09-2018 www.medicalsciencejournal.com Volume 4; Issue 10; October 2018; Page No. 178-180 Anatomical evaluation of lateral thoracic artery in cadavers in North Indian population Dr. Rekha Sinha1, Dr. Mundrika PD Sudhanshu2* 1 Assistant Professor, Department of Anatomy, Patna Medical College, Patna, Bihar, India 2 Professor and Head, Department of Anatomy, Patna Medical Callege, Patna, Bihar, India *Corresponding author: Dr. Mundrika Pd Sudhanshu Abstract The lateral thoracic artery follows the lower border of the Pectoralis minor to the side of the chest, supplying the Serratus anterior and the Pectoralis, and sending branches across the axilla to the axillary glands and Subscapularis; it anastomoses with the internal mammary, subscapular, and intercostal arteries, and with the pectoral branch of the thoracoacromial. Based on the literature findings the present study was planned to evaluate the arterial pattern of lateral thoracic artery in human cadavers. As this study is helpful to know the type and frequency of vascular variations. The present study was planned in Department of Anatomy in Patna Medical College to assess the arterial pattern of lateral thoracic artery in human cadavers. The study was planned on 30 cadaveric subjects. The axillae from embalmed cadavers allotted for dissection in the Department of Anatomy used for the study. The knowledge of these variations is necessary for the surgeons considering the frequency of procedures performed in this region. The absence of branches from the second and third parts of axillary artery may be responsible for compromised collateral circulation between the branches.
    [Show full text]
  • Arteries of The
    This document was created by Alex Yartsev ([email protected]); if I have used your data or images and forgot to reference you, please email me. Arteries of the Arm st The AXILLARY ARTERY begins at the border of the 1 rib as a continuation of the subclavian artery Subclavian artery The FIRST PART stretches between the 1st rib and the medial border of pectoralis minor. First rib It has only one branch – the superior thoracic artery Superior thoracic artery The SECOND PART lies under the pectoralis Thoracoacromial artery minor; it has 2 branches: Which pierces the - The Thoracoacromial artery costocoracoid membrane - The Lateral Thoracic artery deep to the clavicular head The THIRD PART stretches from the lateral border of pectoralis major of pectoralis minor to the inferior border of Teres Major; it has 3 branches: Pectoralis major - The Anterior circumflex humeral artery - The Posteror circumflex humeral artery Pectoralis minor - The Subscapular artery Axillary nerve Posterior circumflex humeral artery Lateral Thoracic artery Travels through the quadrangular space together Which follows the lateral with the axillary nerve. It’s the larger of the two. border of pectoralis minor onto the chest wall Anterior circumflex humeral artery Passes laterally deep to the coracobrachialis and Circumflex scapular artery the biceps brachii Teres Major Passes dorsally between subscapularis and teres major to supply the dorsum of the scapula Profunda Brachii- deep artery of the arm Thoracodorsal artery Passes through the lateral triangular space (with Goes to the inferior angle of the scapula, the radial nerve) into the posterior compartment Triceps brachii supplies mainly the latissimus dorsi of the arm.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • A Series of Study of Anatomic Variation on Arterial System
    Article ID: WMC003513 ISSN 2046-1690 A Series Of Study Of Anatomic Variation On Arterial System Corresponding Author: Dr. Prakash Baral, Associate Professor, B.P.Koirala Institute Of Health Sciences,Department of Human Anatomy - Nepal Submitting Author: Dr. Sarun Koirala, Assistant Professor, Department of Human Anatomy, BP Koirala Institute of Health Sciences, 56700 - Nepal Article ID: WMC003513 Article Type: Original Articles Submitted on:24-Jun-2012, 12:40:17 PM GMT Published on: 26-Jun-2012, 09:14:28 PM GMT Article URL: http://www.webmedcentral.com/article_view/3513 Subject Categories:ANATOMY Keywords:Upper limb, Arterial variation, Axillary, Forearm, Palmar level. How to cite the article:Baral P, Koirala S. A Series Of Study Of Anatomic Variation On Arterial System. WebmedCentral ANATOMY 2012;3(6):WMC003513 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License(CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: None Competing Interests: Nil Additional Files: A Series Of Study Of Anatomic Variation On A Series Of Study Of Anatomic Variation On WebmedCentral > Original Articles Page 1 of 7 WMC003513 Downloaded from http://www.webmedcentral.com on 16-Feb-2016, 01:37:38 PM A Series Of Study Of Anatomic Variation On Arterial System Author(s): Baral P, Koirala S Abstract palmar branch of radial artery whereas the radial artery forms the deep palmar arch with the deep branch of ulnar artery.2 Many authors have published different series of reports about arterial anomalies of The arteries supplying the upperlimb exhibit lots of the upper extremities.
    [Show full text]
  • The Surgical Anatomy of the Mammary Gland. Vascularisation, Innervation, Lymphatic Drainage, the Structure of the Axillary Fossa (Part 2.)
    NOWOTWORY Journal of Oncology 2021, volume 71, number 1, 62–69 DOI: 10.5603/NJO.2021.0011 © Polskie Towarzystwo Onkologiczne ISSN 0029–540X Varia www.nowotwory.edu.pl The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (part 2.) Sławomir Cieśla1, Mateusz Wichtowski1, 2, Róża Poźniak-Balicka3, 4, Dawid Murawa1, 2 1Department of General and Oncological Surgery, K. Marcinkowski University Hospital, Zielona Gora, Poland 2Department of Surgery and Oncology, Collegium Medicum, University of Zielona Gora, Poland 3Department of Radiotherapy, K. Marcinkowski University Hospital, Zielona Gora, Poland 4Department of Urology and Oncological Urology, Collegium Medicum, University of Zielona Gora, Poland Dynamically developing oncoplasty, i.e. the application of plastic surgery methods in oncological breast surgeries, requires excellent knowledge of mammary gland anatomy. This article presents the details of arterial blood supply and venous blood outflow as well as breast innervation with a special focus on the nipple-areolar complex, and the lymphatic system with lymphatic outflow routes. Additionally, it provides an extensive description of the axillary fossa anatomy. Key words: anatomy of the mammary gland The large-scale introduction of oncoplasty to everyday on- axillary artery subclavian artery cological surgery practice of partial mammary gland resec- internal thoracic artery thoracic-acromial artery tions, partial or total breast reconstructions with the use of branches to the mammary gland the patient’s own tissue as well as an artificial material such as implants has significantly changed the paradigm of surgi- cal procedures. A thorough knowledge of mammary gland lateral thoracic artery superficial anatomy has taken on a new meaning.
    [Show full text]
  • A Variant Branch of the Axillary Artery Impacting in the Superficial Palmar Arch Composition
    Case Report Annals of Clinical Anatomy Published: 25 Jun, 2018 A Variant Branch of the Axillary Artery Impacting in the Superficial Palmar Arch Composition Expedito S Nascimento Jr*, Jorge Landivar Coutinho, Karolina Duarte Rego, Jeovana Pinheiro F Souza, Marina Maria VF Caldas, Naryllenne Maciel Araújo, Wylqui Mikael G Andrade and Fernando Vagner Lobo Ladd Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Brazil Abstract During routine dissection of an approximately 60-year-old female cadaver for the undergraduate medical students at Morphology Department of Federal University of Rio Grande do Norte, Brazil, was observed a variant branch originated from the second part of the axillary artery. The second part of the right axillary artery gave rise to aberrant brachial artery that travels down superficially in the medial aspect of the upper limb. Furthermore, this superficial brachial artery terminates in the superficial palmar arch completely replacing the ulnar artery at this level. Variations in the upper limb arterial distribution are notably important for surgeons performing interventional or diagnostic in vascular diseases. Keywords: Axillary artery; Superficial palmar arch; Anatomic variation Introduction The axillary artery is a continuation of the subclavian artery, extending from the outer border of the first rib to the lower border of the teres major muscle where it continuous as brachial artery. Using as a reference the pectoralis minor muscle, the axillary artery could be divided into three parts: the first part extends from the outer board of the first rib to the superior board of the pectoralis OPEN ACCESS minor muscle; the second part is entirely covered by the pectoralis minor muscle; and the third part extends from the inferior border of the pectoralis minor muscle to the lower board of the teres *Correspondence: major muscle [1].
    [Show full text]
  • Radial Artery Aneurysm Secondary to Dynamic Entrapment by Extensor Pollicis Longus Tendon: a Case of Snapping Thumb
    Skeletal Radiology (2019) 48:971–975 https://doi.org/10.1007/s00256-018-3061-y CASE REPORT Radial artery aneurysm secondary to dynamic entrapment by extensor pollicis longus tendon: a case of snapping thumb Hatim Alabsi1,2 & Thomas Goetz3 & Darra T. Murphy1 Received: 30 April 2018 /Revised: 28 August 2018 /Accepted: 29 August 2018 /Published online: 13 September 2018 # ISS 2018 Abstract Aneurysms of the distal radial artery at the level of the wrist are rare. Most reported cases are posttraumatic, either from iatrogenic arterial puncture for radial arterial access or from a penetrating injury. Other causes include infection and connective tissue disorders. Early diagnosis is important to avoid the potential complications of thrombus formation, distal digital ischemia, and rupture. Evaluation of the radial artery is typically performed using non-invasive modalities like ultrasonography, computed tomographic angiography (CTA), and magnetic resonance angiography (MRA). Invasive angiography can also be performed, particularly if minimally invasive treatment options are being considered. We report a case of a 35-year-old male mechanic who presented with pain at the base of the left thumb dorsally, with reproducible painful snapping on dynamic exam. Ultrasound demonstrated a fusiform aneurysm of the radial artery. At the level of the aneurysm, there was dynamic entrapment of the artery between the extensor pollicis longus (EPL) tendon and the underlying trapezium. The patient’s symptoms improved with conservative manage- ment and avoidance of the snapping-producing maneuvers. To our knowledge, this is the first published case of snapping at the base of the thumb resulting in repetitive entrapment of the radial artery by the EPL tendon captured on dynamic ultrasound examination.
    [Show full text]